Skip to main content
Log in

Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrodeposition of both epitaxial and polycrystalline continuous films of dense, coherent, and well-adherent silicon coatings was achieved from molten fluorides. A dissolving Si anode and an operating temperature of about 750 C were utilized. Silicon electrocrystallization epitaxy (ECE) produced films with the (111) orientation on Si substrates of the same orientation. The unintentionally doped films were of p-type character with a resistivity in the range 0.05 - 0.10 Ω-cm. Polycrystalline Si films were similarly electroplated onto various polycrystalline metal substrates. Uniform coherent, and well-adherent coatings with grain diameters as large as 40 – 50 µm were obtained. The useful rate of electrodeposition of Si could be significantly increased by the application of an alternating square wave pulse (ASWP)2technique. Cathodic current pulses as high as 300 mA/cm2 (growth rate of about 5 µm/min) were demonstrated. The cathodic current efficiencies, for all modes of growth, were about 70 – 100%. The effects of the various operating parameters, and some prospective applications to the fabrication of solar cells, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ullik, Ber. Wien Acad.52, 115 (1865).

    Google Scholar 

  2. A. Minet, C. R. Acad. Sci.112, 1215 (1891).

    Google Scholar 

  3. K. Grjotheim, K. Matiasovsky, P. Fellner, and A. Silny, Can. Met. Quart.10, 79 (1971).

    CAS  Google Scholar 

  4. G. Boe, K. Grjotheim, K. Matiasovsky, and P. Fellner, Ibid, 179 (1971).

    CAS  Google Scholar 

  5. R. Monnier and D. Barakat,Compt. Rend. Congr. Intern. Chem. Ind. 3le, Liege, 1958; C. A.,54, 3000 (1960).

  6. R. Monnier and J. C. Giacometti, Helv. Chim. Acta47, 345 (1964).

    Article  CAS  Google Scholar 

  7. R. Monnier and Ph. Grandjean, Helv. Chim. Acta43, 2163 (1960).

    Article  CAS  Google Scholar 

  8. R. Monnier, et al., U.S. Patents 3,219,561 (1965); 3,254,010 (1966).

  9. N. S. Fortunatov, Zap. Inst. Khim. Ukr. Akad. Nauk2, 257 (1935); C. A. 31, 4599 (1937).

    CAS  Google Scholar 

  10. M. Dodero, Bull. Soc. Chim. France6, 209 (1939); C.A.33, 8504 (1939).

    CAS  Google Scholar 

  11. M. Dodero,Silicium Schwefel, Phosphate, Colloq. Sek. Anorg. Chem. Intern. Union Reine Angew. Chem. Munster 1954, p. 15; C. A.,51,, 12705 (1957).

  12. D. R. Stenn and Q. H. McKenna,Silicon, U.S. Patent 2,892,763 (1959).

    Google Scholar 

  13. L. P. Hunt, L. D. Crossman, and M. Wolf, inERDA’s first Semiannual Solar Photovoltaic Conversion Conference. University of California, Los Angeles, California, July 22–25, 1975.

    Google Scholar 

  14. G. W. Mellors and S. Senderoff, Canadian Patent 688,546 (1964).

    Google Scholar 

  15. S. Senderoff, Metallurgical Reviews11, 97 (1966).

    Google Scholar 

  16. G. W. Mellors and S. Senderoff, J. Electrochem. Soc.112, 266 (1965);112, 840 (1965);113, 60 (1966);114, 586 (1967);118, 220 (1971).

    Article  Google Scholar 

  17. N. C. Cook, J. D. Evans, and B. A. Fosnocht, inProc. Intern. Conf. on Protection Against Corrosion by Metal Finishing, Basel, 1966.

  18. N. C. Cook, U.S. Patent Re. 25,630 (1964).

    Google Scholar 

  19. N. C. Cook, U.S. Patents 3,024,175 (1962); 3,024,176 (1962); 3,479,158 (1969); 3,479,159 (1969); 3,489,536 to 3,489,540 (1970); 3,489,659 (1970); 3,514,272 (1970); 3,522,021 (1970).

  20. U. Cohen, Ph.D. Dissertation, Stanford University (1977).

  21. U. Cohen and R. A. Huggins, J. Electrochem. Soc.123, 381 (1976).

    Article  CAS  Google Scholar 

  22. U. Cohen, U.S. Patent 3,983,012 (September 1976).

  23. U. Cohen, Patent Pending.

  24. U. Cohen and R. A. Huggins, Elect. Mat. Conference, University of Utah, Salt Lake City, Utah, June 23–25, 1976 (Abstract No. A6).

    Google Scholar 

  25. P. F. Kane and G. B. Larrabee,Characterization of Semiconductor Materials, Texas Inst. Elect. Series, McGraw-Hill Book Co. (1970).

  26. Uri Cohen and R. A. Huggins,High Rate Electrodeposition of Niobium from Molten Fluorides Using Alternating Square Wave Pulses, Electrochem. Soc. Meeting, Dallas, Texas, October 5–10, 1975 (Abstract No. 147).

    Google Scholar 

  27. A. R. Despic and K. I. Popov, "Transport-Controlled Deposition and Dissolution of Metals," inModern Aspects of Electrochemistry, Vol. 7 (ed. by B. E. Conway and J. O’M. Bockris), Plenum Press, N. Y. (1972).

    Google Scholar 

  28. U. Cohen and W. A. Tiller, to be published.

  29. C. E. Wicks and F. E. Block,Thermodynamic Properties of 65 Elements — Their Oxides, Halides, Carbides, and Nitrides, U.S. Bur. Mines Bull.605 (1963).

  30. G. F. Wakefield,Solar Cell Definitions, in ERDA’s first Semiannual Solar Photovoltaic Conversion Conference, University of California, Los Angeles, California, July 22–25, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This was paper A-6 in the 18th Annual Electronic Materials Conference, Salt Lake City, June 23–25, 1976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, U. Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication. J. Electron. Mater. 6, 607–643 (1977). https://doi.org/10.1007/BF02660341

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660341

Key words

Navigation