Skip to main content
Log in

Fatigue and microstructural properties of quenched Ti- 6Al- 4V

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties and microstructures of Ti-6A1-4V were determined for specimens heat treated at temperatures from 843 °C to 1065 °C for 10 minutes and water quenched; these properties were compared with those of α annealed specimens. Specimens heat treated at 900 °C and water quenched had higher fatigue lives by a factor of four to ten relative to the other treatments; in addition, this treatment resulted in high ductility, yield strength, tensile strength, and elastic modulus. Micro-structure studies utilizing optical and transmission microscopy showed that the improved fatigue lives were a result of a strain induced transformation of retained β to martensite. The amount of retainedβ and its relative stability were shown to depend upon the heat treatment temperature. The lower the heat treatment temperature below theβ transus the smaller the amount ofβ phase present before the quench and the richer theβ phase inβ stabilizer. The greater the concentration ofβ stabilizer in theβ phase the greater the probability that theβ phase was retained. High heat treatment temperatures resulted in a greater amount ofβ that was less stable and more probable to transform to martensite during a water quench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Steele and A. J. McEvily:Titanium and Titanium Alloys, J. C. Williams and A. F. Belov, eds., Plenum Press, 1982, p. 589.

  2. C. M. Gilmore and M. A. Imam:Titanium and Titanium Alloys, J. C. Williams and A. F. Belov, eds., Plenum Press, 1982, p. 637.

  3. R. A. Sprague, D. L. Ruckle, and M. P. Smith:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 3, p. 3069.

  4. M. A. Greenfield, C. M. Pierce, and J. A. Hall:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 3, p. 1731.

  5. L. J. Bartlo:Fatigue at High Temperature, ASTM STP 459, 1969, p. 144.

  6. J. E. Coyne:The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., Pergamon Press, 1970, p. 97.

  7. E. Beck: MCR-60-140, AFML Wright Patterson Air Force Base, OH, May 1970.

  8. M. Tiktinsky:The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., Pergamon Press, 1970, p. 1013.

  9. J. J. Lucas:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 3, p. 2081.

  10. A. W. Bowen and C. A. Stubbington:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 3, p. 2097.

  11. A. M. Adair and W. H. Rieman:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 3, p. 1801.

  12. A. W. Thompson, J. C. Williams, J. D. Frandsen, and J. C. Chestnutt:Titanium and Titanium Alloys, J. C. Williams and A. F. Belov, eds., Plenum Press, 1982, p. 691.

  13. A. W. Bowen and C. A. Stubbington:Titanium and Titanium Alloys, J. C. Williams and A. F. Belov, eds., Plenum Press, 1982, p. 1989.

  14. C. A. Stubbington and J. T. Ballett:Titanium Science and Technology, R. E. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 1, p. 601.

  15. F. A. Crossley and R. E. Lewis: Report LMSC-D356114, 1973.

  16. R. G. Sherman and H. D. Kessler:Trans. ASM, 1956, vol. 48, p. 47.

    Google Scholar 

  17. P. J. Fopiano, M. B. Bever, and B. L. Averbach:Trans. ASM, 1969, vol. 62, p. 324.

    CAS  Google Scholar 

  18. ASTM Specification E8, 1971, p. 205.

  19. K. F. J. Heinrich: “NBS Technical Note 719,” May 1972, p. 35.

  20. R. Castaing: Doctoral Thesis, University of Paris, 1951.

  21. H. Yakowitz, R. L. Myklebust, and K. F. J. Heinrich: “NBS Technical Note 796,” October 1973.

  22. J. Philibert and R. Tixier: in “Quantitative Electron Probe Micro-analysis,” K. F. J. Heinrich, ed., NBS Special Publication 298, 1968, p. 13.

  23. J. C. Williams and M. J. Blackburn:Trans. ASM, 1967, vol. 60, p. 373.

    CAS  Google Scholar 

  24. G. F. Boiling and R. H. Richman:Phil. Mag., 1969, vol. 19, p. 247.

    Google Scholar 

  25. B. L. Averbach, M. F. Comerford, and M. B. Bever:Trans. TMS-AIME, 1959, vol. 215, p. 682.

    CAS  Google Scholar 

  26. J. C. Williams: private communication. Carnegie-Mellon University, Pittsburgh, PA, 1976.

  27. J. C. Williams:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, vol. 3, p. 1433.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imam, M.A., Gilmore, C.M. Fatigue and microstructural properties of quenched Ti- 6Al- 4V. Metall Trans A 14, 233–240 (1983). https://doi.org/10.1007/BF02651620

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651620

Keywords

Navigation