Skip to main content
Log in

Abstract

The mathematics of probability are used to construct a framework that describes some key features of primary and secondary creep. The underlying assumption is that dislocation slip and annihilation are probabilistic events. The resulting mathematical framework takes the form of renewal theory from probability theory. Renewal creep theory provides a mathematical frame-work for primary creep that accommodates previously developed empirical descriptions. Renewal creep theory also predicts the existence of secondary creep as an asymptotically constant strain-rate phenomenon. Creep modeling techniques are demonstrated for three titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Feller:An Introduction to Probability Theory and Its Applications, John Wiley & Sons, New York, NY, 1966, vol. 2, ch. 11.

    Google Scholar 

  2. R.L. Bagley, A.D. Freed, and D.I.G. Jones:Mech. Mater., in press.

  3. J. Weertman:J. Appl. Phys., 1955, vol. 26, pp. 1213–17.

    Article  CAS  Google Scholar 

  4. U.F. Kocks, A.S. Argon, and M.F. Ashby:Progress in Materials Science, vol. 19,Thermodynamics and Kinetics of Slip, Pergamon Press, Oxford, United Kingdom, 1975.

    Google Scholar 

  5. U.F. Kocks:Phil. Mag., 1966, vol. 13, pp. 541–66.

    Article  Google Scholar 

  6. M. Ortiz and E.P. Popov:Proc. R. Soc. London, 1982, vol. A379, pp. 439–58.

    Google Scholar 

  7. A.M. Cuitino and M. Ortiz:Simul. Mater. Sci. Eng., 1992, vol. 1, pp. 225–63.

    Article  Google Scholar 

  8. L. Shi and D.O. Northwood:J. Mater. Sci., 1993, vol. 28, pp. 5963–74.

    Article  CAS  Google Scholar 

  9. W. Kauzmann:Trans. AIME, 1941, vol. 143, pp. 57–81.

    Google Scholar 

  10. F.R.N. Nabarro:Theory of Crystal Dislocations, Oxford University Press, Oxford, United Kingdom, 1967, pp. 719–23.

    Google Scholar 

  11. R.V. Churchill:Operational Mathematics, 3rd ed., McGraw-Hill, New York, NY, 1972, p. 83.

    Google Scholar 

  12. S. Takeuchi and A.S. Argon:J. Met. Sci., 1976, vol. 11, pp. 1542–66.

    Article  CAS  Google Scholar 

  13. J.E. Dorn:Creep and Recovery, ASM, Materials Park, OH, 1957, p. 255.

    Google Scholar 

  14. F. Garofalo:Trans. AIME, 1963, vol. 227, pp. 351–56.

    Google Scholar 

  15. J. Weertman:ASM Trans. Q., 1968, vol. 61, p. 681.

    CAS  Google Scholar 

  16. G.I. Taylor:J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  17. U.F. Kocks:Metall. Trans., vol. n1, pp. 1121-43.

  18. U.F. Kocks: Los Alamos National Laboratory, Los Alamos, NM, personal communication, 1993.

  19. E.N.C. Andrade:Proc. R. Soc. London, 1910, vol. A84, pp. 1–12.

    Google Scholar 

  20. N.F. Mott:Phil. Mag., 1953, vol. 44, pp. 742–65.

    CAS  Google Scholar 

  21. Anon: Technical Report No. AFML-TR-67-259, Wright Laboratory, Wright-Patterson AFB, OH, 1968.

  22. J.O. Hachet and E.L. Horne: Technical Report No. ASD-TDR-62-524, Wright-Patterson AFB, OH, 1962.

    Google Scholar 

  23. M.F. Ashby:Acta Metall, 1972, vol. 20, pp. 887–98.

    Article  CAS  Google Scholar 

  24. C. Zener and J.H. Hollomon:J. Appl. Phys., 1944, vol. 15, pp. 22–32.

    Article  Google Scholar 

  25. F. Garofalo: inMetals, Macmillan, New York, NY, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagley, R.L., Jones, D.I.G. & Freed, A.D. Renewal creep theory. Metall Mater Trans A 26, 829–843 (1995). https://doi.org/10.1007/BF02649080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649080

Keywords

Navigation