With the exception of the 427°C test conditions where
the average error was 6.2 pct, most of the calculated
values fell within 5 pct of the corresponding experimen-
tally determined uitimate strength, differing by 4.5, 3.5,
and 3.5 pet, respectively, for the RT, 593 and 649°C
test conditions.

Fig. 3 clearly leads one to conclude that the calcu-
lated values of the 0.2 pct offset yield strength is un-
derestimated when using Eq. [3], especially for the
case of the seven room temperature values shown at
the higher stress levels. The calculated yield strengths
for the case of the 593°C test conditions were within
1 pet of the experimental values and those for §49°C
being within 7 pct. The calculated room temperature
yield strengths were low by an average of 24 pct and
those of the 427°C test conditions by 19 pct. A constant
of 3.1 was also used for the calculation of the yield
strength.

The present studies show that similar to the corre-
lation of the room temperature ultimate strength lev-
els with hardness values as presented by Tabor” and
Cahoon,’’® the elevated temperature tensile properties
may be obtained from corresponding hot-hardness
measurements. Eq. [5], differing only by a constant
from Eq. [1] shows excellent agreement for test tem-
peratures up to 649°C. The calculations of the yleld
strength appears to be reasonable for only the higher
test temperatures.

1t is interesting to note that the average diameters
of dislocation cells {subgrains), which are formed in
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tensile tests of 316 stainless steel specimens® do not
change significantly in the test temperature range of
200 to 600°C and the same should be true for the case
of 304 stainless steel. In addition, the strain harden-
ing coefficient values are shown to vary inversely with
the subgrain dimensions.® The substructure being an
important parameter in the correlation of hardness
with tensile strength is presently being evaluated with
the use of a 200 kV transmission electron microscope.
In particular, the dislocation arrangements in the re-
glon of the hardness indent and in the gage section of
tensile specimens strained to values of about 8 pct are
being studied.
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In the development of Eq. [14] it is necessary to use
the derivative of Eq. (3]. The equations in the paper
appear as if the change in Young’s Modulus with f was
neglected. However, we will show here that incorpo-
rating this consideration into the development does
not change the result. Starting with Eq. [3].
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(Eq. 3 in text)
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METALLURGICAL TRANSACTIONS

It follows that,

x x
des = de*—% *%2(%?) df.
Knowing that E® > o* the third term on the right can
be neglected. The resulting expression is the form
employed in the development of Eq. (14] in the paper.
Therefore, including the change in modulus with f into
the development, as it should be, does not modify the
original results.
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