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Abstract. Comparisons of calculated diurnal and eclipse temperatures of the lunar outermost layer 
are made with Earth-based infrared and millimeter data. The thermophysical model upon which the 
calculations are based incorporates variable physical properties. The thermal conductivity is a func- 
tion of both density (depth) and temperature; the specific heat is a function of temperature; the 
density is a function of depth; and the dielectric constant and loss tangent are functions of density 
(depth). Laboratory measurements and Apollo sample results are incorporated in the property data. 
Calculational cases are based largely upon different density profiles. The model is consistent with the 
data, and the comparisons of theoretical and observational temperatures are very favorable. For such 
comparisons, further sophistication of the thermophysical model of the outermost layer is probably 
not justified. 

1. Introduction 

The problem of constructing a theoretical model which may be used to calculate lunar 

temperatures as a function of depth and time and which compares satisfactorily with 
observational temperatures determined from infrared lunation, infrared eclipse, and 

microwave lunation measurements has been one of considerable interest, beginning, 
perhaps, with Epstein's (1929) effort to compare calculated temperatures with those 
determined from Pettit 's and Nicholson's (1930) eclipse observations. After early 
efforts, there arose the difficulty of constructing a single model which would explain 
both the infrared lunation and eclipse data as well as the millimeter data, as opposed 
to models which would explain only one or two of these three categories of measure- 
ments. The various attempts to construct adequate theoretical models ranging from 
Wesselink's (1948) famous paper to the more recent ones of  Linsky (1966) and Winter 
and Saari (1969) are surveyed in several papers (Weaver, 1965; Troitskiy, 1965; 
Jones, 1969; Troitskiy et al., 1971) and will not be reviewed further here. 

The purposes of  this paper are to: (1) present the results from a model proposed 
earlier in outline form by one of the authors (Jones, 1969) in which the thermal con- 
ductivity is a function of  both depth and temperature, the density is a function of 
depth, the specific heat is a function of temperature, and the dielectric 'constant '  and 

loss tangent are functions of depth, with all of  these being continuous functions; (2) 
give briefly the computational and numerical methods used; (3) show that the calcu- 
lated results yielded by the model compare well with both the infrared and millimeter 

observational data; and (4) illustrate that the results are not inconsistent with the 
recent data on physical properties from the Apollo program. 

The observational data used for comparison with the theoretical results of this work 
are those of Murray 's  and Wildey's (1963, 1964) nighttime infrared, Mendell's and 
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Low's recent (1970) nighttime infrared, Shorthill's and Saari's (1965, 1967) eclipse 
infrared, Winter's (1968) summary of infrared, and Ulich et al.'s (1974) recent milli- 
meter lunation. 

Prior to the model presented here, the Winter and Saari (1969) model came closer 
to satisfying the known requirements. But, that model had the following deficiencies: 
(1) the density was constant, (2) the conductive component of the thermal conductiv- 
ity was a function of depth only, while the radiative component was a function of tem- 
perature only, (3) the absorption coefficient, dielectric constant, and loss tangent were 
constant, and (4) the comparison with the millimeter observational data was not com- 
pletely satisfying. Moreover, additional infrared lunation data further into the lunar 
night (Mendell and Low, 1970), additional millimeter data (Ulich et al., 1974), and 
data on physical properties from the Apollo program have become available. The 
present model satisfies these additional requirements as well as the long-standing 
ones. 

2. The Theoretical Model 

The fundamental description of the model for calculating the temperatures of the 
Moon as a function of depth and time is stated as a boundary value-initial condition 
problem in partial differential equations in the form for a semi-infinite solid. The 
model consists of the one space dimensional, nonlinear, nonhomogeneous, parabolic 
partial differential equation of heat conduction; the usual boundary condition at 
depth for the semi-infinite solid; initial conditions in time; a distinction in time be- 
tween the lunation and eclipse cases; and auxiliary equations for the thermophysical 
properties. 

The appropriate partial differential equation (pde) is 

0(x) c ( T ) - ~ - - B ~  k ( x , T ) ~ x x  ' (1) 

where 0(x) is bulk density as a function of depth, x; c(T) is specific heat as a function 
of temperature, T; and k(x, T) is thermal conductivity as a function of depth and 
temperature. (The units of physical quantities in this paper are the Systkme Inter- 
national d" Unitds, designated SI in all languages.) 

The surface boundary condition is 

[ =], F (t) - ~aT 4 = - x-.olim k (x, T) ~x.] (2a) 

where ~ is the radiative emittance of the lunar surface, a is the Stefan-Boltzmann phys- 
ical constant, and 

F (t) = E (t/P) c~Sr 2 cos (2=t/P) cos qS. (2b) 

In this definition of F (t), ~ is the absorptance of the lunar surface with respect to 
solar incident radiation; r is the reciprocal of the ratio of the distance from the Earth 
to the Sun at a particular time to the nominal value of this distance; t is the time in a 
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lunation measured from zero time taken arbitrarily as local noon; P is the time of a 
lunation period (nominally equal to 708.73416 hours); q~ is selenographic latitude; 
S is the solar constant; and 

1353 W m - E ,  i f0  ~ t ~ P/4 

S = 0, if P/4 < t < 3P/4 (2c) 

1353 W m -2, i f3P/4  ~< t ~< P.  

E (t/P) is an eclipse function (O<~E(t/P)~ l) which modifies the solar incidence for 
a particular eclipse and lunar location and which is represented for calculational pur- 
poses by cubic splines. 

The lower boundary condition is 

lim T (x, t) = V, a constant. (3) 
x--* oo 

Initial conditions are obtained from a Fourier series solution to the linear, homoge- 
neous problem (Calvert, 1969) and are given by 

{ ,o 
T(x,  0 ) =  A o +  2 g x ' / " ~ [ A . c ~  + 

t t = l  

+ B. sin ( -  x U cos'/4 @, (4) 

where Ao, A,, and B, are the Fourier coefficients determined from infrared lunation 
observations and e* is the thermal diffusivity (defined only for constant thermal con- 
ductivity - here, only for estimating the initial conditions) of the lunar surface, taken 
to be constant and equal to 0.4576 x 10 -4 m 2 h -1 for purposes of calculating the 
initial temperature profile. 

The bulk density profile is assumed to be represented by a density-depth model 
proposed earlier (Jones, 1968) having the form 

~(x) = 0 ~ / I 1  + ( 0 0 o - 1 )  e-X/~*], (5a) 

where 0o = limx~o ~(x); 0~ =limx-.o 0(x); and x* is a parameter determined by 

x* = - x i .J ln  [00 (0~ - 01.t)/&.t (0~ - Co)I, (5b) 

in which the interior point (xi.t, 0i.:) is assumed in order to obtain a particular profile. 
Since the actual density-depth profile of the Moon is unknown, this profile becomes 
the primary free choice to distinguish between computational cases. As will be seen, 
all other physical properties and parameters in the theoretical temperature model 
presented here are essentially fixed by other Considerations. 

Buettner (1963), in an early paper, proposed that the thermal conductivity of par- 
ticulate material (basalt, in that case) in vacuum be represented by k = constant + con- 
stant. T 3. Later analysis based upon heat transfer in vacuum (Watson, 1964), lab- 
oratory measurements (Wechsler, 1966), radiative transfer in stellar atmospheres 
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(Wildey, 1967), and porosity of particulate materials (Halajian, 1967) supported 
Buettner's proposal. Since this form for the conductivity was based upon a physically 
homogeneous material in both the theoretical and laboratory verifications of the form, 
and, considering the necessity for the function, Q(x), it became evident (Jones, 1969) 
that the conductivity could, and probably should, be represented by 

k ( x ,  T) = k o (x) + k 3 (x) T 3 . (6a) 

Fountain and West (1970) confirmed, using particulate basalt in vacuum, that the 
thermal conductivity is indeed a function of both temperature and density (therefore, 
depth) and provided extensive data to determine k o (x) and k 3 (x). By use of these 
data, these functions are represented very well for calculational purposes by third- 
degree polynomials, determined by the least-squares technique, of the form 

ko(x) = Co + c10(x) + c2 2(x) + c3 3( ) 
and 

where 

and 

k 3 ( x  ) = b 0 + blO (x) + b2~2 (x)  + b303 (x ) ,  

Co = 0.40627783 • 
Cl = - 0.10295491 
c2 = 0.91660767 x 
c 3 = - 0.22511580 

10-2 W m-1 K - l ,  
x 10 -4 W m 2 kg -1 K -~ , 
10-s W m  5 kg -2 K - l ,  

x 10 - l t w m  skg  - 3 K  - I ;  

b o = 0.30821872 x 
b 1 = - 0.18565704 
bz = - 0.12893852 
b 3 = 0.17879447 • 

10-1o W m - 1 K - 4 ,  
x 10 -13 W m  2 kg - 1 K  -4 ,  
• 1 0 - 1 6 W m S k g - 2 K  -4 ,  
10 -19 W m s kg -3 K -4 . 

(6b) 

(6c) 

(6d) 

(7a) 

do = -  0.05277 W h kg -1 K - t ,  
dl =0.15899 x 10-2 W h k g  - 1 K  - 2 ,  

d z = - 0.03366 x 10 -4 W h kg -1 K -3 , (7b) 
d 3 = 0.03142 x 10 - 7  W h kg -1 K -4 .  

Table I compares the Apollo 11 values to those calculated using Equation (7), and a 
comparison with other Apollo data will be mentioned below. 

The usual approach for calculating millimeter brightness temperatures whereby the 

as 

where 
e ( T )  = do + dl T + d2 T z  + d3 T 3 ,  

Equation (6) is adopted for the theoretical model, and comparisons with other data 
will be made below. Other forms may be used for k (x ,  T), but they have no better 
computational accuracy of representation over the full domain of density and tem- 
perature for basalt (Fountain et al., 1973). 

The specific heat used in Equation (1) is a third-degree polynomial determined by 
the least-squares technique based upon Apollo 11 data reported by Robie et al. (1970) 
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TABLE I 
Specific heat of lunar fines 

Temp Apollo 11, Least-squares fit 
(K) sample 10084 (W s kg -1 K -I) 

(W s kg -1 K -i) 

100 278.2 272.6 
120 335.6 342.0 
140 399.6 405.0 
160 463.6 462.0 
180 516.7 513.8 
200 564.0 560.7 
220 605.0 603.4 
240 641.8 642.4 
260 676.6 678.1 
280 709.6 711.3 
300 741.0 742.4 
320 771.9 771.9 
340 801.7 800.4 
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absorption coefficient is regarded as constant and removed from under the integral 
signs and the physical temperature profile is derived as a Fourier series solution to the 
homogeneous, linear partial differential equation of heat conduction, does not satisfy 
the requirements of a variable properties model. The appropriate integral equation 
for the microwave brightness for the variable model (Ulich et al., 1974) is 

oo 

(2, t) = [1 - R (0o)3 f T (x, t) x (2, x) sec [0 (x, 0o) ] x TB 
0 

x 

x e x p [ - f  x(2,~)secO(~,Oo)d~] dx, (8) 

0 

where [1 - R (0o ) ]  is evaluated at x = 0, R(Oo) being the power reflection coefficient for 
perpendicular incidence at the surface of the thermal emission. The absorption coeffi- 
cient is 

~: (2, x) = 2rc2 -1 ~/~ (x-) tan 6 (x), (9) 

where 2 is wavelength, e(x) is the dielectric constant, and t anf (x )  is the loss tangent. 
For  the variable properties model, ~ (x) and tan 6 (x) are given by an equation of the 
form 

tan 6 (x)J = constant + constant '0 (x) .  (10) 

The values of the constants in Equation (10) will be discussed in connection with com- 
parisons of the model and observational data below (also, see Ulich et al., 1974). 
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The reflection coefficient at the lunar surface is determined by the Fresnel equations 
evaluated at x=0,  of the form 

where 

R(Oo) = R l l  (X, 00) COS 2 ~) "-~ RA_(X, 00) s in  E ? ,  

(x) cosOo +x/e(x) sin20o] ' 

R.  (x, 0o)= [co ss 0o - x / e ( x ) -  sin2 0o] 2 " (11) 

tcos0o-J  
7 being the polarization angle of the emitted radiation, and O(x, 0o) is determined by 

[" sin 0o ] 
0 (x, 0o) = arcsin , ~ / .  

L,/.(x)J 
T (x, t) in the integrand of Equation (8) is obtained from the physical temperature 
model defined by Equations (1) through (7), generated by the model for a particular 
time (date) and lunar location corresponding to the millimeter observational data 
under consideration. 

Thus, the radio brightness temperature model is consistent with and dependent 
upon the variable properties model for the physical temperature. 

3. Numerical and Computational Methods 

The general approach used here for numerically solving the boundary value-initial 
condition problem for the physical temperatures is to replace the space derivatives by 
finite differences in the pde and boundary conditions, obtaining a system of ordinary 
differential-difference equations which are then solved by a method of the one-step 
type. Henrici (1962) refers briefly to this approach and states (there is no clear proof) 
that when an equation of higher order (pde) is reduced in such a manner to a system 
of equations of lower order (ord. de's), the truncation error is not increased and the 
round-off error is usually decreased. The usual explicit finite difference approach in 
both space and time would, if used, replace the pde and boundary conditions with a 
system of nonlinear transcendental equations whose solution would be extremely 
difficult (there are no known methods for solution which are practical), whereas the 
approach used here turns the problem into a tractable one. Fox (1962) also mentions 
the present approach as being one which might be usefully applied to nonlinear prob- 
lems of the parabolic type. 

When Equation (6a) is substituted into Equation (1), the r.h.s, ofthepde becomes 

~2T T2 (t~T~ 2 
[ko (x) + k a (x) T a] 3-~ + 3k3 (x) \ ~ x ]  + 

[ ok~ T3~k2(-x)l~T (12) 
+L-T2-x + ~x J~x" 
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Replacing the partial derivatives by 

aT] 1 
I T  (x,+, ,  t) - r (x,, t ) ] ,  

f i T  1 
ax2 i-- Ax~ IT (x,+ 1, t) -- 2T (xi, t) + T (x,_,, t)],  

8k o 1 
~ x ,  ~ Ax~ [k~ (x;+,) - ko (x,)],  

aX i '~ AX i [k3 ( X i + l )  -- ko ( x i ) ] ,  

in which i (i = 1, 2, 3 ..... N - 1) designates the space increment at which the tempera- 
ture is calculated. The pare for the interior of the semi-infinite solid becomes the set of 
ord. de's of the form 

[1 ,te 1 
dT (xi, t) _ (1/Ax2) {ko (X/+l) IT(x/+, ,  t) 

- T (x,, t)] - ko (x,)  [ T  (xi, t) - T (x i_ , ,  t)] 

+ k3 (xi+1) IT (x,+,, t) - T (xi, t)] T 3 (x,, t) 

- -  k 3 (Xi) [6T (xz+ ~, t) -- 2T (xi, t) - T (xi- . t)l T 3 (xi, t) 

3 k  3 ( X i )  T 2(Xi, t) T 2(Xi+1, t ) } ,  ( i  = 1 , . . . ,  N - 1 ) .  

(13a) 

In order to incorporate the boundary conditions, a procedure indicated by Ames 
(1965) is used. The assumption is made that the above de for the interior also holds at 
i =0,  and a fictitious layer at i = - 1  is temporarily introduced. That is, T(x_~, t) is 
introduced in the de for T(xo, t) and in the difference equation which replaces the 
surface boundary condition, Equation (2a). The latter is solved for T (x_ ~, t) and the 
result substituted into the former, eliminating the temporary T(x_ 1, t) and giving the 
following ordinary differential equation for the surface condition 

dT(xo, t) ( l + ( O * ~  / ] 1 ) {  
dt -Q~ci-~(~,o,~-- ~ / ~ ko(x , ) [T (x , , t )  

- T (Xo, t)] - k o (Xo) I T  (Xo, t) - T (x , ,  t) 

2Ax~176  1 

+ k 3 (x~)[T(xl,  t ) -  T(xo, t)] T 3 (Xo, t) (13b) 
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I- 
--k 3 (Xo) T 3 (Xo, t)[6T(xl, t ) -  2T(xo, t) 

2Axo[F(t)- eaT4(xo, t)] 1 

+ 3k3 (Xo) T 2 (Xo, t) T 2 (x,, t)~. 
) 

(13b) 

Similarly, the ordinary differential equation for the interior points is assumed to hold 
at x=xN, and the assumption is made that T (xN, t )= V in the resulting de for 
T (xN, t), provided only that N is large enough. Also, for N large, ko(xN+ 1)=ko(xN) 
and k~(xN+l)=kl(xN). The resulting differential equation for the interior bound- 
ary is 

dT(xN, t)_(l+(Q~176 / ] 1 ) 

- 2T(x~, t) + T(xN-1, t)] -- k 3 (xs) T 3 (xs, t) [5V 

- r(xs, t ) -  r(xN-l , t) l  + 3k3(xN) r2(xN, t) V2). (13c) 

The set of Equations (13a, b, c) is the system of N +  1 first order, ordinary differ- 
ential-difference equations to solve together with the initial conditions given by Equa- 
tion (4). This set of equations was solved by using a generalized Euler-Rhomberg 
method obtained by generalizing the Euler-Rhomberg method given by McCalla 
(1967) for the initial-value problem for one equation. This gives basically a one-step 
method for solving the time-dependent equations, with iteration between steps, which 
is self-starting, efficient, allows a predetermined accuracy to be obtained, and permits 
a variable step size. 

A variable space increment is used. The variation is such that the increment in- 
creases with increasing depth and allows the increment to be smallest near the surface 
where the greatest variation in temperature occurs. The following form was found to 
be computationally suitable: 

~-1 ( x ~ i / a  
x~ = ~, AXk, AXk = H + Axo, (14) 

k=0 \Xmax ] 

where H=Axk,,ax-Axo, fl is an integer, and Axo is specified for the particular case 
of computation. The xi and Axk are determined by iteration between these equations 
and need be computed only once for each case. A typical graph of the change of the 
increment with depth is shown in Figure 1. 

A variable time step-size is chosen at each step to be as large as possible and still 
be numerically stable. The stability criteria is based upon a combination of the usual 
criteria for the linear parabolic problem (Ames, p. 357), the criteria for the nonlinear 
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surface boundary condition (Tatom et al., 1969), and a modification to take account 
of the variable material properties in this model. The resulting variable time increment 
for the nth computational step is given by the following: 

where 

(ho). = M i n .  {h~,Min. [(hg*),]}, (15) 

(Xo) ~ I-r(Xo, t.)] (A~o) ~ 
h~ = p 

ko (Xo) + ka (Xo) T 3 (Xo, t.) + AxoeaT 3 (Xo, t .) '  

0 (xi) c I T  (xi, t,)] (Axi) 2 
(h**) ,  = p 

k o (xl) + k 3 (xi) T 3 (xl, t ,) '  

( i = l  . . . . .  N) and p < 0 . 5 .  

In order to calculate the millimeter brightness temperature, Equation (8) is solved 
by numerical quadrature (Ulich et al., 1974). The physical temperature function, 
T(x ,  t), obtained using the model and methods presented here is recorded on mag- 
netic tape and used as input data for the quadrature, so that the calculations are con- 
sistent in representing a particular physical case. 

For convenience in incorporating an eclipse into the computation, the eclipse func- 
tion, E (t/P), is represented by cubic splines. An example for the eclipse of December 
19, 1964, is shown in Figure 2, where the spline approximations for the two different 
boundary conditions are also compared with the theoretical curve. One boundary 
condition is that the first derivative of the function is assumed equal to zero, and the 
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other is that the second derivative is assumed equal to zero. As expected from the 
physical situation, taking the first derivative to be zero provides the best representa- 
tion. The theoretical curve is calculated separately and the data used to obtain the 
spline approximation. 

4. Property Data 

As previously stated, the data of Fountain and West are incorporated in the thermal 
conductivity function, Equation (6), and are used for the computations presented 
here. No other data are defined well enough to obtain an adequate functional relation- 
ship using both density (depth) and temperature. The functions k 0 (x) and k a (x) used 
in the computational case which is central to comparison with the infrared and micro- 
wave observational data are shown in Figures 3 and 4. For the same computational 
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about  3 x 10-5 W cm -~ K -1. These conductivity curves correspond to the density- 
depth profile given by the solid curve in the interior of  the shaded area in Figure 14. 

The measured conductivity values for samples of lunar fines returned by Apollo 
range from 0.8 x 10-s  W cm -1 K -1 to 3 x 10-5 W cm -1 K -1 over the temperature 
range of 100 to 400K and over a density range of 1300 to 1970 kg m -3 (Cremers, 

1974). The functional form for the conductivity for these samples is A + B T  3, and, 

while there is a functional dependence of some sort of  A and B on density, its form is 

not clear. F rom data reported (Langseth et al., 1973) on the Apollo 17 Heat  Flow 

Experiment, the upper 2 cm of the lunar surface material has a conductivity estimated 
to be 1.5 x 10-5 W cm -~ K -1 at the Taurus-Littrow site, corresponding to a 'loosely 

packed layer'. At depth, the thermal conductivity is on the order of a factor of  10 higher, 
corresponding to greater density (1800 to 2000 kg m-a ) .  

Most of  the heat flow through the lunar outermost layer is controlled by the thermal 
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TABLE II 
Average conductivity of a mixture of 
rocks and fines compared with the con- 

ductivity of fines 

Volume-fraction Ratio of 
of rocks conductivities 
o~ kav /k  

0.00 1.00 
0.01 1.03 
0.02 1.06 
0.03 1.09 
0.04 1.12 
0.05 1.16 

properties of  the fine material, because it is the most insulating. It is instructive to 

estimate the contribution of smaller rocks mixed with the fines on the effective thermal 

conductivity. Using an approximation based upon the volume fraction of rocks 

(Carslaw and Jaeger, 1959) assumed to be spheres embedded in a matrix of granular 

material, Table II shows the ratio of the average conductivity of the mixture to the 

Fig. 6. 
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conductivity of the granular matrix as a function of volume-fraction of rocks. 
As previously stated, Equation (7) is used for the specific heat function based upon 

the data in Table I. The graph of this function is shown in Figure 6. Although this 
function is based upon Apollo 11 fines (Robie, 1970), there is essentially no difference 
between the specific heat values for the fines and the measured values for samples of 
solid materials from the various Apollo sites, as is pointed out in detail by Cremers 
(1974), so that this function is entirely suitable for the calculations presented here. 

Taking the thermal conductivity and specific heat function as stated, the density 
profile becomes the primary function to distinguish computation cases for comparison 
with the observational infrared and microwave data. 

5. Comparison of Calculated and Observation Temperatures 

Over twenty-five different density profiles were used as the basis for computational 
cases for lunations. The characteristics of seventeen of these are given in Table III; 
the average density given is obtained by integration of the density function in each 
case, 
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TABLE III 

Average density for various parameters of the density model 

~0 Qo~ Xint Qint X * ~av  

(kg m -3) (kg m -3 (m) (kg m -8) (m) (kg m -3) 

700 1300 0.01 1000 0.0095 1262 
700 1700 0.05 1000 0.0702 1218 
700 1700 0.01 1000 0.0140 1594 
700 1700 0.02 1000 0.0280 1489 
700 1700 0.03 1000 0.0421 1387 
700 1700 0.04 1000 0.0561 1296 
700 1700 0.10 1045 0.1405 994 
800 1700 0.05 1000 0.1053 1165 
600 2000 0.04 1000 0.0472 1447 

B600 2000 0.09 1700 0.0349 1586 
600 2000 0.25 1100 0.2386 957 
600 2000 0.25 900 0.3867 380 
700 2000 0.02 1000 0.0323 1662 
700 2000 0.03 1000 0.0485 1506 

A700 2000 0.04 1000 0.0646 1374 
800 2000 0.04 1000 0.0989 1274 
900 2000 0.04 1000 0.1991 1147 

Calculated temperatures as a function of depth and time for a lunation for a typical 

case are shown in Figure 7, where it is seen that the large gradients near the surface are 

satisfactorily taken into account by the numerical and computational methods used. 

Here, and in the cases presented below, the solar radiation absorptance is 0.93 and the 
value for V is 251 K. This value for the lower boundary temperature is from the mea- 
surements by the Apollo 15 Heat Flow Experiment (Langseth et al., 1972). 

A comparison of the calculated surface temperature for the case B in Table III and 

the infrared data of Murray and Wildey (1963) and that of Mendell and Low (1970) 
is made in Figure 8. The density profile for this case is the upper bounding curve of the 
cross-hatched region in Figure 14. In Figure 9, the same data are compared with the 
calculated temperatures for case A in Table III for two different values of the emit- 
tance of the lunar surface. The density profile for this case is represented by the solid 

curve in the interior of the shaded region in Figure 14. For this same case A, the cal- 

culated temperatures are compared with the infrared eclipse measurements of Saari 

and Shorthill for the eclipse of December 19, 1964, in Figure 10 (Shorthill and Saari, 

1965, 1967). The comparison with the same eclipse data and case B is made in Fig- 

ure 11. 

The calculated temperatures as a function of depth and time from the model 

presented here were used (via magnetic tape) in the integrand of Equation (8), for the 

same density profile of case A (Table III), to calculate microwave brightness temper- 

atures at 3.09 mm wavelength. The calculated temperatures are compared with the 

data of Ulich et al. for the Apollo 11 and 12 sites in Figures 12 and 13, respectively. 

Comparisons with data for other lunar locations were presented by Ulich et al. (1974) 
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Fig. 14. Region of density profiles consistent with calculated and observed lunar temperatures. 

and should be considered in conjunction with these results since those comparisons 
depend upon the physical models and temperatures presented here. 

The upper bounding curve for the density profile in Figure 14 represents the limiting 
profile which will allow favorable comparison with the infrared and microwave ob- 
servational data. The first part of the curve, corresponding to about the first three or 
four centimeters of depth, influences the infrared comparisons most strongly, while 
the remainder of the curve most strongly influences the microwave comparisons. 

6. Conclusions 

The variable properties model presented here is consistent with the known properties 
of the lunar outermost layer, and the calculated temperatures compare well with the 
most recent Earth-based observational data in the infrared and at millimeter wave- 
lengths. The density profile in the outermost layer very probably varies from 700 to 
900 kg m-3 at the surface, rising rapidly to about 2000 kg m-3. For the purposes of 
comparison with Earth-based data, further sophistication of the thermophysical 
model is probably not justified. 
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