Skip to main content
Log in

Purification of Black Moor Goldfish melanophores and responses to epinephrine

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Two key modifications of the previously reported method for isolation of goldfish xanthophores allowed the isolation and establishment of primary cultures of terminally differentiated melanophores from the Black Moor goldfish (Carassius auratus). First, pretreatment with 10−4 M epinephrine causing aggregation of the melanosomes and collapse of the dendrites, prevents damage to the melanophores during tissue dissociation and melanophore isolation. Second, maintenance of these cells in culture was successful only when the culture medium was supplemented with fish serum. The purified melanophores attached, flattened, and were maintained in culture for up to 3 mo. Although the morphology of the cultured melanophores is less dendritic than their in vivo counterparts, the melanophores translocate melanosomes in a normal manner except that they exhibit enhanced sensitivity to epinephrine. This epinephrine-induced pigment aggregation, as well as the redispersion of pigment after the removal of epinephrine, can occur in the presence of ethylene glycol-bis (β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid and absence of Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnara, B. T.; Hadley, M. E. Chromatophores and color change. Englewood Cliffs, NJ: Prentise-Hall; 1973.

    Google Scholar 

  2. Butman, B. T.; Obika, M.; Tchen, T. T., et al. Hormone-induced pigment translocations in amphibian dermal iridophores,in vitro: Changes in cell shape. J. Exp. Zool. 208:17–33; 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Clark, C. R.; Taylor, J. D.; Tchen, T. T. Unusual responses of culturedFundulus heteroclitus melanophores to epinephrine and ions, paradox of K+ versus Na+. J. Exp. Zool. 236:361–364; 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Fujii, R.; Ochima, N. Control of chromatophore movements in teleost fishes. Zool. Sci. (JPN) 3:13–47; 1986.

    CAS  Google Scholar 

  5. Grabowski, G. M.; Taylor, J. D.; Tchen, T. T. Induction of melanization in primary cultures of dermal cells from xanthic goldfish scale by adrenocorticotropic hormone and goldfish or red carp serum. Cell Differ. 12:239–244; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Hogben, L. T.; Slome, D. The pigmentary effector system. IV. The dual character of endocrine co-ordination in amphibian colour change. Proc. R. Soc., Lond. [Biol] 10B:10–53; 1931.

    Article  Google Scholar 

  7. Lo, S. J.; Tchen, T. T.; Taylor, J. D. Hormone-induced filopodium formation and movement of pigment, carotenoid droplets, into newly formed filopodia. Cell Tissue Res. 210:371–382; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Lo, S. J.; Lynch, T. J.; Grabowski, S. M., et al. Purification and some biochemical properties of goldfish xanthophores. Pig. Cell. 11:301–306; 1981.

    Google Scholar 

  9. Lynch, T. J.; Taylor, J. D.; Tchen, T. T. Regulation of pigment organelle translocation. I. Phosphorylation of the organelle-associated protein. J. Biol. Chem. 261:4204–4211; 1986.

    PubMed  CAS  Google Scholar 

  10. Lynch, T. J.; Wu, B. Y.; Taylor, J. D., et al. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase. J. Biol. Chem. 261:4212–4216; 1986.

    PubMed  CAS  Google Scholar 

  11. Lynch, T. J.; Lo, S. J.; Taylor, J. D., et al. Characterization of hormonal effects of subcellular fractions from xanthophores of the goldfishCarassius auratus. Biochem. Biophys. Res. Comm. 102:127–134; 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto, J.; Lynch, T. J.; Grabowski, S. M., et al. Induction of melanized cells from a goldfish erythrophoroma: Isolation of pigment translocation variants. Science 217:1149–1151; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Obika, M. Intracellular transport of pigment granules in fish chromatophores. Zool. Sci. (JPN) 3:1–11; 1986.

    CAS  Google Scholar 

  14. Parker, G. H. Animal color changes and their neurohumors. Cambridge, England: Cambridge University Press; 1948.

    Google Scholar 

  15. Schliwa, M.; Euteneuer, U. Comparative ultrastructure and physiology of chromatophores, with emphasis on changes associated with intracellular transport. Am. Zool. 23:479–494; 1983.

    Google Scholar 

  16. Tchen, T. T.; Allen, J. D.; Lo, S. J., et al. Role of microtubules in the formation of carotinoid droplet aggregates in goldfish xanthophores. In: Sofier, D., ed. Dynamic aspects of microtubule biology. Ann. NY Acad. Sci. 466:887–894; 1986.

  17. Waring, H. The color change mechanisms of cold-blooded vertebrates. New York: Academic Press; 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant AM13724 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, C.R., Taylor, J.D. & Tchen, T.T. Purification of Black Moor Goldfish melanophores and responses to epinephrine. In Vitro Cell Dev Biol 23, 417–421 (1987). https://doi.org/10.1007/BF02623857

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623857

Key words

Navigation