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Abstract. This article is concerned with various arithmetic operations in GF(2"). 
In particular we discuss techniques for computing multiplicative inverses and doing 
exponentiation. The method used for exponentiation is highly suited to parallel 
computation. All methods achieve much of their efficiency from exploiting a normal 
basis representation in the field. 
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1. Introduction 

In this article we are concerned with arithmetic operations in the finite field 
GF(2"). In particular we discuss the computation of multiplicative inverses and 
exponentiation. 

We can think of the elements in GF(2") as being m-tuples which form an 
m-dimensional vector space over GF(2). If 

is a basis for this space, then we call it a normal basis and we call fl a generator of 
the normal basis. It is well known [5] that GF(2") contains a normal basis for every 
m _> 1. It is of interest to point out that recently it was shown [4] that a normal 
basis exists in GF(2") with the additional property that a generator of the normal 
basis is also a generator for the entire muttiplicative cyclic group of the field. 
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For  a ~ GF(2")  let (a 0, aa . . . . .  a"_a) be the coord ina te  vector  of  a relative to the 
ordered normal  basis N generated by 3. It follows that  a 2 then has coord ina te  vector  
(am - 1, ao, al . . . . .  a,, - 2), so squar ing is simply a cyclic shift of  the vector  repre- 
sentat ion of  a. In  a ha rdware  implementa t ion  squar ing  an element takes one  clock 
cycle and so is negligible. For  the remainder  of  this article we assume that  squar ing 
an element is "free". ~ In Section 2 we address the problem of compu t ing  inverses 
in GF(2")  and in Section 3 we discuss methods  for speeding up exponent ia t ion  in 
such fields. 

2. Computing Inverses 

Let ct be any nonze ro  element of  GF(2").  Suppose  we want  to compu te  ~-1. We 
observe that  

~-1 ~ 0~2"'-2 

= ~Y',.'~' 2 ~ 

m-I  
1-I 0~2i" 
i=1 

This can be compu ted  in m - 2 multiplications. We now describe several techniques 
for improving  the situation. 

The most  efficient technique in terms of  minimizing the n u m b e r  of  mult ipl icat ions 
to compu te  an inverse was p roposed  by I toh e t  al. [3]. Since this reference is not  
easily accessible, we describe the technique and give a p roo f  of  its opera t ion  count  
below. 

Cons ider  GF(2")  and the factor izat ions 

,J'(2 ~"-u/2 - 1)(2~m-1~/2 + I), m o d d ,  
2 "-1 - 1 = [2, ,_ 2 + (2(m_2j/2 __ 1)(21m_2)/2 + 1), meven.  

For  m odd,  we require one mult ipl icat ion to c om pu te  ct 2 . . . .  1 assuming  ct 2' .... ,,2-1 
has been evaluated. For  m even, we require two mult ipl icat ions to calculate ct 2 . . . .  
assuming ~t 2 ..... ,,2_1 has been evaluated. Hence, to compu te  ct -~ in GF(2")  we show 
that  using this p rocedure  recursively the number  of  mult ipl icat ions required is 

n b ( m  - 1) + ~o(m - 1) - 2, (.) 

where n b ( x )  is defined as the m i n u m u m  n u m b e r  of  bits required to represent the 
integer x and co(m - 1) is the H a m m i n g  weight of  the binary representat ion of  
m - 1. We note that  there are precisely og(m - 1) values o f t  in the recursion where 
c~ 2'-' must  be evaluated and  t is odd. Before giving the p roo f  we consider  an  example. 

In our comparison of techniques based on the number of clock cycles required, the overhead for 
squaring will be taken into account. 
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Cons ider  GF(2S93). 

2.1. Example 1 

~ - 1  ~ (~2593-2  

(~2( 2592-1  ) 

= ~2 (237-1 ) (237  + 1)(2v4 +1)(2 t 48 + 1 }(2296+1 ) 

0(237-1 = ~ 2 ( 2 9 - 1 } ( 2 9 + 1 ) ( 2 1 8 + 1 ) + 1 ,  

(X 2 9 - 1  ~ ~2(2+1) (22+1 , ) (2a+1)  +1.  

2.1.1. Hardware Implementation. T o  implement  
above  equa t ion  using the fol lowing steps: 

this funct ion we reg roup  the 

Step I. Calcula te  
')~ ~ C(2(237+1)(274+1)(2148+1)(2296+1).  

Using the fact that  squar ing  is a cyclic shift, y can be calculated with four  
mul t ip l ica t ions  and 556 cyclic shift opera t ions .  

Step 2. Store y. C o m p u t e  
f l  ~ ] /2 (29+1)(2 t8+1) .  

This requires  two mul t ip l ica t ions  and  28 cyclic shift opera t ions .  
Step 3. Store ft. C o m p u t e  

= f l2 (2+1) (22+1){24+1) .  

This  requires  three mul t ip l ica t ions  and  eight cyclic shift opera t ions .  
Step 4. N o w  c o m p u t e  6flT, which requires a fur ther  two mult ipl icat ions .  

In total,  this inverse requires 11 mul t ip l ica t ions  and  the s torage  of two in te rmedia te  
results (of 593 bits). If  we use an op t ima l  n o r m a l  basis mul t ip l ier  [ 1], mul t ip l ica t ions  
can be pe r fo rmed  in m clock cycles. Thus  the total  n u m b e r  of  clock cycles to c o m p u t e  
an inverse in GF(2593) using this m e t h o d  is 7115. We note  that  nb(592) = 10 and  
o3(592) = 3. 

It is a s imple  m a t t e r  to p rove  ( , )  by induct ion on m. The  result  is clearly t rue for 
m = 1. Suppose  it is true for  all k < m. We consider  two cases. 

If m is even, then 
2" - 1 = (2 "/2 - I) (2 "/2 + 1) 

and ~2,-,2-I can be eva lua ted  in nb(m/2)+ c o ( m / 2 ) -  2 mu!t ipl icat ions.  Since 
nb(m/2) = (nbm) - 1 and  o3(m/2) = co(m) for even m, the result follows by induction.  

If m is odd,  then we write 

2"  - 1 = (2 "-~ + (2 (re+t)/2 - 1)(2 (m-t)/2 + 1)). 

Now,  ~2,m-.,2_~ can be evaluated,  by the induct ion hypothesis ,  in nb((m - 1)/2) + 
co((m - 1)/2) - 2 mult ipl icat ions.  Since nb((m - 1)/2) = (nbm) - 1 and  co((m - 1)/2) 
= co(m - 1) = co(m) - 1 the result  follows. 
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2.2. Aherna t i ve  M e t h o d s  

Clearly the above  me thod ,  a l though efficient in te rms of the n u m b e r  of  mul t ip l ica-  
t ions required to do an inverse, can be costly in te rms  of a ha rdware  implementa t ion .  
In some  appl icat ions ,  it is more  expedient  to t radeoff  t ime for imp lemen ta t i on  
complexi ty ,  z This  was the case in the ar i thmet ic  p rocessor  build for GF(2593) [6-1. 
The  following a lgor i thm,  while requir ing more  multiplies,  is far less complex  to 
implement  in hardware .  

Suppose  that  m - 1 = 9h. Then  

2 "-1 -- 1 = 2 " q h -  1 

Now,  

= (2 9 - 1) 2 9/ . 
\i=O 

(X - 1  = O( 2"-2 

<X2(2~-I-I) 

= 7(2 ~- 111~=" 2~'), 

where 7 = c~2. Then  fl = ),~2,-,j can be calculated in 9 - 1 mul t ip l ica t ions  and  
fly,~-a2,' can be c o m p u t e d  in h - 1 mult ipl icat ions.  Hence,  c~ - t  can be c o m p u t e d  in 
,q + tl - 2 mult ipl icat ions.  It is clear that  the n u m b e r  of  mul t ip l ica t ions  using this 
a p p r o a c h  is minimized when ,q and  t7 are a b o u t  x/Tn - 1. We c o m p a r e  this a p p r o a c h  
to the previous  method .  

2.2.1. E xample  2. 

and 

Cons ider  GF(2593). 

~ - 1  = 0~2593-2 

= 0~2(216× 37--1) 

0~2(2 t6 ~ 36+2 16 × 3 5 + ' "  +2 t6+1}(216--1) 

0{(216-1) = ~ 2 t s + 2 J 4 + 2 1 3 + ' " + 2 + 1  

2.2.2. H a r d w a r e  Implementa t ion .  T o  implement  this a lgor i thm for c o m p u t i n g  in- 
verses we proceed as follows: 

Step 1. Calcula te  
]~ 0{ (216-1). 

This requires 15 mul t ip l icat ions  and 15 cyclic shift opera t ions .  
Step 2. C o m p u t e  

~[1 + 2 t 6 + 2 3 2 +  "'" + 216× 36) 

The  result is ob ta ined  with one addi t ional  cyclic shift. This  requires  36 
mul t ip l ica t ions  and 10,657 cyclic shift opera t ions .  

2 In our example we consider any extra storage requirements for intermediate results to increase the 
hardware compLexity of the device. 
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It should be noted that while this method requires 51 multiplications (a total of 
40,900 clock cycles), no additional storage of intermediate results is required. This 
is extremely important where a compact hardware implementation is required. 

As a very minor modification of this procedure we observe that if m - 1 does not 
factor in a reasonably "nice" way (i.e., one of g or h is small compared with m), 
then we look at the factorization of m - x for some positive integer x 2 2. If 
m - x = gh, then we have 

The number of multiplications to compute a-' is g + h - 1. 

2.2.3. Example 3. Consider GF(2l 279)  and observe that 

2'278 - 1 = (21272 - 1)26 + 26 - 1 

can be evaluated as above in 63 multiplications. 
We conclude this section with the following observations. Suppose that we want 

to compute cr-". This can be done by first computing b = cc" and then applying the 
techniques of this section to compute 0-'. The number of multiplications to com- 
pute b is o ( a )  - 1 and then nb(m - 1) + o(m - 1) - 2 more multiplications for b-' 
or 

nb(m - 1) + w(m - 1) + w(a) - 3 

in total. If we compute a-" directly we will require w(2" - 1 - a) - 1 multiplica- 
tions. Hence, if 

then it is better to evaluate a-" directly. 

2.2.4. Example 4. In GF(2") for 1 I m I 8 it is always faster to compute cr-" for 
any a, 1 < a I 2" - 2, directly. 

We note that for some values of m and for certain applications (e.g., where 
hardware complexity and speed are a consideration), a combination of the preceding 
methods is preferable. 

3. Discrete Exponentiation 

Suppose that we want to compute cr' E GF(2") where 
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then 

and this requires A = (CZ,,' ai)  - 1 multiplications. On average for randomly 
choose e, A will be about m/2 and so we require m/2 multiplications to do the 
exponentiation. We now examine ways of doing better. 

Select a positive integer k and rewrite the exponent e as 

where bi = ~~i~ aj+,,2j. Of course, each bi can be represented by a binary k-tuple 
over Z,  which we represent by 6. We now rewrite e in the form 

If we let 2 ( w )  = x\!!,$-' Ci,w2ki, then 
a' = cr~"'.'"''" 

On average ?.(w) will have 1n/k2~ nonzero terms in it and, hence, will require 
m/k2, - 1 multiplications to evaluate. Since w is represented by a binary k-tuple, w 
will have on average ,412 nonzero terms and require k/2 - 1 multiplications to 
evaluate p". Therefore, to evaluate a"")"' we need t = (m/k2k + k/2 - 2) multiplica- 
tions. Finally, to compute a' we need t multiplications for each ii E Zi\ (0) and then 
2k - 2 multiplications to multiply the results together. In total we require 

multiplications. 
If we use 2k - 1 processors in parallel to evaluate each a"'")" simultaneously, then 

the number of multiplications is on average 
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3.1.2. Example 6. For  m = 2 l° and various values of k we compute M(k) and T(k): 

k M(k) T(k) 

6 293 - -  
5 244 37 
4 254 30 
3 315 48 

M(k) is minimized by k = 5 and T(k) by k = 4. 

3.1.3. Example 7. For  m = 2 z6 and various values ofk  we compute M(k) and T(k): 

k M(k) T(k) 

11 15,165 2,052 
10 10,638 1,031 
9 9,055 527 
8 8,924 288 
7 9,605 201 
6 10,877 234 

M(k) is minimized by k = 8 and T(k) by k = 7. 
A more extensive tabulation of the functions M(k) and T(k) is given in the 

Appendix. It appears at least for small values ofm that M(k) and T(k) are minimized 
for k about  log2 x//~. In the next section we analyze these functions to determine 
the asymptotic behaviour of the minimums. 

We note that a worst-case analysis will give a number of multiplications on the 
order of (m/k). Since for most cryptographic applications we are dealing with 
random exponents, an average-case analysis seems appropriate. 

4. Asymptotic Behaviour 

In this section we investigate the asymptotic 

and 

We observe that 

of T(k) and M(k) 

behaviour of 

m k 
T(k) = ~ + ~ + 2 k - 4 

1(ink) M(k)=(2  k ) ~ + ~ -  1 ---,1. 

2 k k l n 2 + 2  k) 2k 
T'(k) = --m k222 k -t- In 2 + 1 
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M ' ( k ) - - 2  kIn ~ + ~ -  1 + ( 2  k -  1) k22k . 

The  following lemmas will be useful. Since their proofs  are s t ra ightforward,  they are 
omitted.  

Lemma 4.1. 

i f  and only i f  

Lemma 4.2. 

i f  and only if  

T'(k) = 0 

and 

m ( (k /2) ( ! /2  k) _- l )  

k 2 2 k - 1  + \  1 + k i n 2  ' 

M'(k)  = 0 

m _ In 2 f l + (1/(k In 2 ) ) -  ( 2 / k ) -  (1/(k2 k In 2))'~ 
k32 k 2 -  ~ 1 ~ (ln 2 ) 2 ~ / ~  J '  

It follows now from Lemmas  4.1 and 4.2 that  for m sufficiently large 

T'(k)  = 0 implies m ~ k 2  2k 

In 2 
M'(k)  = 0 implies m ~ ~ k 3 2  k. 

z 

From these relations we want  to determine the asymptot ic  value of k in terms of  m. 
This is facilitated by the following result. 

Lemma 4.3. Let  m = ka2bkc where a, b, c ~ 9t and are positive. Then, for  sufficiently 
large k, 

k - ~(log2 m - a log 2 log 2 m + log2 c -  a log2 b) = 0 

Proo£ 

log 2 m -- a log 2 log 2 m = a log 2 k + bk + log 2 c 

= bk + log 2 c - a log 2 b 

log2 (k  + (a /b ) log2k  + ( l / b ) l og  2 c~ 
~ a \ k 



Arithmetic Operations in GF(2") 

1 
( l o g ,  m - a log, log, m) = k + (i) log, c - ($log, b 
b 

Now, for sufficiently large k, 

log, (1 + (;)(y) + ( A ) ( ! ! ) )  = A((;)(!+) + (;)(!y)). 
(Recall: log,(l + E) % ~ / l n  2 for - 1 < E < 1.) 0 

A simple rearrangement proves the stated result. We are now in a positive to 
determine the asymptotic behaviour of the minimums of T(k) and M(k). 

Theorem 4.4. For m sufliciently large: 

(a) If k* = $(log, m - log, log, m) - t ,  then T(k*) will be in the neighbourhood 
of the minimum of T(k). 

(b) If k* = (log, m - 3 log, log, m) + log, In 2, then M(k*) will be in the neigh- 
bourhood of the minimum of M(k). 

Proof. To  prove (a), we see from Lemma 4.1 that points in the neighbourhood of 
the critical point satisfy n = k22k when n is sufficiently large. Applying Lemma 4.3 
with a = 1, b = 2, and c = 1 gives the stated value of k*. We observe that, for 
sufficiently large values of m, 

which implies that T(k*) is in the neighbourhood of the minimum of the T(k). The 
proof of (b) follows similarly. 0 

There are many situations in cryptographic schemes where exponentiation is always 
done using the same exponent. For instance, in the Diffie-Hellman scheme 121 a 
user's private key is used repeatedly for exponentiation. In this situation it may be 
advantageous to use techniques analogous to the methods introduced in Section 2 
for computing inverses. Suppose e is the exponent under consideration and for some 
nonnegative integer x we have 

where the ni are positive integers greater than 1 and not necessarily primes. Then 
cre can be computed in 

multiplications. 
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4.1.1. Example 8. I f e = 4 5 ,  t h e n e = 9  x 5 and ~ can be evaluated in ~o(9) + 
~o(5) - 2 or  two multiplications. 

4.1.2. Example 9. I f e = 2 3 7 ,  then we can take x = 16 and w r i t e e = 2 2 1 +  1 6 =  
13(17) + 16 which will require four mult ipl icat ions to evaluate ~ .  

Appendix 

Table  1 lists the values of  k which minimize M(k) and T(k) for various values of  n 
where n is a power  of  2. Table  2 is similar for values of  n in increment  of  100. 

Table 1. Values ofk which minimize M(k) 
and T(k). 

k for min Min value 

n M(k) T(k) M(k) T(k) 

64 3 3 21 8 
128 3 3 39 10 
256 4 3 74 16 
512 4 4 134 22 

1024 5 3 243 30 
2048 5 5 442 43 
4096 6 5 797 56 
8192 6 5 1469 81 

Table 2. Values ofk which minimize M(k) 
and T(k). 

k for min Min value 

n M(k) T(k) M(k) T(k) 

100 3 3 31 9 
200 3 3 60 13 
300 4 3 84 18 
400 4 4 107 20 
500 4 4 131 21 
600 4 4 154 23 
700 4 4 178 24 
800 5 4 200 26 
900 5 4 219 28 

I000 5 4 239 29 
1100 5 4 258 31 
1200 5 4 278 32 
1300 5 4 297 34 
1400 5 4 316 35 
1500 5 4 336 37 
1600 5 4 355 39 
1700 5 4 374 40 
1800 5 5 394 41 
1900 5 5 413 42 
2000 5 5 433 43 
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