
J. Cryptology (1993) 6:3-13 Journal of Cryptology
@ 1993 International Association for
Cryptologic Research

Arithmetic Operations in GF(2")

G. B. Agnew
Department of Electrical and Computer Engineering, University of Waterloo,

Waterloo, Ontario, Canada N2L 3GI

T. Beth
Universitat Karlsruhe, Postfach 6980,

D-7500 Karlsruhe 1, Federal Republic of Germany

R. C. Mullin and S. A. Vanstone
Department of Combinatorics and Optimization and Department of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Communicated by Ernest F. Brickell

Received 26 January 1988 and revised 25 October 1991

Abstract. This article is concerned with various arithmetic operations in GF(2").
In particular we discuss techniques for computing multiplicative inverses and doing
exponentiation. The method used for exponentiation is highly suited to parallel
computation. All methods achieve much of their efficiency from exploiting a normal
basis representation in the field.

Key words. Public key cryptography, Normal basis, Discrete exponentiation.

1. Introduction

In this article we are concerned with arithmetic operations in the finite field
GF(2"). In particular we discuss the computation of multiplicative inverses and
exponentiation.

We can think of the elements in GF(2") as being m-tuples which form an
m-dimensional vector space over GF(2). If

is a basis for this space, then we call it a normal basis and we call fl a generator of
the normal basis. It is well known [5] that GF(2") contains a normal basis for every
m _> 1. It is of interest to point out that recently it was shown [4] that a normal
basis exists in GF(2") with the additional property that a generator of the normal
basis is also a generator for the entire muttiplicative cyclic group of the field.

4 G.B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone

For a ~ GF(2") let (a 0, aa a"_a) be the coord ina te vector of a relative to the
ordered normal basis N generated by 3. It follows that a 2 then has coord ina te vector
(am - 1, ao, al a,, - 2), so squar ing is simply a cyclic shift of the vector repre-
sentat ion of a. In a ha rdware implementa t ion squar ing an element takes one clock
cycle and so is negligible. For the remainder of this article we assume that squar ing
an element is "free". ~ In Section 2 we address the problem of compu t ing inverses
in GF(2") and in Section 3 we discuss methods for speeding up exponent ia t ion in
such fields.

2. Computing Inverses

Let ct be any nonze ro element of GF(2"). Suppose we want to compu te ~-1. We
observe that

~-1 ~ 0~2"'-2

= ~Y',.'~' 2 ~

m-I
1-I 0~2i"
i=1

This can be compu ted in m - 2 multiplications. We now describe several techniques
for improving the situation.

The most efficient technique in terms of minimizing the n u m b e r of mult ipl icat ions
to compu te an inverse was p roposed by I toh e t al. [3]. Since this reference is not
easily accessible, we describe the technique and give a p roo f of its opera t ion count
below.

Cons ider GF(2") and the factor izat ions

,J'(2 ~"-u/2 - 1)(2~m-1~/2 + I), m o d d ,
2 "-1 - 1 = [2, ,_ 2 + (2(m_2j/2 __ 1)(21m_2)/2 + 1), meven.

For m odd, we require one mult ipl icat ion to c om pu te ct 2 1 assuming ct 2' ,,2-1
has been evaluated. For m even, we require two mult ipl icat ions to calculate ct 2
assuming ~t 2 ,,2_1 has been evaluated. Hence, to compu te ct -~ in GF(2") we show
that using this p rocedure recursively the number of mult ipl icat ions required is

n b (m - 1) + ~o(m - 1) - 2, (.)

where n b (x) is defined as the m i n u m u m n u m b e r of bits required to represent the
integer x and co(m - 1) is the H a m m i n g weight of the binary representat ion of
m - 1. We note that there are precisely og(m - 1) values o f t in the recursion where
c~ 2'-' must be evaluated and t is odd. Before giving the p roo f we consider an example.

In our comparison of techniques based on the number of clock cycles required, the overhead for
squaring will be taken into account.

Arithmetic Operations in GF(2") 5

Cons ider GF(2S93).

2.1. Example 1

~ - 1 ~ (~2593-2

(~2(2592-1)

= ~2 (237-1) (237 + 1)(2v4 +1)(2 t 48 + 1 }(2296+1)

0(237-1 = ~ 2 (2 9 - 1 } (2 9 + 1) (2 1 8 + 1) + 1 ,

(X 2 9 - 1 ~ ~2(2+1) (22+1 ,) (2a+1) +1.

2.1.1. Hardware Implementation. T o implement
above equa t ion using the fol lowing steps:

this funct ion we reg roup the

Step I. Calcula te
')~ ~ C(2(237+1)(274+1)(2148+1)(2296+1).

Using the fact that squar ing is a cyclic shift, y can be calculated with four
mul t ip l ica t ions and 556 cyclic shift opera t ions .

Step 2. Store y. C o m p u t e
f l ~] /2 (29+1)(2 t8+1) .

This requires two mul t ip l ica t ions and 28 cyclic shift opera t ions .
Step 3. Store ft. C o m p u t e

= f l2 (2+1) (22+1){24+1) .

This requires three mul t ip l ica t ions and eight cyclic shift opera t ions .
Step 4. N o w c o m p u t e 6flT, which requires a fur ther two mult ipl icat ions .

In total, this inverse requires 11 mul t ip l ica t ions and the s torage of two in te rmedia te
results (of 593 bits). If we use an op t ima l n o r m a l basis mul t ip l ier [1], mul t ip l ica t ions
can be pe r fo rmed in m clock cycles. Thus the total n u m b e r of clock cycles to c o m p u t e
an inverse in GF(2593) using this m e t h o d is 7115. We note that nb(592) = 10 and
o3(592) = 3.

It is a s imple m a t t e r to p rove (,) by induct ion on m. The result is clearly t rue for
m = 1. Suppose it is true for all k < m. We consider two cases.

If m is even, then
2" - 1 = (2 "/2 - I) (2 "/2 + 1)

and ~2,-,2-I can be eva lua ted in nb(m/2)+ c o (m / 2) - 2 mu!t ipl icat ions. Since
nb(m/2) = (nbm) - 1 and o3(m/2) = co(m) for even m, the result follows by induction.

If m is odd, then we write

2" - 1 = (2 "-~ + (2 (re+t)/2 - 1)(2 (m-t)/2 + 1)).

Now, ~2,m-.,2_~ can be evaluated, by the induct ion hypothesis , in nb((m - 1)/2) +
co((m - 1)/2) - 2 mult ipl icat ions. Since nb((m - 1)/2) = (nbm) - 1 and co((m - 1)/2)
= co(m - 1) = co(m) - 1 the result follows.

6 G.B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone

2.2. Aherna t i ve M e t h o d s

Clearly the above me thod , a l though efficient in te rms of the n u m b e r of mul t ip l ica-
t ions required to do an inverse, can be costly in te rms of a ha rdware implementa t ion .
In some appl icat ions , it is more expedient to t radeoff t ime for imp lemen ta t i on
complexi ty , z This was the case in the ar i thmet ic p rocessor build for GF(2593) [6-1.
The following a lgor i thm, while requir ing more multiplies, is far less complex to
implement in hardware .

Suppose that m - 1 = 9h. Then

2 "-1 -- 1 = 2 " q h - 1

Now,

= (2 9 - 1) 2 9/ .
\i=O

(X - 1 = O(2"-2

<X2(2~-I-I)

= 7(2 ~- 111~=" 2~'),

where 7 = c~2. Then fl =),~2,-,j can be calculated in 9 - 1 mul t ip l ica t ions and
fly,~-a2,' can be c o m p u t e d in h - 1 mult ipl icat ions. Hence, c~ - t can be c o m p u t e d in
,q + tl - 2 mult ipl icat ions. It is clear that the n u m b e r of mul t ip l ica t ions using this
a p p r o a c h is minimized when ,q and t7 are a b o u t x/Tn - 1. We c o m p a r e this a p p r o a c h
to the previous method .

2.2.1. E xample 2.

and

Cons ider GF(2593).

~ - 1 = 0~2593-2

= 0~2(216× 37--1)

0~2(2 t6 ~ 36+2 16 × 3 5 + ' " +2 t6+1}(216--1)

0{(216-1) = ~ 2 t s + 2 J 4 + 2 1 3 + ' " + 2 + 1

2.2.2. H a r d w a r e Implementa t ion . T o implement this a lgor i thm for c o m p u t i n g in-
verses we proceed as follows:

Step 1. Calcula te
]~ 0{ (216-1).

This requires 15 mul t ip l icat ions and 15 cyclic shift opera t ions .
Step 2. C o m p u t e

~[1 + 2 t 6 + 2 3 2 + "'" + 216× 36)

The result is ob ta ined with one addi t ional cyclic shift. This requires 36
mul t ip l ica t ions and 10,657 cyclic shift opera t ions .

2 In our example we consider any extra storage requirements for intermediate results to increase the
hardware compLexity of the device.

Arithmetic Operations in GF(2") 7

It should be noted that while this method requires 51 multiplications (a total of
40,900 clock cycles), no additional storage of intermediate results is required. This
is extremely important where a compact hardware implementation is required.

As a very minor modification of this procedure we observe that if m - 1 does not
factor in a reasonably "nice" way (i.e., one of g or h is small compared with m),
then we look at the factorization of m - x for some positive integer x 2 2. If
m - x = gh, then we have

The number of multiplications to compute a-' is g + h - 1.

2.2.3. Example 3. Consider GF(2l 279) and observe that

2'278 - 1 = (21272 - 1)26 + 26 - 1

can be evaluated as above in 63 multiplications.
We conclude this section with the following observations. Suppose that we want

to compute cr-". This can be done by first computing b = cc" and then applying the
techniques of this section to compute 0-'. The number of multiplications to com-
pute b is o (a) - 1 and then nb(m - 1) + o(m - 1) - 2 more multiplications for b-'
or

nb(m - 1) + w(m - 1) + w(a) - 3

in total. If we compute a-" directly we will require w(2" - 1 - a) - 1 multiplica-
tions. Hence, if

then it is better to evaluate a-" directly.

2.2.4. Example 4. In GF(2") for 1 I m I 8 it is always faster to compute cr-" for
any a, 1 < a I 2" - 2, directly.

We note that for some values of m and for certain applications (e.g., where
hardware complexity and speed are a consideration), a combination of the preceding
methods is preferable.

3. Discrete Exponentiation

Suppose that we want to compute cr' E GF(2") where

8 G . B. Agncw, T. Beth, R. C. Mullin, and S. A. Vanstone

then

and this requires A = (CZ,,' ai) - 1 multiplications. On average for randomly
choose e, A will be about m/2 and so we require m/2 multiplications to do the
exponentiation. We now examine ways of doing better.

Select a positive integer k and rewrite the exponent e as

where bi = ~~i~ aj+,,2j. Of course, each bi can be represented by a binary k-tuple
over Z, which we represent by 6. We now rewrite e in the form

If we let 2 (w) = x\!!,$-' Ci,w2ki, then
a' = cr~"'.'"''"

On average ?.(w) will have 1n/k2~ nonzero terms in it and, hence, will require
m/k2, - 1 multiplications to evaluate. Since w is represented by a binary k-tuple, w
will have on average ,412 nonzero terms and require k/2 - 1 multiplications to
evaluate p". Therefore, to evaluate a"")"' we need t = (m/k2k + k/2 - 2) multiplica-
tions. Finally, to compute a' we need t multiplications for each ii E Zi\ (0) and then
2k - 2 multiplications to multiply the results together. In total we require

multiplications.
If we use 2k - 1 processors in parallel to evaluate each a"'")" simultaneously, then

the number of multiplications is on average

Arithmetic Operations in GF(2") 9

3.1.2. Example 6. For m = 2 l° and various values of k we compute M(k) and T(k):

k M(k) T(k)

6 293 - -
5 244 37
4 254 30
3 315 48

M(k) is minimized by k = 5 and T(k) by k = 4.

3.1.3. Example 7. For m = 2 z6 and various values ofk we compute M(k) and T(k):

k M(k) T(k)

11 15,165 2,052
10 10,638 1,031
9 9,055 527
8 8,924 288
7 9,605 201
6 10,877 234

M(k) is minimized by k = 8 and T(k) by k = 7.
A more extensive tabulation of the functions M(k) and T(k) is given in the

Appendix. It appears at least for small values ofm that M(k) and T(k) are minimized
for k about log2 x//~. In the next section we analyze these functions to determine
the asymptotic behaviour of the minimums.

We note that a worst-case analysis will give a number of multiplications on the
order of (m/k). Since for most cryptographic applications we are dealing with
random exponents, an average-case analysis seems appropriate.

4. Asymptotic Behaviour

In this section we investigate the asymptotic

and

We observe that

of T(k) and M(k)

behaviour of

m k
T(k) = ~ + ~ + 2 k - 4

1(ink) M(k)=(2 k) ~ + ~ - 1 ---,1.

2 k k l n 2 + 2 k) 2k
T'(k) = --m k222 k -t- In 2 + 1

10

and

G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone

M ' (k) - - 2 kIn ~ + ~ - 1 + (2 k - 1) k22k .

The following lemmas will be useful. Since their proofs are s t ra ightforward, they are
omitted.

Lemma 4.1.

i f and only i f

Lemma 4.2.

i f and only if

T'(k) = 0

and

m ((k /2) (! /2 k) _- l)

k 2 2 k - 1 + \ 1 + k i n 2 '

M'(k) = 0

m _ In 2 f l + (1/(k In 2)) - (2 / k) - (1/(k2 k In 2))'~
k32 k 2 - ~ 1 ~ (ln 2) 2 ~ / ~ J '

It follows now from Lemmas 4.1 and 4.2 that for m sufficiently large

T'(k) = 0 implies m ~ k 2 2k

In 2
M'(k) = 0 implies m ~ ~ k 3 2 k.

z

From these relations we want to determine the asymptot ic value of k in terms of m.
This is facilitated by the following result.

Lemma 4.3. Let m = ka2bkc where a, b, c ~ 9t and are positive. Then, for sufficiently
large k,

k - ~(log2 m - a log 2 log 2 m + log2 c - a log2 b) = 0

Proo£

log 2 m -- a log 2 log 2 m = a log 2 k + bk + log 2 c

= bk + log 2 c - a log 2 b

log2 (k + (a /b) log2k + (l / b) l og 2 c~
~ a \ k

Arithmetic Operations in GF(2")

1
(l o g , m - a log, log, m) = k + (i) log, c - ($log, b
b

Now, for sufficiently large k,

log, (1 + (;)(y) + (A) (! !)) = A((;)(!+) + (;)(!y)).
(Recall: log,(l + E) % ~ / l n 2 for - 1 < E < 1.) 0

A simple rearrangement proves the stated result. We are now in a positive to
determine the asymptotic behaviour of the minimums of T(k) and M(k).

Theorem 4.4. For m sufliciently large:

(a) If k* = $(log, m - log, log, m) - t , then T(k*) will be in the neighbourhood
of the minimum of T(k).

(b) If k* = (log, m - 3 log, log, m) + log, In 2, then M(k*) will be in the neigh-
bourhood of the minimum of M(k).

Proof. To prove (a), we see from Lemma 4.1 that points in the neighbourhood of
the critical point satisfy n = k22k when n is sufficiently large. Applying Lemma 4.3
with a = 1, b = 2, and c = 1 gives the stated value of k*. We observe that, for
sufficiently large values of m,

which implies that T(k*) is in the neighbourhood of the minimum of the T(k). The
proof of (b) follows similarly. 0

There are many situations in cryptographic schemes where exponentiation is always
done using the same exponent. For instance, in the Diffie-Hellman scheme 121 a
user's private key is used repeatedly for exponentiation. In this situation it may be
advantageous to use techniques analogous to the methods introduced in Section 2
for computing inverses. Suppose e is the exponent under consideration and for some
nonnegative integer x we have

where the ni are positive integers greater than 1 and not necessarily primes. Then
cre can be computed in

multiplications.

12 G.B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone

4.1.1. Example 8. I f e = 4 5 , t h e n e = 9 x 5 and ~ can be evaluated in ~o(9) +
~o(5) - 2 or two multiplications.

4.1.2. Example 9. I f e = 2 3 7 , then we can take x = 16 and w r i t e e = 2 2 1 + 1 6 =
13(17) + 16 which will require four mult ipl icat ions to evaluate ~ .

Appendix

Table 1 lists the values of k which minimize M(k) and T(k) for various values of n
where n is a power of 2. Table 2 is similar for values of n in increment of 100.

Table 1. Values ofk which minimize M(k)
and T(k).

k for min Min value

n M(k) T(k) M(k) T(k)

64 3 3 21 8
128 3 3 39 10
256 4 3 74 16
512 4 4 134 22

1024 5 3 243 30
2048 5 5 442 43
4096 6 5 797 56
8192 6 5 1469 81

Table 2. Values ofk which minimize M(k)
and T(k).

k for min Min value

n M(k) T(k) M(k) T(k)

100 3 3 31 9
200 3 3 60 13
300 4 3 84 18
400 4 4 107 20
500 4 4 131 21
600 4 4 154 23
700 4 4 178 24
800 5 4 200 26
900 5 4 219 28

I000 5 4 239 29
1100 5 4 258 31
1200 5 4 278 32
1300 5 4 297 34
1400 5 4 316 35
1500 5 4 336 37
1600 5 4 355 39
1700 5 4 374 40
1800 5 5 394 41
1900 5 5 413 42
2000 5 5 433 43

Arithmetic Operations in GF(2") 13

References

[1] G. Agnew, R. Mullin, and S. Vanstone, An implementation for a fast public key cryptosystem,
J. Cryptology, 3(2), 63-79.

[2] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, 22(6)
(1976), 644-654.

[3] T. Itoh, O. Teechai, and S. Tsujii, A fast algorithm for computing multiplicative inverses in GF(2 t)
using normal bases, J. Soc. Electron. Comm. (Japan), 44 (1986), 31-36.

[4] H.W. Lenstra, Jr., and R. J. School', Primitive normal bases for finite fields, Math. Comp., 48 (1987),
217-232.

[5] O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc., 35 (1933), 559-584.
[6] T. Rosati, A high speed data encryption processor for public key cryptography, Proceedin9 of the

IEEE Custom Inteyrated Circuits Conference, San Diego, May 1989, pp. 12.3.1-12.3.5.

