Skip to main content
Log in

A semidefinite framework for trust region subproblems with applications to large scale minimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

Primal-dual pairs of semidefinite programs provide a general framework for the theory and algorithms for the trust region subproblem (TRS). This latter problem consists in minimizing a general quadratic function subject to a convex quadratic constraint and, therefore, it is a generalization of the minimum eigenvalue problem. The importance of (TRS) is due to the fact that it provides the step in trust region minimization algorithms. The semidefinite framework is studied as an interesting instance of semidefinite programming as well as a tool for viewing known algorithms and deriving new algorithms for (TRS). In particular, a dual simplex type method is studied that solves (TRS) as a parametric eigenvalue problem. This method uses the Lanczos algorithm for the smallest eigenvalue as a black box. Therefore, the essential cost of the algorithm is the matrix-vector multiplication and, thus, sparsity can be exploited. A primal simplex type method provides steps for the so-called hard case. Extensive numerical tests for large sparse problems are discussed. These tests show that the cost of the algorithm is 1 +α(n) times the cost of finding a minimum eigenvalue using the Lanczos algorithm, where 0<α(n)<1 is a fraction which decreases as the dimension increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization,SIAM Journal on Optimization 5 (1995) 13–51.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Peng and Y. Yuan, Generalizations of the trust region subproblem, Technical Report, Institute of Computational mathematics and Scientific Computing, Academic Sinica, Beijing 100080, China, 1995.

  3. A. Ben-Tal and M. Teboulle, Hidden convexity in some nonconvex quadratically constrained quadratic programming, Technical Report, Israel Institute of Technology, Haifa, Israel, 1993.

  4. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan,Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics, Vol. 15 (SIAM, Philadelphia, PA, 1994).

    MATH  Google Scholar 

  5. M.R. Celis, J.E. Dennis Jr and R.A. Tapia, A trust region strategy for nonlinear equality constrained optimization, in:Proceedings of the SIAM Conference on Numerical Optimization, Boulder, CO, 1984; also available as Technical Report TR84-1, Department of Mathematical Sciences, Rice University, Houston, TX.

  6. T.F. Coleman and C. Hempel, Computing a trust region step for a penalty function,SIAM J. Sci. Statist. Comput. 11 (1990) 180–201.

    Article  MATH  MathSciNet  Google Scholar 

  7. O.E. Flippo and B. Jansen, Duality and sensitivity in nonconvex quadratic optimization over a ellipsoid, Technical Report 93-15, Technical University of Delft, Delft, The Netherlands, 1993.

  8. G.E. Forsythe and G.H. Golub, On the stationary values of a second-degree polynomial on the unit sphere,SIAM J. Applied Mathematics 13 (1965) 1050–1068.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Gander, G.H. Golub and U. von Matt, A constrained eigenvalue problem,Linear Algebra and its Applications 114/115 (1989) 815–839.

    Article  Google Scholar 

  10. D.M. Gay, Computing optimal locally constrained steps,SIAM J. Sci. Statist. Comput. 2 (1981) 186–197.

    Article  MATH  MathSciNet  Google Scholar 

  11. S.M. Goldfeldt, R.E. Quandt and H.F. Trotter, Maximization by quadratic hill-climbing,Econometrica 34 (1966) 541–551.

    Article  MathSciNet  Google Scholar 

  12. G. Golub and U. von Matt, Quadratically constrained least squares and quadratic problems,Numer. Math. 59 (1991) 561–580.

    Article  MATH  MathSciNet  Google Scholar 

  13. C.-G. Han, P.M. Pardalos and Y. Ye, Computational aspects of an interior point algorithm for quadratic programming problems with box constraints, in: T.F. Coleman and Y. Li, eds.,Large Scale Numerical Optimization (SIAM, Philadelphia, PA, 1990).

    Google Scholar 

  14. M.D. Hebden, An algorithm for minimization using exact second derivatives, Technical Report TP515, Atomic Energy Research Establishment, Harwell, England, 1973.

  15. C. Helmberg, F. Rendl, R.J. Vanderbei and H. Wolkowicz, An interior point method for semidefinite programming,SIAM Journal on Optimization (1996) 342–361; URL: ftp://orion.math.uwaterloo.ca/pub/henry/reports/sdp.ps.gz

  16. A.E. Hoerl and R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems,Technometrics 12 (1970) 55–67.

    Article  MATH  Google Scholar 

  17. R. Horn and C. Johnson,Matrix Analysis (Cambridge University Press, New York, 1985).

    MATH  Google Scholar 

  18. N. Karmarkar, An interior-point approach to NP-complete problems, Lecture, 3rd SIAM Conference on Optimization, Boston, 1989.

  19. S. Kruk, Semidefinite programming applied to nonlinear programming, Master’s Thesis, University of Waterloo, 1996.

  20. K. Levenberg, A method for the solution of certain problems in least squares,Quart. Appl. Math. 2 (1944) 164–168.

    MATH  MathSciNet  Google Scholar 

  21. A. Lewis, Take-home final exam, Course CO663 in Convex Analysis, University of Waterloo, 1994.

  22. L. Lovász, On the Shannon capacity of a graph,IEEE Transactions on Information Theory 25 (1979) 1–7.

    Article  MATH  Google Scholar 

  23. L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0–1 optimization,SIAM Journal on Optimization 1 (2) (1991) 166–190.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters,SIAM J. Appl. Math. 11 (1963) 431–441.

    Article  MATH  MathSciNet  Google Scholar 

  25. J.M. Martinez, Local minimizers of quadratic functions on Euclidean balls and spheres,SIAM Journal on Optimization 4 (1) (1994) 159–176.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in: G.A. Watson, ed.,Numerical Analysis, Lecture Notes in Mathematics, Vol. 630, (Springer, Berlin, 1977) 105–116.

    Google Scholar 

  27. J.J. Moré, Recent developments in algorithms and software for trust region methods, in: Bachem, Grotschel and Korte, eds.,Mathematical Programming, The State of the Art (1983) 268–285.

  28. J.J. Moré, Generalizations of the trust region problem, Technical Report MCS-P349-0193, Argonne National Labs, Argonne, IL, 1993.

  29. J.J. Moré and D.C. Sorensen, Computing a trust region step,SIAM J. Sci. Statist. Comput. 4 (1983) 553–572.

    Article  MATH  MathSciNet  Google Scholar 

  30. Y.E. Nesterov and A.S. Nemirovsky,Interior Point Polynomial Algorithms in Convex Programming: Theory and Algorithms (SIAM, Philadelphia, USA, 1994).

    MATH  Google Scholar 

  31. M.L. Overton, Large-scale optimization of eigenvalues,SIAM J. Optimization 2 (1992) 88–120.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Poljak, F. Rendl and H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-quadratic programming,Journal of Global Optimization 7 (1995) 51–73.

    Article  MATH  MathSciNet  Google Scholar 

  33. M.V. Ramana, An algorithmic analysis of multiquadratic and semidefinite programming problems, Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, 1993.

    Google Scholar 

  34. M.V. Ramana and A.J. Goldman, Some geometric results in semidefinite programming, Technical Report, Johns Hopkins University, Baltimore, MD, 1994.

    Google Scholar 

  35. C. Reinsch, Smoothing by spline functions,Numer. Math. 10 (1967) 177–183.

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Reinsch, Smoothing by spline functions II,Numer. Math. 16 (1971) 451–454.

    Article  MathSciNet  Google Scholar 

  37. F. Rendl, R.J. Vanderbei and H. Wolkowicz, Max-min eigenvalue problems, primal-dual interior point algorithms and trust region subproblems,Optimization Methods and Software 5 (1995) 1–16.

    MathSciNet  Google Scholar 

  38. S.A. Santos and D.C. Sorensen, A new matrix-free algorithm for the large-scale trust-region subproblem, Technical Report TR95-20, Rice University, Houston, TX, 1995.

    Google Scholar 

  39. N.Z. Shor, Quadratic optimization problems,Soviet J. Computer and Systems Science 25 (6) (1987) 1–11.

    MATH  MathSciNet  Google Scholar 

  40. D.C. Sorensen, Newton’s method with a model trust region modification,SIAM J. Numer. Anal. 19 (1982) 409–426.

    Article  MATH  MathSciNet  Google Scholar 

  41. D.C. Sorensen, Minimization of a large scale quadratic function subject to an ellipsoidal constraint, Technical Report TR94-27, Rice University, Houston, TX, 1994.

    Google Scholar 

  42. R. Stern and H. Wolkowicz, Trust regions and nonsymmetric eigenvalue perturbations,SIAM J. Matrix Analysis and Applications 15 (3) (1994) 755–778.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations,SIAM J. Optimization 5 (2) (1995) 286–313.

    Article  MATH  MathSciNet  Google Scholar 

  44. R.J. Stern and J.J. Ye, Variational analysis of an extended eigenvalue problem,Linear Algebra and Its Applications 220 (1995) 391–417.

    Article  MATH  MathSciNet  Google Scholar 

  45. G.W. Stewart III,Introduction to Matrix Computations (Academic Press, New York, NY, 1973).

    MATH  Google Scholar 

  46. P.D. Tao and L.T.H. An, D.C. (difference of convex functions) optimization algorithms (DCA) for globally minimizing nonconvex quadratic forms on Euclidean balls and spheres, Technical Report, LMI, INSA, Rouen, Mont Saint Aignan Cedex, France, 1995.

  47. A.N. Tikhonov and V.Y. Arsenin,Solutions of Ill-Posed Problems (V.H. Winston & Sons, John Wiley & Sons, Washington, DC, 1977); translation editor Fritz John.

    Google Scholar 

  48. L. Vandenberghe and S. Boyd, Semidefinite programming,SIAM Review 38 (1996) 49–95.

    Article  MATH  MathSciNet  Google Scholar 

  49. S.A. Vavasis and R. Zippel, Proving polynomial-time for sphere-constrained quadratic programming, Technical Report, Department of Computer Science, Cornell University, Ithaca, NY, 1990.

    Google Scholar 

  50. J.H. Wilkinson,The Algebraic Eigenvalue Problem (Oxford University Press, London, 1965).

    MATH  Google Scholar 

  51. H. Wolkowicz, Some applications of optimization in matrix theory,Linear Algebra and its Applications 40 (1981) 101–118.

    Article  MATH  MathSciNet  Google Scholar 

  52. Y. Ye, A new complexity result on minimization of a quadratic function with a sphere constraint, in:Recent Advances in Global Optimization (Princeton University Press, Princeton, NJ, 1992) 19–31.

    Google Scholar 

  53. Y. Ye, On affine scaling algorithms for nonconvex quadratic programming,Mathematical Programming 56 (1992) 285–300.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Rendl.

Additional information

Research supported by the National Science and Engineering Research Council Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendl, F., Wolkowicz, H. A semidefinite framework for trust region subproblems with applications to large scale minimization. Mathematical Programming 77, 273–299 (1997). https://doi.org/10.1007/BF02614438

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614438

Keywords

Navigation