Proportional Hazards (Cox) Regression
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PROPORTIONAL HAZARDS (COX) REGRESSION is a power-
ful analytic tool for testing whether several factors
(e.g., cigarette smoking, hypertension) are indepen-
dently related to the rate (over time) of a specific event
(e.g., heart attack yes/no). It can also be used to control
for baseline differences between groups in nonrandom-
ized studies and randomized clinical trials (RCTs).

The availability of desktop computers and user-
friendly software has resulted in a marked increase in
the use of proportional hazards regression by clinical
researchers. However, most detailed reviews of the
technique!* cannot be understood by non-statisticians.
In this article we begin with a review of simpler types of
survival analyses, highlighting the concepts of rate of
outcome and censored observations. Building on these
two concepts, we describe the statistical properties,
underlying assumptions, interpretation, and applica-
tion of proportional hazards regression. Also we de-
scribe time-dependent covariates, the use of propor-
tional hazards regression versus logistic regression, and
other technical aspects of proportional hazards regres-
sion. Finally, we illustrate the applications of this tech-
nique by reviewing 80 articles from the New England
Journal of Medicine and the Annals of Internal Medi-
cine that used proportional hazards regression during
1984, 1987, and 1990. Our goal is to enable non-statis-
ticians to interpret these models and to provide guide-
lines for clinical researchers performing this type of
analysis.

SURVIVAL ANALYSIS

Proportional hazards regression belongs to a family
of analytic techniques referred to as survival analysis.
Survival analysis measures the risk (occurrence) of an
outcome (an event such as death) over time. Although
the term is ‘‘survival analysis,” the method applies to
analysis of any time-to-event data, whether the event is
death or something else.

The starting point (‘‘zero time’”) for survival analy-
sis of a RCT is generally the time of randomization. In
observational studies, the choice of starting point is not
always straightforward. For example, in determining
survival times for patients with coronary artery disease,
the starting point could be the date a patient first devel-
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oped chest pain, the date the patient was first diagnosed
with coronary artery disease by a physician, or the date
angiography demonstrated significant coronary artery
stenosis. Because there is no “‘right’’ starting point for
observational studies, investigators should choose the
starting point most appropriate for their research ques-
tion and state their choice clearly in the methods sec-
tion of their report.

The endpoint for survival analysis is the date of the
outcome of interest. The outcome must be dichoto-
mous (e.g., heart attack yes/no) rather than ordinal
(e.g., small, moderate, or large areas of the heart not
functioning) or continuous (e.g., cardiac enzyme
levels). In some studies the outcome may be a compos-
ite event. An example of a composite event is develop-
ment of a cardiac complication: a heart attack, an epi-
sode of pulmonary edema, or a cardiopulmonary arrest.
With a composite outcome, the date of the first event is
used. A study may have both primary (e.g., heart attack)
and secondary (e.g., mortality) outcomes.

Survival analysis assesses the risk of an event ‘‘over
time.”’ This is in contrast to other statistical techniques,
which assess the cumulative risk of an eventata particu-
lar point in time. For example, a simple proportion can
be used to describe survival of a group of patients three
years after a heart attack. We can say that after three
years, 60% of the patients are still alive. However, we
would still not know whether most of the deaths oc-
curred within days of the heart attack, years after the
heart attack, or at a constant rate during the study
period.

A focus on rate of outcome is particularly impor-
tant in studies of life-threatening diseases, such as
cancer and AIDS. With these diseases, we are interested
in treatments that slow the rate of death, even if most
subjects ultimately die from that disease. For example,
in a study of patients with brain metastases, patients
were randomized to surgery followed by radiotherapy
versus radiotherapy alone. At two years none of the sub-
jects who had received surgery were alive and only 4%
of the subjects who had received radiotherapy alone
were alive.® However, survival was significantly longer
for those who had received surgery than for those who
had received only radiotherapy (median survival, 40
weeks versus 15 weeks).

Using a simple proportion to describe the survival
of a group suffers from a second major limitation: it
cannot accommodate subjects with variable durations
of follow-up. If a third of subjects have been followed
for a year, a third for two years, and a third for three
years, the proportion of subjects alive at three years
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could be based only on those with a three-year follow-
up and so would not represent the experience of the
entire group.

Variable durations of follow-up occur in clinical
trials for a variety of reasons. Usually, clinical trials
accrue subjects over a period of months to years, but
end follow-up at a common point prior to all subjects’
developing the outcome of interest. Therefore, at the
end of the trial some subjects will have been followed
for longer periods of time than others. Variable lengths
of follow-up may also occur because subjects move,
lose interest in the study, or become too ill to partici-
pate. On occasion, subjects must be withdrawn prema-
turely from a trial because of a non-endpoint illness that
precludes them from continuing in the study or pre-
vents them from being evaluated for the outcome in
question. For example, in a RCT comparing warfarin
with no treatment or aspirin (control group) in pre-
venting stroke,” subjects were withdrawn if they died
from causes other than stroke.

Survival analyses overcome the limitations of sim-
ple proportions, allowing us to describe the experience
of a group over time and to accommodate variable
Iengths of follow-up in our studies.

Estimation of Survival Curves

Because there are numerous descriptions of how to
construct survival curves,®!! we only briefly review
these methods. Survival curves are graphic representa-
tions of the cumulative proportion of subjects remain-
ing event-free at each point in time. The two commonly
used methods for estimating the survival time of a group
are the life-table (sometimes called actuarial or Cutler-
Ederer) and the product-limit (Kaplan-Meier)
methods. With the life-table method, the probability of
survival is estimated for discrete time intervals (e.g.,
three months, six months). With the Kaplan-Meier
method, an interval is defined by each occurrence of
the outcome (e.g., death) in the sample.

To allow for variable lengths of follow-up, these
methods ““censor’’ subjects who have not experienced
the specified outcome at the time of the last observation
date. In effect, a subject is removed from the analysis at
the censor date. The advantage of this approach is thata
subject who is lost to follow-up at three years of a four-
year study can contribute three years of event-free time
to the analysis.

The advantages of being able to incorporate infor-
mation from censored observations is illustrated by a
four-year RCT comparing fluoride with placebo for the
prevention of fractures among women with osteoporo-
sis.12 Of the 202 women who began the study, only 135
(67%) completed the four years of treatment. Had the
investigators chosen a method of analysis that did not
allow for censoring, a third of the women would have
been dropped from the analysis. By using survival analy-

703

sis the investigators could include observations from
the time that these women entered into the study until
the time they withdrew, thus making fuller use of avail-
able information.

Survival analysis assumes that censoring occurs in-
dependent of the rate of outcome. In other words, if
subjects could be followed beyond the censored point,
they would have the same rate of outcome as those not
censored. When censoring is not independent from the
rate of outcome, survival analysis is not valid. Censoring
due to ending follow-up of all subjects at a common
point is generally assumed to be independent of rate of
outcome. An illustration of nonindependent censoring
is a trial in which subjects in one treatment arm are
more likely to drop out than subjects in the other arm
due to a side effect of treatment that would ultimately
result in an outcome event (e.g., death). In the example
discussed above of the four-year RCT comparing fluo-
ride with placebo for the prevention of fractures, the
investigators reported that the dropout rates were simi-
lar for the treatment group and the placebo group. This
finding is consistent with censoring occurring indepen-
dent of the rate of outcome and strengthens the validity
of their findings.

In a clinical trial, observations are not necessarily
censored when treatment is stopped. In many studies,
patients are followed for years after treatment has ended
in order to observe long-term outcomes. Also, analysis is
often conducted following the intention-to-treat princi-
ple. The principle is that time at risk and outcome
events are allocated to the initially assigned treatment
group whether or not the subject consumes that
treatment.
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FIGURE 1. Kaplan-Meier curve showing estimated probability of
stroke. The broken line represents the control group, and the solid line the
warfarin group. Adapted with permission from information appearing in:
Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The
effect of low-dose warfarin on the risk of stroke in patients with nonrheu-
matic atrial fibrillation. N Engl J Med. 1990:323:1505-11.
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Based on the probability of survival at different
points in time, survival curves can be graphed. Figure 1
shows two Kaplan-Meier curves representing the sur-
vival experience of subjects in the RCT comparing war-
farin with no treatment or aspirin (control group) in
preventing stroke.” Survival curves for two or more
groups may be compared using the log-rank (also re-
ferred to as the Savage, Mantel-Cox, or Mantel-Haens-
zel) test or the Wilcoxon (also referred to as the Bres-
low or Gehan) test. The Wilcoxon test places greater
weight on early events in a study than on late events,
while the log-rank test gives equal weights to events
that occur throughout the study.# These statistics test
whether the curves are significantly different from one
another in time to outcome. Because these statistics
compare the entire curves, they should not be used to
conclude that the curves differ at a particular point in
time. In the case of the comparison between warfarin
and control, the log-rank test showed that there were
significantly more strokes over time in the control
group than in the warfarin group (p = 0.01).

Assessing the Effect of Covariates on the Rate
of Survival

Comparison of survival curves with statistical test-
ing answers the question of whether two or more
groups differ in their time to outcome. However, pro-
portional hazards regression is needed to assess the si-
multaneous effect of multiple covariates on survival.
(The term covariate is used throughout this review; the
reader should be aware that covariates are also referred
to in the literature as variables, predictors, prognostic
factors, risk factors, and confounders. The distinction
between a “‘risk factor’’ and a ‘‘confounder” is impor-
tant to the interpretation of a study. However, in a sta-
tistical model, risk factors and confounders are treated
mathematically in the same way, as covariates.)

The need for proportional hazards regression is
best appreciated when considering an alternative
method of studying the effect of multiple prognostic
factors on the rate of an outcome. For example, Elwes et
al., using three separate Kaplan-Meier analyses with
log-rank tests, reported that the predictors of seizures
included a neurologic handicap, a social handicap, and
a psychiatric handicap.!? The problem with this analy-
sis is that the reader cannot evaluate whether these co-
variates are independently related to rate of seizure
recurrence. Because these covariates are not mutually
exclusive, it is likely that only one or two of them would
have independently predicted rate of seizure recur-
rence in a proportional hazards model.

Proportional hazards regression produces a coeffi-
cient (a number) that provides a measure of the associa-
tion between a covariate and rate of outcome after con-
trolling for other covariates. The coefficient for each
covariate estimated by the proportional hazards model

can be used to predict the rate at which outcomes will
occur for groups of subjects.

PROPORTIONAL HAZARDS MODEL

The model is specified in terms of the bazard. The
hazard is the probability that a subject will experience
an outcome (e.g., death) in the next unit interval of
time given that the subject has not yet had the outcome
(e.g., is still alive). It is also referred to as the instanta-
neous risk or force of mortality.

In a proportional hazards model with three covar-
iates, the hazard (h) for a given subject is:

h= ho (t) eb;x. + b2x; + byxs (1)

where h, is the underlying hazard at time t. A strength of
the model is that hy is arbitrary; that is, the underlying
relationship of the hazard to time need not be specified
(modeled). The symbols by, b,, and b represent the
regression coefficients (the measures of effect for each
of the three covariates), and X,, X,, and x; represent a
particular subject’s values for the three covariates.

For example, in a study of rate of heart attack, three
important covariates are diastolic blood pressure at
randomization = 90 mm Hg (yes/no), history of dia-
betes (yes/no), and current cigarette smoker (yes/no).
For ease of interpretation, dichotomous covariates are
generally coded as 0 (no or absent) or 1 (yes or
present). Thus, if a subject’s value for all the covariates
is 0 (not hypertensive or diabetic, nonsmoker), then
the formula reduces to h = h,, indicating that the haz-
ard for this subject is the same as the underlying hazard.
The hazard of a hypertensive, diabetic smoker (covar-
iates all = 1) would be higher than the underlying haz-
ard. How much higher is found as e®1+21+b3) and de-
pends on the magnitude of the coefficients.

Interpretation of Regression Coefficients

The values of the regression coefficients are ini-
tially unknown and are estimated by fitting the model to
the data. Part of Cox’s contribution to the field was to
provide a method for estimating the best value for the
coefficients and their associated standard errors (a mea-
sure of the variation of the estimated coefficient due to
chance). The regression coefficients associated with a
particular covariate can be positive or negative. A posi-
tive coefficient indicates that as the covariate (e.g.,
total cholesterol level) increases, the hazard increases
(e.g., higher rate of heart attack). A negative coefficient
indicates that as the covariate (e.g., high-density lipo-
protein cholesterol) increases the hazard decreases
(e.g.. lower rate of heart attack).

A chi-square statistic can be used to test the null
hypothesis that all the regression coefficients are simul-
tancously equal to zero (covariates are not associated
with rate of outcome). A significant chi-square indi-
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cates that the null hypothesis should be rejected. This
global chi-square test is nonspecific'4; it does not indi-
cate which covariates are associated with rate of
outcome.

The regression coefficients produced by the model
are estimates of the population coefficients. The quo-
tient of the regression coefficient divided by its stan-
dard error (called the Wald test) can be used to derive a
p value using the normal (z) distribution (this is an
approximation that assumes a large sample size). Other
tests of the statistical significance of the regression coef-
ficients are the likelihood ratio rest and the score test.

One can estimate the increase or decrease in the
hazard due to a one-unit change in the covariate by
computing the exponentiated coefficient (i.e., e, the
mathematical constant e raised to the power of the coef-
ficient’s value). This is called the relative hazard. In the
case of a dichotomous variable, such as gender (male/
female coded as 1/0), the relative hazard is a measure of
the relative difference in rates between men and
women. A relative hazard greater than 1 indicates that
men have a higher rate of outcome, while a relative
hazard less than 1 indicates that women have a higher
rate of outcome.

Confidence intervals for relative hazards — which
indicate the precision of the estimate and the interval of
plausible values — can also be calculated. The formula
for determining the confidence interval for the relative
hazard is eb*z (standard emor) where 7 is the standard nor-
mal deviate for alpha (e.g., 1.96 for 95% confidence
intervals).

Multiplicative Assumption

Implicit in the proportional hazards model is the
assumption that the covariates have a multiplicative
effect on the hazard. Examination of equation 1 indi-
cates that the effect of the covariates are additive on a
logarithmic scale —the same as being multiplicative
on an arithmetic scale (log (a) + log (b) =log (a X
b)).? If two covariates, each of which are associated
with an increase in rate of outcome, are entered into a
proportional hazards analysis, the increase in the hazard
for patients with both factors, relative to patients with
neither factor should be the product of the increases in
rate (as determined from the analysis of the two covar-
iates together) associated with each of the two
covariates.

In general, when modeling event rates, we would
expect independent prognostic factors to influence
their joint effect multiplicatively. In clinical research
there may be situations when the joint effect of two
factors is less than additive (antagonistic), additive,
more than additive and less than multiplicative, or more
than multiplicative.!® In these cases an interaction is
said to be present, and adding an “‘interaction term”’
(usually done by adding the product of the two vari-

ables) to the model may help reveal the nature of the
relationship. For example, a study in New York City of
survival time following an AIDS diagnosis found that
persons who had Pneumocystis pneumonia and were
intravenous drug users had a risk of death greater than
the multiplicative risk of having Pneumocystis pneu-
monia and being an intravenous drug user.!'¢ This was
demonstrated statistically by showing that the coeffi-
cient of the product term (Pneumocystis pneu-
monia X intravenous drug use) was positive and statis-
tically significant.

Exponential Increase in Rate with Increases in
Continuous Covariates

When continuous (rather than dichotomous) co-
variates are used in proportional hazards regression, the
model assumes that a unit change in the covariate at any
point in the scale is associated with a fixed change in the
hazard. As the covariate increases, there is an exponen-
tial increase in the hazard. For example, in a model that
uses diastolic blood pressure as a continuous variable to
predict rate of coronary artery disease, the proportional
increase in the hazard of coronary artery disease as
blood pressure increases from 80 to 89 mm Hg should
be the same as the proportional increase in the hazard as
blood pressure increases from 90 to 99 mm Hg. Assum-
ing that a ten-point change in blood pressure is asso-
ciated with a twofold increase in the hazard, then the
increase in the hazard for a 30-point increase in blood
pressure would be 23, or an eightfold increase. Because
increasing blood pressure is generally associated with
an exponentially increasing hazard of coronary artery
disease, blood pressure is frequently left as a con-
tinuous covariate in proportional hazards regres-
sion.17- 18

Many clinical covariates are not associated with an
exponential increase in hazard and should not be kept
continuous. The relationship between levels of a covar-
iate and rate of outcome may be U-shaped, J-shaped, or
with a threshold. For example, the investigators of a
nonrandomized study reported that for patients with
myelodysplasia, the longer after a diagnosis a transplant
was performed the higher the rate of relapse.!® How-
ever, as can be seen in Figure 2, the association between
time after a diagnosis and rate of relapse was U-shaped,
with higher rates of relapse when transplants were per-
formed soon and long after diagnosis. This effect was
obscured in the proportional hazards model because
the variable (time from diagnosis to transplantation)
was entered into the analysis as a single variable mea-
sured on a four-level scale (<12 months, 12-30
months, 31 -60 months, > 60 months).

When changes in a continuous covariate are not
associated with exponential increases in the hazard,
then the covariate can be accommodated by dividing
the variable into multiple variables and assigning each
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subject a yes/no (numerically 1/0) on each variable
(referred to as dummy variables) . One less variable than
the number of categories is needed, and the reference
group is represented by a ‘‘no’’ category for each of the
other variables. For the study of transplantation with
myelodysplasia, length of time from diagnosis could
have been represented as three dummy variables: 12—
30 months (yes/no), 31-60 months (yes/no), and >
60 months (yes/no). A subject who had received trans-
plantation 40 months post diagnosis would have the
values for the three dummy variables of 0, 1, and 0,
respectively.

Although dummy variables allow incorporation of
covariates that are not associated with exponential in-
creases in the hazard, there are several problems. The
choice of cutoff points is often arbitrary and does not
necessarily reflect the biologic relationship of the vari-
able to the rate of outcome. Also, the increase in the
number of variables often decreases the power of the
analysis.2% An alternative method for incorporating con-
tinuous covariates is to perform a mathematical trans-
formation (e.g., logarithm scale) to produce a new
scale on which changes in the covariate are associated
with exponential changes in the hazard. For example,
Cello et al.?! found that the log of creatinine was signifi-
cantly associated with survival in patients with cirrho-
sis. Mathematical transformations will not help with
U-shaped or J-shaped distributions.

Proportional Assumption

The term proportional in proportional hazards re-
gression refers to the fact that in these models the ratios
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FIGURE 2. Bar graph illustrating that the covariate ‘* time from
diagnosis of myelodysplasia to bone marrow transplantation’’ (as a four-
level variable) has a U-shaped relationship with the likelihood of relapse.
Based on data obtained from: Appelbaum FR, Barrall J, Storb R, et al.
Bone marrow transplantation for patients with myelodysplasia. Ann In-
tern Med. 1990;112:590-7.
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FIGURE 3. Kaplan-Meier curve showing estimated probability of
survival. The broken line represents the chemotherapy group and the solid
line represents the transplantation group. Reproduced with permission
from: Appelbaum FR, Dahlberg S, Thomas ED, et al. Bone marrow trans-
plantation or chemotherapy after remission induction for adults with
acute nonlymphoblastic leukemia. Ann Intern Med. 1984;101:581-8.

of the hazards for persons with different patterns of
covariates are constant over time. When there is only
one covariate, the validity of the proportionality as-
sumption can be verified by examination of the survival
curves. The curves should initially show a steadily in-
creasing difference between the two curves.?? Ulti-
mately, if the outcome is death or a condition that
occurs in a very high proportion of exposed persons
(e.g., AIDS in persons infected with HIV), the two
curves will come together when most subjects have
experienced the outcome of the study. Figure 1 showsa
steadily increasing benefit for the warfarin group over
the control group in preventing strokes.” In contrast,
Figure 3 shows a study of bone marrow transplantation
versus chemotherapy for patients with acute nonlym-
phoblastic leukemia where the differences are not con-
stant over time. Early on, the rate of death is greater for
those undergoing transplantation than for those receiv-
ing chemotherapy, and then it reverses, resulting in the
curves’ crossing.??

When the differences in the hazards between
groups with different patterns of covariates are not pro-
portional, then proportional hazards regression is not
valid. Graphic methods, referred to as log-minus-log
survival plots, have been developed to help assess
whether the hazards of subjects with different covariate
patterns are proportional over time after adjusting for
other covariates.!: 24 An example is shown in Figure 4.
We note that the difference between the two groups is
proportional over time after adjusting for other
covariates.

Asecond test of whether the data fit the proportion-
ality assumption is to create an interaction variable that
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is the product of the covariate and survival time (or the
logarithm of survival time). Enter the interaction vari-
able, along with the covariate itself, into a proportional
hazards model. If the proportionality assumption is
valid, the effect of the interaction term will be near
zero.* 24 This method inherently creates a time-depen-
dent variable (see below). It works best for dichoto-
mous covariates, and when it is expected that the effect
of the covariate varies monotonically (stays the same or
consistently increases or decreases) with increasing
survival time.

If there is an indication that the data do not fit the
proportionality assumption, it is sometimes still possi-
ble to use proportional hazards methods by performing
a stratified analysis.! The covariate that does not fit the
proportionality assumption is used to stratify the sam-
ple. In a stratified model, the baseline hazard (h,) is
distinct in each stratum but the regression coefficients
are calculated across strata.?4 By giving each stratum its
own baseline hazard, the hazard for each stratum has a
component that can vary over time differently than in
the other strata.

Applications of Proportional Hazards Analysis

Proportional hazards regression may be used for
both nonrandomized and randomized studies. Al-
though we focus on the application of proportional
hazards regression for medical studies, these tech-
niques are equally useful for the analysis of behavioral
data.?’

Nonrandomized studies. Proportional hazards
regression has two major purposes in nonrandomized
studies: to determine prognostic factors while control-
ling for confounders, and to compare treatment regi-
mens after adjustment for imbalances between the
treatment groups.

In nonrandomized studies of prognosis, propor-
tional hazards regression is used to determine whether
a covariate is related to an outcome after controlling for
other covariates. For example, Rubin et al.’® found an
increased rate of death among elderly men with ele-
vated cholesterol levels after controlling for other
covariates known to be associated with mortality, in-
cluding age, smoking, and hypertension. Without con-
trolling for confounding, their findings would be less
convincing; perhaps elevated cholesterol levels were
associated with an increased rate of death only because
men with high cholesterol levels were older and more
likely to smoke or be hypertensive.

In uncontrolled treatment trials proportional haz-
ards regression may be used to determine subgroups of
patients who have a particularly good prognosis. For
example, a study using proportional hazards regression
determined that a poor human leukocyte antigen (HLA)
match was associated with a higher rate of kidney graft

rejection.2¢ The use of proportional hazards regression
was important to exclude confounding factors; it could
have been that degree of HLA match was important only
because it was associated with other covariates (such as
prior transplant loss), which, in turn, affected rate of
graft rejection. After controlling for these covariates,
degree of HLA match remained significant. The demon-
stration of an independent association between HLA
match and kidney rejection has fueled efforts to use
organ-sharing networks to optimize the match between
donor and recipient.

Finally, in nonrandomized, controlled trials, pro-
portional hazards regression may be used in an attempt
to adjust for baseline differences between the treatment
and control groups that occurred because treatment
was not randomly assigned. For example, the efficacy of
angiotensin-converting enzyme (ACE) inhibitors was
studied in patients with systemic sclerosis and renal
crisis.?’ Subjects who received ACE inhibitors had a
higher rate of survival. Because treatment was not ran-
domized, the investigators used proportional hazards
regression to adjust for two covariates that were known
to be associated with rate of survival: hypertension and
age. After statistical adjustment, use of ACE inhibitors
was still associated with a higher rate of survival.

The ability to adjust for measured baseline differ-
ences in nonrandomized treatment trials is one of the
strengths of proportional hazards regression. In situa-
tions when randomized clinical trials are not practical
—because of expense, logistic or ethical difficulties in
randomizing patients, or need for a rapid answer!® 28
—nonrandomized trials analyzed with proportional
hazards regression may be useful.?® 2° For example, it
would have taken years to enroll enough patients to
establish the efficacy of ACE inhibitors for patients with
systemic sclerosis and renal crisis. More importantly, it
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FIGURE 4. Log-minus-log survival plot showing a constant differ-
ence between group A (solid line) and group B (broken line).
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would have been unethical to randomize patients to
placebo because of the high mortality for the disease
when patients go untreated and the high probability
that ACE inhibitors would be helpful given clinical ex-
perience with similar diseases. However, statistical ad-
justment for baseline differences can be successful only
when the other prognostic factors of a disease are
known and measured; only randomization has the capa-
bility of controlling for the influence of unmeasured
confounders.

Randomized Controlled Trials. Although ran-
domization usually creates study groups that are similar
with respect to baseline characteristics, randomization
may, by chance, result in an unequal distribution of
characteristics, especially in smaller studies. These
random differences may confound the results of a
study? if the covariate differing between the groups is
casually related to the outcome. Proportional hazards
regression can be used to adjust statistically for these
differences. For example, in one RCT, patients with
tuberculosis were randomized to either a six-month or
a nine-month regimen of antituberculosis treatment.3?
The six-month regimen was as efficacious as the nine-
month regimen. However, the group randomized to the
six-month regimen appeared to be less ill at baseline:
they were significantly less likely to have cavitary and
pleural disease than were the nine-month regimen
group. These baseline differences raised the possibility
that the six-month regimen was less effective and only
appeared to be as effective as the nine-month regimen
because the subjects randomized to the six-month regi-
men were less sick. However, the investigators adjusted
for the presence of cavitary and pleural disease in pro-
portional hazards analysis and found that the two regi-
mens still had similar levels of efficacy.

In addition to adjusting for baseline differences,
proportional hazards regression may be used in RCTs to
uncover factors other than the randomized treatment
that are associated with rate of outcome. For example,
in a RCT of corticosteroids versus placebo for adjunc-
tive therapy of Pneumocystis pneumonia, hypoxia, in
addition to receipt of placebo, was associated with a
higher rate of respiratory failure.3!

Proportional hazards regression may aiso be used
to investigate subgroup effects. Using a product term
(covariate X treatment assignment), investigators can
detect subgroups for whom treatment is particularly
effective or demonstrate a consistent ineffectiveness of
treatment across subgroups of subjects. For example, in
a RCT of beta carotene versus placebo to prevent skin
cancer,32 the investigators found that the rates of cancer
did not differ by treatment group. The lack of signifi-
cant interaction between treatment group and covar-
iates (such as plasma beta-carotene level) strengthened
their conclusion that beta carotene use was not effica-
cious in preventing skin cancer.

Time-dependent Covariates

Proportional hazards regression can accommodate
covariates that change their values during the course of
a study.* 33 For example, during a study a subject may
start a new medicine or develop a new symptom. Time-
dependent covariates were used in one study to test
whether certain symptoms were associated with devel-
opment of Pneumocystis pneumonia in patients with
low CD4 lymphocyte counts.34 In the model the covar-
iates changed their values from absent to present at the
time they appeared in a subject with a CD4 count less
than 200 cells. The investigators found that the pres-
ences of oral candidiasis and fever, but not of fatigue or
weight loss, were associated with an increased relative
hazard of developing Pneumocystis pneumonia.

Another use of time-dependent covariates is to de-
termine whether sicker subjects are more likely to be
lost to follow-up (thereby violating the assumption of
survival analysis that censoring be independent of rate
of outcome). This was done in a study of zidovudine for
asymptomatic HIV infection.3® The last CD4 lympho-
cyte count, modeled as a time-dependent covariate, was
used as an indicator of degree of illness. The count was
not, however, significantly related to the hazard of
being lost to follow-up. If subjects were more likely to
drop out when they became sick, then this analysis
would have found that CD4 counts were related to the
hazard of being lost to follow-up. Use of a simple t-test
to compare the last CD4 count of subjects lost to fol-
low-up with the last CD4 count of subjects who stayed
in the study would not have been valid. HIV infection
causes a progressive decline in CD4 counts; therefore
even if sicker patients were more likely to drop out, this
finding would have been obscured because subjects
who stayed in the trial the longest would tend to have
the lowest CD4 counts.

Comparison with Logistic Regression Analysis

Logistic regression is a multivariable technique for
assessing the independent effect of multiple covariates
on the occurrence of a binary event.® 1% 15 [tis similar to
proportional hazards regression, and investigators may
be unsure which method would be better to use. A
detailed comparison of the statistical properties of the
two models has been presented elsewhere.3® Here we
note a few general differences in the two techniques.

Proportional hazards analysis is based on rate of
outcome, while logistic regression analysis is based on
cumulative risk of outcome at a particular point in time
(e.g., three years after the randomization date). Using
cumulative risk means that early events have the same
weight in the analysis as events that occur later. Since
the goal of many medical treatments is extending life
rather than curing disease, the timing of outcomes is
important.

Observations cannot be treated as censored with
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TABLE 1
Time Trends in the Use of Proportional Hazards Regression (PHR)*

Articles Using PHR Total Articles % Articles Using PHR
Year NEJM Annals Both NEJM Annals Both NEJM Annals Both
1984 11 4 15 501 294 795 2% 1% 2%
1987 18 6 24 449 268 717 4% 2% 3%
1990 33 8 41 476 259 735 7% 3% 6%
TOTAL 62 18 80 1,426 821 2,247 4% 2% 4%

*p < 0.001 for chi-square for trend for NEJM alone and the two journals together; p = 0.17 for Annafs alone. NEJM refers to the New England

Journal of Medicine and Annals refers to the Annals of Internal Medicine.

logistic regression. Therefore a subject lost to follow-up
a few days before three years cannot contribute to a
logistic analysis comparing subjects who died within
three years with subjects still alive at three years. Also, a
subject who has an outcome (e.g., death) a few days
after the chosen analysis point is treated in the analysis
as belonging to the group that did not experience the
outcome (e.g., still alive). On the other hand, an advan-
tage of logistic regression is that the proportionality
assumption does not have to be valid (because the
model does not take into account when events occur).
Both models assume a multiplicative relationship of the
covariates to outcome, though in different scales.

In general, the use of logistic regression in place of
proportional hazards models works best if the number
of subjects lost to follow-up is small3?- 38 and the pro-
portion of subjects experiencing an outcome is small.3®
If the proportion of subjects experiencing an outcome
is large, then the differences between the relative haz-
ards (from the proportional hazards model) and the
odds ratios (from the logistic model) will be large.

Technical Issues

Several user-friendly software packages perform
proportional hazards regression.2% 4042 These programs
allow for forward and backward (stepwise) selection of
covariates (instead of entering all variables simulta-
neously into the model). As with other types of regres-
sion analysis, there are advantages and disadvantages to
using these selection techniques.'% !5 43 Guides for de-
termination of sample size calculations for propor-
tional hazards regression are available,* and the use of
this technique with matched data is an area of active
research.43

REVIEW OF THE LITERATURE

To assess the frequency and manner in which pro-
portional hazards regression is being used in the litera-
ture, we reviewed all articles (excluding editorials and
letters) in the New England Journal of Medicine and
the Annals of Internal Medicine during the years
1984, 1987, and 1990. Eighty articles that used pro-
portional hazards analysis were identified. Excluded

TABLE 2

Characteristics of Articles Using Proportional Hazards Regression
(n = 80)*

Use of proportional hazards regression

Nonrandomized studies 51 (64%)
Randomized clinical trials 29 (36%)
Term used for exponent of coefficient
Relative risk 34 (43%)
Risk 5( 6%)
Relative hazards 5( 6%)
Risk ratio 2( 3%)
Hazard ratio 2( 3%)
Rate ratio 2( 3%)
Relative fertility 1( 1%)
Odds ratio 1( 1%)
Not reported 28 (35%)
Reported p values 61 (76%)
Reported confidence intervals of coefficients 38 (48%)
Did not report p values or confidence intervals 7 { 9%)
Assessed muitiplicative assumption 8 (10%)
Assessed proportionality assumptiont 12 (15%)

*Percentages may not add up to 100% because of rounding off.
tOne article, which incorporated time into the model, is excluded.

were six articles that used proportional hazards regres-
sion only for computing bivariate statistics, and one
article for which the authors stated that they considered
using proportional hazards regression but did not be-
cause their data did not fit the proportionality
assumption.

There was a significant increase in the proportion
of articles from these two journals reporting propor-
tional hazards analysis, from 2% in 1984 to 3% in 1987,
and 6% in 1990 (p < 0.001 for trend) (Table 1). The
increase in the proportion of articles from the Annals of
Internal Medicine alone was not statistically signifi-
cant (p = 0.17).

Of these 80 articles, 51 (64%) were nonrandom-
ized studies and 29 (36%) were RCTs (Table 2). We
found enormous variability in the terms used to de-
scribe eP. Relative risk, risk, and risk ratio were com-
monly used but have the disadvantage of also being used
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to describe results from models (e.g., logistic regres-
sion), which focus on cumulative risk of outcome
rather than rate of outcome. Relative hazard is a more
specific term and therefore more appropriate. Of the
articles reviewed, 61 (76%) gave the p value of the
coefficients, 38 (48%) reported confidence intervals,
and seven (9%) reported neither. Only eight studies
(10%) reported that they assessed the multiplicative
relationship of the covariates. And only 12 of 79 articles
(excluding one article that incorporated time into the
model) indicated that they assessed the validity of the
proportionality assumption. Of these 12 articles, four
(33%) noted that the data did not fully fit the propor-
tionality assumption.

CONCLUSIONS

Proportional hazards regression is an increasingly
used tool of clinical researchers. The main purposes of
proportional hazards regression are to evaluate rate of
outcome, to accommodate variable lengths of follow-
up, and to assess the effect of multiple covariates on the
rate of outcome.

To evaluate proportional hazards analysis, readers
need to know whether the underlying assumptions of
the model were fulfilled. Qur review, as well a review
of articles using logistic and proportional hazards re-
gression from the New England Journal of Medicine
and Lancet,* indicates that investigators do not consist-
ently report whether they tested the multiplicative and
proportional assumptions. Researchers should report
how they tested these assumptions and whether there
were departures from them. Use of the term relative
hazard makes it clear to readers that the estimates are
based on a proportional hazards model. Reporting the
confidence intervals of the relative hazards helps
readers to evaluate the precision of the findings.

Given the flexibility of proportional hazards re-
gression for handling clinical data, its use in clinical
research is likely to continue to increase. With an appre-
ciation of the strengths and weaknesses of these models,
readers can better interpret the validity of studies that
use these techniques.

The authors appreciate the following people who thoughtfully re-
viewed earlier versions of the manuscript: Daniel Berrios, MPH, War-
ren Browner, MD, MPH, Susan Buchbinder, MD, Steven Cummings,
MD, Virginia Ernster, PhD, Nancy Hessol, MSPH, Steven Hulley, MD,
MPH, Karla Kerlikowske MD, Alan Lifson, MD, MPH, Walter Mebane,
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BK. II)

REFLECTIONS

Medicine is a science which hath been, as we have said, more professed than
laboured, and yet more laboured than advanced; the labour having been, in my
judgment, rather in a circle than in progression. — SIR FRANCIS BACON (1561 -
1626), English philosopher, lawyer, and politician (ddvancement of Learning,




