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Abstract. The aim of the present paper is to investigate the influence both of gravity field and 
initial stress on the propagation of Rayleigh waves in an orthotropic thermoelastie medium subject to 
certain boundary conditions. We suppose that the body is under initial stress alonq xl-direction and 
incremental thermal stresses. The wave velocity equation has been obtained. Many special cases and 
comparison with the previous results have been studied. 

1. Introduction 

The problem of  propagation in an orthotropic thermoelastic medium is very impor- 
tant for the possibility of its extensive application in various branches of  science 
and techonology, particularly in optics, acoustics, geophysics and plasma physics. 
Many authors such as E1-Naggar et al. (1994); Love (1957); Das et al. (1992), and 
others studied the effect of  gravity on the propagation of Rayleigh waves in an 
elastic solid medium. However, none of  the authors considered the effect of  gravity 
on the propagation of  Rayleigh waves in an orthotropic medium. ~ 

The propagation of  thermoelastic waves discussed by Abd-Alla (1991); E1- 
Naggar and Abd-Alla (1989). Bouden and Datta (1990) studied Rayleigh and Love 
waves in cladded anisotropic medium. Dey and Addy (1979) studied the influence of  
initial stress on the propagation of  Rayleigh waves in a half-space under incremental 
thermal stresses. Dey and Sengupta (1975) discussed the influence of  gravity under 
the assumption of  Biot (1965) on thermoelastic Rayleigh waves. Thermoelastic 
Rayleigh waves were investigated by Sengupta and Acharya (1979) under the 
influence of  gravity in an elastic layer with the assumption that the heat is radiated 
from the free plane boundary surface of  the layer, and the gravity field produces a 
type of  initial stress of  a hydrostatic nature. 

In this paper, the ifluence of  gravity and an initial stress on the propagation of  
Rayleigh waves in an orthotropic thermoelastic solid medium has been investigated 
using the wave equations which are satisfied by the displacement potentials ~b and 

2. Formulation of  the Problem 

Consider an orthotropic elastic solid medium, the boundary of  which x3 = 0 is 
free of  stress and extending to infinity throughout the half-space x3 < 0, x3-axis 

Earth, Moon and Planets 75: 185-197, 1996. 
(~) 1996 Kluwer Aeademic Publishers. Printed in the Netherlands. 



186 A.M. ABD-ALLA AND S. M. AHMED 

being taken positive in the direction towards the exterior of the body and the xl- 
axis taken positive along the direction of Rayleigh wave propagation, the origin 0 
being any point on the middle plane of the infinite. Let the medium be under initial 
compression stress P0 along the xl-direction, with the influence of gravity and at 
initial temperature To. It is assumed that, the elastic medium exchanges heat freely 
with its surroundings, an initial stress is produced by a slow process of creep where 
the shear stresses tend to become small or vanish after a long interval of time. 

In view of the two-dimensional nature of the problem we may assume that the 
state of initial stress as 

7-11 = 7"33 = 7-; 7-13 = 0, (1) 

where 7- is a function of depth. 
The equilibrium conditions of the initial stress field are given by Bouden and 

Daatta (1990) 

Or Or 
Ox--~ = O; Ox3 Pg O, (2) 

where 9 is the acceleration due to gravity and p is the density of the medium. 
The dynamical equations of the two-dimensional problem under initial stress 

field and initial compression stress P0 in the direction of the Xl-axis are given by 
(Bouden and Daatta, 1990; Dey and Chakaraborty, 1984) 

07-11 07-1..._.~3 -- 060 OU3 02Ul 
Oxl + Ox3 PO~x3 - Pg~xl = p Ot 2 ' 

(3) 

07-13 07-3......~ 3 _ 0r OUl 027~3 

OXl" q- OX3 PO-~xl - Pg-~xl = p Ot 2 ' 

where (ul, 0, U3) a re  the components of displacement, 7-ij are the stress components 
and 

1 / a u 3  Oul"~ 
w = ~ \Oxl  Ox3] '  (4) 

denotes the component of rotation. 
The thermoelastic stress components for orthotropic body, under the effect of 

an initial compression stress P0 in terms of displacement components Ul and u3, 
are given by E1-Naggar and Abd-Alla (1989) 

�9 0 U l  0U3 
7-1  = (c1  + + (cx3 + e 0 ) w : -  

U X l  ox3 
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0w1 0U3 
7"33 = C13~Zl "t- C33~-Z3 t/3T, (5) 

(0w1 0t~3) 
T13 = C44 \ OX3 + OXl ] ' 

where cij are the elastic constants, 

/)1 = (ell -~-C12)Oq -t-r (6) 
~'3 = 2c13oq -t- r 

O/1 is the thermal expansion coefficient in the planes of orthotropy and a2 is the 
thermal expansion coefficient along the x3-axis. 

Equations (3), with help of (4) and (5), change to 

o%1 
(C13 d-" + (Clld-Po)-~x2 -~-(r 02ul -~ )  02~3 

~Z23 -I- e44 OX 10X3 

0 0U 3 02Ul 
Oxl (UlT) - p g ~ x  1 = p Ot 2 , (7) 

OxiOx---5 r r o4 

0 OUl 02U3 
OX3 (u3T) + Pg~xl  = p Ot 2 " (8) 

3. Solution of the Problem 

Let r 1, X3, t) and r (x 1, X3, t) be the displacement potentials. They are related 
to the displacement components Ul and ~3 by the following relations 

or or or or 
+ - -  (9) 

~1 -- OX 1 OX 3, ~3 = OX 3 OX 1. 

Substituting from Equation (9) in Equations (7) and (8), we see that r and r 
satisfy the wave equations 

(cll + rol-~x ~ + (c13 + 2c44 + ro)-~x23 - p9-~x 1 
02~ 

- -  - -  u l T  = p O r E ,  (10) 

(533 _ C44 _ C13 - @ )  "~X~ -~-02r (C44 _ _~) (92r -~- 0q~ = 02r pgg. (11) 
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The temperature T is determined by the generalised Fourier's law of heat 
conducting, as follows EI-Naggar and Abd-Alla (1989) 

V2 T _ 10T ~t X Ot ~/V2 = 0, (12) 

where 

51 + 52 To(Vl + u3) 
X =  2ps ' ~ = (51+ ,h) ' 

51 and 52 being the thermal conductivity in the plane of orthotropy and in the x3- 
direction, respectively, s being the specific heat per unit mass and To is the initial 
temperature. 

Eliminating T from Equations (10) and (12), and retaining Equation (11), we 
have 

. ,  02r ozr or o2r ) 

r',2 0q~ --Xt/I?'/V ~ = O, (13) 

(C33 -- C44 -- C13 "~') -~X~ q- (C44 -- ~ )  02~b (14) 

For a plane harmonic wave propagation in the xl-direction, we seek solution of 
Equations(13) and (14) in the following forms 

r = f(x3)eia(xl -ct) 
' (15) r = h(x3)eia(xl-ct), 

where c is the speed of Rayleigh waves and a is the wave number. 
Substituting from Equations (15) into equations (13) and (14), we get 

d4f { (ic o~x) a(p~c- Cll - Po) + iculrl } d2 f 

__Or3 {(iC-- OL~)(Cll "F Po - P c2) -]-icx1]l?'] } iolpg d2h 
X(Cl3 q- 2c44 + P0) f - (c13 q- 2c44 + P0) dx3 2 

_ ia2pg(ic- aX) h = 0, (16) 
X(Cl3 q- 2c44 + Po) 
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Ol 2 
2 iapg 

h + f = 0 (17) 
dxl  ( c 3 3 _ c 4 4 _ c 1 3 _  ~ O) ( c 3 3 - c 4 4 - c 1 3 -  ~~ O) 

The solution of Equations (16) and (17) which satisfies the condition that, 
the corresponding stresses vanish as x3 --+ - ~  and A1, A2,/~3 are taken to be 
imaginary, has the form 

f (z3)  = Ale -iaAlx3 + A2e -iaA2x3 + A3 e-iaA3x3, 
h(x3) = B1 e-iaAlx3 + B2 e-iaA2x3 + B3 e-iaA3x3, (18) 

where the constants B1, B2, B3 are related with the constants A1, A2, A3; respec- 
tively, by means of Equation (16) or Equation (17). 

Equating the coefficients of e -iaAlx3, e -iaA2z3 and e -iaA3z3 to zero, we have 
using Equation (17). 

Bj = mjAj, j = 1,2,3 (19) 

where 

ipg 

"~" c13 

,~1, )~2, )~3 are the roots of the equation 

A 6 -~- K 1A 4 -~- K2 A2 -[- K 3 = O, (20) 

K1 = 

P0 
C44 -- - -  -- pc2 

1 +  2 
Po 

C33 -- C44 -- C13 2 

ell "~- Po - P 6'2 + 
C13 + 2C44 +/90 

ic [,C13 + 2c44 + Po + XVlr/] 
oLx L c17 T~c4; ~ .P0 J' 

K2 = 

[ce2(Cll + Po _ pc2)((r . . . . .  i~___P~ PC 2 ) _ p2g2\ 

C44--C13 -- T~} [ Ot2(e13 + 2c44 + PO) (e33 - . . . .  

+ 
C44 Po pc2) (ell + Po - t 062) 2 + 

Po c13 + 2e44 + PO 
ca3 -- C44 -- C13 -- 

2 



190 A. M, ABD-ALLA AND S. M. AHMED 

ic [Cll + Po - P c2 --b XI)I~ 
o~X [ c13 q- 2c44 + P0 

(c44 PO pc2) (c13+2c44+Po+xvx~)] 
_+ 2 . . . . . .  p - - ~  

I 012 (r _.F po _ pc2) (r . . . . . . . .  _-~-~ No pr _ p292" 

K3 = Lo12(c13-]-Nr (c33--c44- - - -  - P - ~ e l 3  - ~-]~ - 

ic [0~2( c44 P02 pC2) (cll "F P O - p r  
. . . . . . . . . . .  - - p ~  

~ oL2(c13 ..b 2r + Po) (c33 _ a44 _ c13 _ T )  

Using Equations (15), (10), (18) and (19), we get 

qb = (Ale -ia)~lz3 --k A2e -ia)~2z3 + A3 e-iaA3z3) exp[ia(xl - ct)], 
r = (mlA1 e-ia)'~z3 + m2A2e -i~'2z3 + m3A3 e-iaA3z3) (21) 

• exp[ioL(xl -- ct)], 

and the temperature T has the form 

( , n,02r 02r 0~b 02~ b} 
T = • (c1~ -~ ~-0jb-~ ~ + (c~3 + 2~4~ + P0)b-~  ~ - Pgb-~T~ - P - ~ -  " (22) 

Introducing Equations (21) into Equation (22), we have 

a 2 ipg m .~ 
T = - - ( [ (  1 ot 3] -(c13+2c44+Po)A2]Aj} 

x exp[ia(xl - Ajx3 - ct)], j = 1,2, 3. (23) 

In order to determine the arbitrary constants A1, A2, A3 in Equation (23), we 
consider the following boundary conditions. 

4. Boundary Conditions and Frequency Equation 

The boundary conditions on the plane x3 = 0 are given by (Bouden and Daata, 
1990; Sengupta and Acharya, 1979) 

07" 
713='r33=0, Ox3 + O T = O  o n x 3 = 0 ,  (24) 
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where 

T13 = C44 ~k ~ OX----~3 "~ Ox2 ] '  

(92~) 024 02~ 
~33 = c138~-{~ + (3~o-~  + ((313 - (3~3) o ~ 3  ~,3T, 

0 is the ratio of the coefficients of heat transfer to the thermal conductivity. 
In view &Equations (21), (23) and (24), we then obtain 

(2A1 + ml.~l 2 -- ml)A1 + (2A2 + m2 A2 -- m2)A2 

+(2A3 + m3A i - m3)A3 = 0, 

(333 + V3 ((313 + 2(344 + Po) A 2 + ((333 - (313)ml)~1 + (313 - - -  
Vl tq 

• (p(32-(31,-po- ipgml)}Al+{[(333+~l((313+2(344+Po)]A 2 

v3(  - P o  ipg m2)}A2 +((333 -- (313)m2)~2 + (313 IIS p(32 _ (311 OL 

+ { [(333 + v3 ((313 + 2(344 + Po)] ~i + ((333 - (313)m3~3 + 

p(32 (311 Po i - -  - -  - -  m3 A3 = 0 ,  ( 2 5 )  

/)1 

(O-i~ [(311+ P ~  pc2 + ipgml + ((313 + 2(344 + P~ 

+ ( 0  --iOL/~2)[(311 + Po - p(32 + iPffm20t + ((313 q- 2(344 + Po))~ 2] A2 

+(0 --io~.~3) [(311 + Po - PC 2 + ipgm3o~ + ((313 + 2(344 + Po)A 2] A3 = 0. 

Eliminating the constants A1, A2 and A3 from Equations (25), we get 

det(aij) = 0; 

where 

i, j = 1,2, 3 (26) 

(~lj ipg(A 2 - 1) 
= + 2Aj, o[(c  
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:[ 12 a2j C33 + /J3 (C13 + 2c44 + Po) Aj + V3(cll + Po - P e2) + el3 
/Q /]1 

u3 p2 g 2 

oL2vl [(C44 /90 p6.2).+_ (C33 _ e44 _ C13 _ ~._.~0) .~i] 

iP9(C33 - e]3)Aj 

[(C13 + 2c44 + Po)A 2 + r q- PO - P c2 (o iaAj)  ol3j 

"/7202 (713 Po)  ]" 

Equation (26) determines the wave velocity equation for the Rayleigh waves in 
an orthotropic elastic medium under the influence of gravity, initial compression 
stress and incremental thermal stresses, in the determinantal form. 

5. Particular Cases 

We consider the following particular cases: 

Case (I): When the initial stress is absent and the medium is isotropic. 
In this case, Equation (26) takes the form 

ig(u  - x) 
2yl + a[52(y] 2 + 1) - c 2] 
23'2(1 + y2) _ 92 i(2agSyl  )2 

[c 22~2_ 3'2(1 + Y121 + ~Y-((~ ~- Ty" " ~ ' ~ ] - c 2 -  a2[~2 (yl 2 + 1 ) - c  21 + a2[~2 (yl 2 + l ) - c  2] 
(O- i~yl )  

2y2 + 
i9(y~ - 1) 

a[52(y22 + 1) - e 2] 

2")'2( 1 + Yl) -- 252 -- c2 -- g 2 i(2oLgSy2) 2 
a2152(y 2 + 1 ) -  c 2] + a2152(y22 -I- 1 ) -  c 2] 

(0 - ic~y2) [c 2 - 3'2(1 + y~) + 
9 2 

,;[a2(v 2 + 1) - d ]  
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ig(y~ - 1) 
2y3 + .[62(v32 + 1) - d] 

2')'2( 1 + Yl) -- 262 -- e2 -- 
g 2 i(2ag6y3) 2 

,~:[6:(v32 + 1 ) -e2 ]  + ,~:[62(y~ + 1 ) -  ~2] 
g2 ] 

az[52(y32 + i) - c2]J 
(O--iay3) [e 2 -- ")'2(1 -I-y3 2) + 

where 

7 2 =  A + 2 #  6 2 = / z  
P P 

)~ and # being Lame's constants, Yl, Y2, Y3 are the roots of the equation 

{( / y 6 +  3 ~'ff • -~XX 1 +  P'72,] y4 

c 2 gZ 

aX  ---~--g- + 1 -  -~-ff 1 + P72 ,] j y2 

x 1 - ~ +  ~ 2 ]  c~2,d62 =o. 

(in the isotropic case Vl = v3 = u0). 

193 

= 0  

(27) 

Case (II): When there is no coupling between the temperature and strain fields 

3 , 3 = 7 1 = 0 ,  r / -  X - 0  

and h vanishes. 
Equation (26), in this case becomes 

2Zl -b 
o~ e44 2 

c33 z2 + c13 q- 
O~ ( ( C 4 4 - - - - - -  

i p g ( z ~  - 1) 

---~c2) + (c33-c~4-c13- ~) z~] 
ipg(e33 -- Cl3)Zl 

P0 ~c2) + (c33_c44_ 
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ipg(z 2 -  1) 
2z2 + 

C33 z2 Jr- C13 + 

P02 Pa2) + ( c 3 3 - c 4 4 - c 1 3 - ~ )  z2] 
ipg(c33 -- a13)Z2 

Ot [(C44 P02.. pc2) + (c33 _ C44 - -  V13 -- ~"~0) Z2] 

= O, 

(28) 

where Zl, Z 2 are the roots of the equation 

Z 4 + 

Po 

Po 
C33 -- C44 -- C13 2 

- - -  + eo . :_ , s  
_ ~ C13 + 2C44 + PoJ z2 

PO / 96"2) (Cll + Po - P c2) - p292 a 2 c44 2 
-~ =0 .  

0L2 (C33--C44--C13---~) (c13 + 2c44 + P0) 

In the absence of initial stress and when the medium is isotropic, Equation (28) 
takes the form 

i9(V12 - l) 2(v2Z + 1) - 252 + a[52(V22 + 1 ) - c  2] 

i9(V22-1) ] [ 
a[52(V22 + 1 ) - c  2] 72( V12 + 1)-252 + 

2ig52V1 ] 
oL[52(V12 + 1)-c2]  ' ' 

(29) 

where V1 and V2 are the roots of the equation 

V 4 Jr- [2 72 92 = 0. 
a272~ 2 

Case III: If the influence of gravity field is neglected. 
In this case, putting g = 0 in Equations (16) and (17), one can obtain 

f(x3)  = Ale -ic~lx3 + A2e -ia~2x3, 

h(x3) = B3e -ia~3x3, 
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where ~1, ~2 are the roots of the equation 

C13 ~ ~C44 7}7 Po]  - ~XX 1 + c13 -Jr- 2c44 + eo,] 

[ ~ !  + Po - Pc 2 ic Cll + Po - PC 2 + X/'IO] 
+ Lc13 ~2 - Ss  - a x  ~ 3 ~  2--~--Po J = 0, 

2 C Po ( pc-44+-T I 
. . . . . . . .  P o  �9 

195 

The relations (21) and (23), in this case, reduced to 

r = (A1 e -ia~lx3 + A2e -ia~zz3)e -ia(zl-ct), 

~b = B3 eia( (3x3-xl +et ) , (30) 

T = ~2 {[(pc2 - c l 1  - Co) - (~13 + 2~44 + e o ) ~ ] A ~ }  
/'1 

x exp[ia(zl - ~jx3 - ct)], j = 1,2 (only). 

In view of Equations (24), (30) and eliminating the constants A1, A2,/33, we get 
the frequency equation in the form 

2~1 

[C13 "~- /'3 (C13 -Jr- 2c44 + PO)] ~1 z + CI3-  V3(P C2-  C l l -  No) 
k 1/1 J /'1 
(0 - i ~ l ) [ O d  - c l l  - Po - (~13 + 2~44 + Po)~I 2] 

2~2 

[C33+ /'3(C13-+-2C44-Jr-P0)] ~ 2 -+c 1 3 -  / ' 3 ( p c ' 2 - c 1 1 - P o )  
l'1 /'1 

(O-ic~2)~oc 2 - e l l -  PO-  (c13 + 2c44 + Po)~22] 

(~2-  1) I 
C33~ 2 + C13 = 0. (31) 
0 
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Where the medium is isotropic, Equation (30) becomes 

2~1 
(2/9"72 + PO)(~ 2 + 1) - p(c  2 + 262) 
(0 - ice{l)[pc 2 - PO -- (/9,,/2 + p0)(~2 + 1)] 

2{2 
(2p") '2 + PO)({ 2 + 1) - p ( c  2 + 262) 
(0 - i a { 2 ) [ p e  2 - Po - (P'72 + Po)({ 2 + 1)] 

(~2 _ 1) 
p,y2~2 + p(72 _ 262) 
0 

= O, (32) 

where ~I, ~2 are the roots of the equation 

,/4+ 2 ~ 2 + p  ~ ~x \ ~ 2 + p o  + 1 ~ 2 + p  ~ 

iC 1 ---- O, 
a X  try2 + Po ,] 

while 

P0 1 . 

2 

C a s e  IV:  When the initial stress is absent, there is no coupling between the tem- 
peratue and strain field and the influence of gravity field is neglected. 

Equation (26), in this case, simplifies to 

2 ( c 3 3 _ C l l )  [ (  p r  ~ ( p _ c . . ~ . . c 4 4  ) ] 1 / 2  
[ \ e13  -(- 2e44] kr -- e44 -- c13 

[ _1] ] 
= e 3 3 - - c 4 4 - - e 1 3  [ e13q-2-c~  -1-c13 �9 

(33) 

In the isotropic case, Equation (32) takes the form 

4[(1-~---g)  ( 1 - ~ - - - g ) l l / 2 = ( 2 - ~ - - g )  (34) 
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