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Abstract. Planning time-optimal motions has been a major focus of research in 
robotics. In this paper we consider the following problem: given an object in 
two-dimensional physical space, an initial point, and a final point, plan a time-optimal 
obstacle-avoiding motion for this object subject to bounds on the velocity and 
acceleration of the object. We give the first algorithm which solves the problem 
exactly in the case where the velocity and acceleration bounds are given in the L~ 
norm. We further prove the following important results: a tracking lemma and a 
loop-elimination theorem, both of which are applicable to the case of arbitrary norms. 
The latter result implies that, with or without obstacles, a path which intersects itself 
can be replaced by one which does not do so and which takes time less than or equal 
to that taken by the original path. 

1. Introduction 

Consider  the following problem: We are given an object in physical space, an 
initial point,  and a final point. We have to plan a mot ion  for this object, through 
physical space, avoiding obstacles present therein. Additionally,  the mot ion  should 
respect certain other constraints,  such as given bounds  on the velocity and  
acceleration. Depending  on the constraints  involved, we can therefore define a 
broad class of problems. Kinodynamic planning deals with synthesizing robot  
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motions subject to both kinematic constraints (such as obstacles) and dynamic 
constraints (such as bounds on the acceleration and velocity). 

A long-standing open problem in robotics has been that of devising algorithms 
for generating time-optimal motions under kinodynamic constraints. This problem 
has been considered previously in the literature and approximation algorithms 
have been provided for the two- and three-dimensional cases [CDRX], [JHCP] 
but, with the exception of the one-dimensional case [O], no exact algorithms have 
been given. In this paper we provide the first exact algorithm for time-optimal 
kinodynamic motion planning in the two-dimensional case. 

2. The Problem Statement  

Consider two-dimensional physical space, i.e., 9~ 2, with polygonal obstacles. A 
point mass must be moved from a specified start position and velocity S = (s, ~) 
to an end position and velocity F = (f, f) avoiding the obstacles. The point mass 
is moved by the application of command accelerations (via command forces). 
Denote the velocity and acceleration of the point mass over time t by v(t) and a(t), 
respectively. The motion is subject to dynamic constraints in the form of upper 
bounds on the magnitude of the velocity and acceleration in some given norm. 
That is, 

IIv(t)lE ~< Vrnax (1) 

and 

Ila(t)[I ~< amax- (2) 

In this paper we consider the L~ case, though we also provide partial results for 
arbitrary norms. The Lo~ case models Cartesian robots such as RobotWorld TM. 
Let us denote by C, the physical space in which the object moves. Let 0 _ C be 
the obstacle space, i.e., the space occupied by the polygonal obstacles, and let 
F __%_ C be the free space. We assume that the obstacle space is specified as an 
arrangement of n vertices with rational coordinates which are joined together by 
edges. Let CP denote the phase psace which is isomorphic to N*. A point Q in 
CP is a pair (q,/l) corresponding to position and velocity. Similarly, let OP denote 
the phase obstacle space corresponding to forbidden positions and velocities, and 
let FP denote the phase free space. 

In general, a kinodynamic problem is given by a tuple (O, a . . . .  v . . . .  S, F). Let 
a: [0, a] ~ 9~ 2 be some command acceleration where [0, a] is an interval in time. 
Denote by p: [0, a] ~ C the path in physical space, and by F: [0, a ] -~  CP the 
trajectory in phase space, corresponding to this acceleration. 

Then, a solution to the problem (0, a . . . .  v . . . .  s, f) is a command acceleration 
a: [0, a] ~ ~R z such that (1) and (2) are satisfied and F([0, a])=_ FP, F(0)=  S, 
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F(a) = F. The time of solution is a. A time-optimal solution to the given problem 
is a solution such that the time is minimized. 

3. Previous Results 

The one-dimensional case is studied in [O]. The problem solved there is planning 
the motion of a particle moving on the real line such that, given two "pursuit" 
functions f ( t )  and 9(t), the position function, say x(t), satisfies f ( t )  <_ x(t) <_ ~(t) for 
all t. In addition, the motion must obey a bound on the acceleration. A polynomial- 
time exact algorithm is provided for this problem. In the three-dimensional case, 
finding an exact solution is known to be NP-hard [CR]. Not much is known 
about lower bounds for finding an exact solution in the two-dimensional case. 

There is an extensive literature on time-optimal trajectory planning subject to 
different constraints. One focus has been to determine the time-optimal control 
for a manipulator moving along a given path [BDG],  [SM]. Other work attempts 
to characterize the time-optimal solutions analytically [H], [S]. Several approx- 
imation algorithms have been proposed for time-optimal motion planning. Sahar 
and Hollerbach [SH] and Shiller and Dubowsky [SD] provide approximation 
algorithms for robots with several degrees of freedom and full dynamics. These 
approaches use grid methods to compute approximate solutions but they do not 
bound the goodness of the approximation. Further, these algorithms run in time 
exponential in the number of grid points. The first polynomial-time approximation 
algorithm for the two- and three-dimensional cases was provided in [CDRX]. 
More specifically, they provide an algorithm which finds a "safe" trajectory which 
takes time (1 + e) times the time for an optimal trajectory. The trajectory is safe 
in the sense that there exists a " tube" of a certain size (the radius being a function 
of the particle velocity) around the trajectory which does not pass through 
obstacle space. The algorithm runs in time which is polynomial in e-1 and in n, 
the complexity of the input. Donald and Xavier [DX] provide an algorithm for 
this problem with an improved running time. Jacobs et al. [JHCP]  give the first 
algorithm for generating near time-optimal trajectories for an open-kinematic- 
chain manipulator with guaranteed bounds on the closeness of the approximation. 
The time and space required is polynomial in the desired accuracy of approxima- 
tion. The problem of finding time-optimal motions for a mobile robot subject to 
nonholonomic constraints is considered in [JRL]. 

There are several other interesting variations on the standard problem stated 
in the previous section, some of which have been considered in the literature. One 
such problem is to give an algorithm for determining the shortest bounded 
curvature path in the presence of obstacles (without any dynamic constraints). 
Fortune and Wilfong [FW] address this problem in the two-dimensional case. 
They provide an exact algorithm which solves the reachability problem, i.e., it 
determines if there exists a path between two points which obeys the given 
constraints but it does not generate the path. Their algorithm runs in time and 
space exponential in the complexity of the polygonal arrangement. An approxima- 
tion algorithm for generating a bounded-curvature path is provided in [J]. Other 
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work related to trajectory planning subject to nonholonomic constraints includes 
IN] and [LCH]. 

4. Statement  of Results and Overview of  Approach 

In this paper we give the first algorithm to generate an e x a c t  time-optimal solution 
to the two-dimensional problem (O, a . . . .  v . . . .  S, F) where S = (s, ~)= (s, 0) and 
F = (f, f) = (f, 0) (i.e., the object starts and ends at rest). The velocity and accelera- 
tion are assumed to be bounded in the L~ norm. We also provide partial results 
for arbitrary norms, in particular the L 2 norm. The algorithm requires space which 
is polynomial in the input (i.e., PSPACE) and runs in exponential time. 

Let us first attempt to get an intuitive feel for the problem. In general, the 
time-optimal trajectory from one point to another will have the shape shown in 
Fig. 1. As shown there, the trajectory will be made up of series of obstacle contacts 
connected by segments which do not touch the obstacles. These segments (includ- 
ing their start and end points, which touch the obsstacles) are necessarily optimal 
trajectories between the states (position and velocity) at the start and end points 

Start 

Finish 

Fig. 1. A general trajectory. 
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of the segment. Let us suppose that given two such states in phase space, we can 
describe the exact form of the optimal segment between the two. Let us further 
suppose that we know the number of contact points in the time-optimal trajectory 
(but not the values of the positions and velocities at the contact points). We can 
now imagine using some kind of search technique using the positions and velocities 
at the contact points as variables, which we can instantiate with values, to find 
out the time-optimal trajectory. 

The approach described rests strongly on three suppositions: The first is that 
we can describe the optimal path between two states in the absence of obstacles. 
We show that this is indeed possible and that the path can be described in the 
form of boolean expressions of polynomial inequalities. 

Second and most important is the assumption that we know an upper bound 
on the number of contact points in the time-optimal trajectory. It is entirely 
possible, a priori, for a time-optimal trajectory to contain an arbitrary number of 
loops in the path it generates. In that case, our approach would fail since even if 
we found the optimal trajectory with a certain number of contacts, it would be 
possible that adding more contacts would give us trajectories which take less time. 
We prove that this is not possible; a time-optimal trajectory which visits the same 
vertex or edge of the configuration more than once can be replaced by one which 
visits the particular vertex or edge only once. It then follows that a time-optimal 
trajectory comprises a (known) bounded number of segments (or less) and we can 
then search over all trajectories which contain that number of segments (or less). 

The final assumption is that we can do the search over phase space for the 
optimal trajectory. We show that this is possible using algorithms for the theory 
of the reals. In order to use the theory of the reals, however, it is important that 
we can describe the segments using boolean expressions involving polynomial 
inequalities. As mentioned above, we show that the segments can indeed be 
described as such. 

In light of the above discussion, we can summarize our approach as follows: 

�9 We first define and characterize, in the case of the L~ norm, a certain class 
of solutions which we call the canonical solutions, which satisfy certain 
homotopy properties. The canonical solutions are made up of segments which 
can be described using polynomial inequalities. 

�9 Then we prove a tracking lemma which provides bounds on the time 
difference between a given trajectory and (a slower) one which tracks it. This 
lemma is applicable to arbitrary norms and is of independent interest. 

�9 We then prove the Loop-Elimination Theorem which shows that any 
solution which generates a self-intersecting path can be replaced by one which 
does not give rise to a self-intersecting path. This theorem too applies to 
arbitrary norms. 

�9 Next we show that there exists a canonical solution which gives rise to a 
non-self-intersecting path and which is time-optimal. 

�9 Finally we show how to use the theory of the reals (with a bounded number 
of quantifier alternations) to obtain the canonical solution and hence the 
associated trajectory. 
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Fig. 2. T ime-op t imal  velocity and  accelera t ion in are dimension.  

5. The Canonical Solutions 

Let us first consider the one-dimensional problem: If we do not have a bound on 
the velocity, it can easily be seen that the fastest way to get from a point s with 
velocity ~ to another point f with velocity f is to apply a "bang-bang"  command 
acceleration as shown in Fig. 2. Now consider the motion of the given object in 
two-dimensional physical space without the presence of obstacles, where the 
acceleration is bounded under the L~ norm. Suppose the particle is to be moved 
from a point S = (s, ~) to F = (f, i'). Since the velocity and acceleration are bounded 
in the L~ norm, the bounds in the x and y directions are decoupled. We could 
then treat the two-dimensional problem as two one-dimensional problems and 
apply bang-bang accelerations in both directions. However, in general, the time- 
optimal motion in one of the directions takes more time than the other. We refer 
to that direction as the saturated direction. Assume that the saturated direction is 
the x direction. Then, as shown in Fig. 3, we can apply a bang-bang acceleration 
in the ~ direction. Since the time-optimal motion in the y direction takes time at 
most -.qual to that in the x direction, it follows that we can arrange the velocity 
profile in the y direction in a triple-bang fashion as shown in Fig. 3 such that the 

! 
t l  t4  

x-ve loc i ty  

t i m e  
t2. 13 t 4  

y-vel,:x:ity 

t ime  

xoscce lc ra t ion  

Fig. 3. 
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y - a c c e l e r a t i o n  

Canonical motion between two points. 

t ime  
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area under the velocity curve is exactly the distance to be traversed in the y 
direction. Since there is only one posit ion of the middle segment of the velocity 
profile in the y direction which corresponds  to the right y distance, the mot ion 
thus obta ined is uniquely specified. Let the velocity profiles in the x and y 
directions have the g.eneral shape shown in Fig. 3. Let s = (Sx, sy), ~ = (~,  ~y), 
f = (f~, fy), and i" = (fx, fy). For  t ime t < t~, the equat ions for the path described 
in the x and y directions are given by 

1 2 
X = S x + S x t  + gamax t  (3) 

and 

1 2 
y = sy + ~yt  + ~amax t  . (4) 

Similarly, for tl -< t < t2, we have 

x 2 amax(t tx)2 X = s x + ,~x t + ~2amax/ - -  (5) 

and y is given by (4). For  t2 _< t < t3, x is given by (5) and 

1 2 amax(t /2)2. y = Sy + sy t  + ~ama xt  - -  

Finally, for t > t3, x is given by (5) and 

1 2 
y = sy + 2 J r t  - -  ~y t  3 - -  2amaxt  q- amax((t - -  t3) 2 - -  (t - -  t2)2). (6) 

If we let sf  - s x = Ax > 0, we get 

Sx 1 X/~ + f~ 
t I -- + - -  -- + amaxAx. (7) 

area x area x 2 

We can obtain similar expressions for t 2 and t 3. Thus, given the initial and final 
posit ions and velocities of a canonical  segment we can write parametr ized  
expressions (with the posit ions and velocities as indeterminates)  describing the 
parabol ic  pieces which comprise  the path.  The pa ramete r  we use is t ime t. In 
Section 8 we show how we can use such expressions to write predicates which 
enable us to generate  the opt imal  trajectory. The above analysis holds for the type 
of velocity profiles shown in Fig. 3. We can get different types of velocity profiles 
depending on the relative values of  the velocities as shown in Fig. 4. For  each 
case we can obtain  the extremal  t ime instants as above thereby giving us similar 
expressions which describe the corresponding path. 

The previous discussion assumed that  there was no bound  on the velocity of 
the particle. If we have a bound  on the velocity then the mot ion  in the saturated 
direction would, in general, appear  as shown in Fig. 5(a). Similarly, the mot ion  in 
the unsa tura ted  direction would have the general form shown in Fig. 5(b). We can 
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Fig. 4. Other types of velocity profiles. 

then determine the extremal  t ime instances in the same manner  as before and 
obtain  expressions for the path.  In the rest of this paper  we assume no bound on 
the velocity; the a rguments  given can easily be modified to deal with the case of 
bounded  velocity. 

Call a point,  such as t' in Fig. 2, where the acceleration changes direction a 
switch. N o w  consider the mot ion  of the object through physical space with 
obstacles. As the object moves  f rom S to F, the path  might touch vertices or edges 
of the obstacle space. We call such points  on the path  (or on the trajectory) contact 
points and refer to the por t ion of a path  (or trajectory) between two consecutive 
contact  points  as a segment of the pa th  (or trajectory). For  the sake of completeness 
we also include the start  and finish points  of the trajectory as contact  points. If 
the two consecutive contact  points  are z and z', we denote the segment between 
them by z, z'. Consider  a segment of a pa th  where the c o m m a n d  acceleration in 
both  the x and y directions is bang-bang  and the mot ion  is saturated in at least 
one direction. If the velocity profile is such that  it is sa turated in at least one 
direction and is a r ranged in the unsa tura ted  direction as shown in Fig. 3, then we 
call the segment a canonical segment. Finally, we have 

Definition 1. Let a: [0, b] --, ~ 2  be a solution to (i.e., the c o m m a n d  acceleration 
for) a given problem (O, a . . . .  v . . . .  S, F). We say that  this solution is canonical if 
it is made  up of a finite number  of canonical  segments. 

Thus,  equivalently, a solution is canonical  if it is made  up of a finite number  
of constant  sa turated acceleration steps. 

i 

tl 

v ~  

13 

x-velocity 
(a) 

Fig. 5. 
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Canonical motion with velocity bound. 
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5.1. The Homotopy Property of  the Canonical Solutions 

We now prove an important property of the canonical solutions which we will 
need in Section 7 to prove the existence of time-optimal canonical solutions. 
Assume that the physical space has no obstacles. As shown above, the canonical 
solution between two points in CP is then uniquely defined. If Q and R are two 
points in CP, then denote the canonical solution between Q and R by aQR and 
the corresponding canonical trajectory and path by FoR and PeR, respectively. 

Lemma 1. Let Q, R~, and R 2 be three points in CP. Then PoR~ is homotopic to 
PQR2 and FOR , is homotopic to FOR ~. 

Thus, there exists a continuous deformation of one path to another (and similarly 
of one trajectory to another). Or, in other words, the position and velocity are 
continuous functions of the end-point position and velocity. 

Proof. We show that if the end-point position and velocity are varied contin- 
uously, at each step we obtain a continuous deformation of the path we started 
with. Let R e CP denote the end point at any intermediate step of the deformation, 
i.e., R changes continuously from R1 to R2. There are essentially two cases: in the 
first, the saturated direction remains unchanged as R is changed. The assertion 
then follows from the fact that the switch points tl, t2, t3, and t 4 as obtained 
above are continuous functions of the end-point position and velocity and hence 
change continuously as the R is changed continuously. Hence, the x and y 
displacements and the velocities in the two directions at any instant change 
continuously with R. This means the path and trajectory obtained at each instant 
change continuously. On the other hand, if the saturated direction changes, it is 
possible that the path does not change continuously but rather jumps around. 
However, the saturated direction changes if and only if two of the switch points 
in the unsaturated direction merge. But this can only happen in a continuous 
fashion since the switch points are continuous functions of the end-point position 
and velocity. [] 

The importance of this temma lies in the fact that it enables us to deform 
continuously a given trajectory into a canonical one as will be seen in Section 7. 

6. The Loop-Elimination Theorem 

In this section we show that any solution path which contains a loop, or, more 
generally, intersects itself, can be replaced by one which does not intersect itself 
and which takes time which is less than or equal to that taken by the original 
trajectory. This enables us to restrict attention to loop-free paths in our search 
for an optimal trajectory using the theory of the reals. 
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6. I. A Trackinq Lemma 

In order  to prove the Loop-El imina t ion  Theorem,  we prove a t racking lemma. 
The essence of this l emma is as follows: given any trajectory in free space, we show 
that  there exists another  trajectory start ing at rest, which follows the same path  
in physical space, such that  the time difference between the two trajectories at any 
given point  on the path  is bounded  from above. This is done by establishing an 
invariant  relating the two trajectories which holds at all points along the path. 
We prove this l emma for any' norm and in part icular  for the L~, and L 2 norms. 
Though  we use this l emma to prove the Loop-El imina t ion  Theorem,  it is of 
independent  interest since it provides a simple and elegant character izat ion of the 
relat ionship between the original trajectory and the t racking trajectory. 

Notation.  Let a: [0, b] ---, 912 be a solution to some given problem. Denote  by 
~(s) the arc-parametr ized  velocity of the trajectory corresponding to this solution, 
where s denotes arc distance traversed along the path. Let ~(s) denote  the 
arc-parametr ized acceleration and let ~(s) denote  the a rc-parametr ized  path. Let 
t(s) denote the time taken by the solution to traverse a distance of s along the 
path. Let II " I] denote  any norm under  which the bound on the acceleration is given. 

We observe that  any norm gives rise to an equinormal  con tour  which has the 
following properties:  the contour  is convex and symmetr ical  about  the origin. 

L e m m a  2 (Tracking Lemma).  Consider a command acceleration al:[0,  b l ]  ~ 9t 2. 
Then there exists a command acceleration a2 such that: 

1. v2(0 ) = 0 (the second trajectory starts at rest). 
2. ~(s) is nonincreasin9, where ~)(s) = /IAv(s)ll + At(s)a . . . .  A~(s) = ~j(s) - v2, and 

At(s) = t2(s ) - tl(s ). 
3. ~l(s) = ~2(s) (i.e., the paths described by the two trajectories are the same). 

Proof. We want  to find a c o m m a n d  acceleration which will satisfy condit ions 
1-3 in the s ta tement  of  the lemma. O u r  strategy is simple: we follow the original 
pa th  and at every point  on the pa th  we apply  the m a x i m u m  possible acceleration 
in the tangential  direction till we (possibly) encounter  a point  where the velocity 
in the second case equals that  in the first case. F r o m  this point  on, we apply the 
same acceleration as that  in the original trajectory. 

Consider  Fig. 6 representing the accelerations and velocities at some point  s 
on the two paths.  The  bounding  closed curve represents the equinormal  contour  
corresponding to ama x of the n o r m  under  consideration.  We have scaled the velocity 
vl ,so that it has the same norm value as ama x. Both mot ions  give rise to a centripetal  
acceleration of magni tude  II~l(s)ll2/p(s)in the original t rajectory and 11W'2(s)ll2/p(s) 
in the second case. Here  p(s) is the radius of  curvature  at s. Since the t racking 
t rajectory is constrained to follow the original one at each point  a long its path, 
the centripetal  accelerat ion for the t racking t rajectory has to be in the same 
direction as that  of the original trajectory. Both accelerations are perpendicular  
to the velocity direction and point  toward  the ins tantaneous  center of rotation.  
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Fig. 6 

We show these accelerations "~i and fi~2 in Fig, 6. At every point  the velocity in 
the second case is at most  that  in the first case. Thus the centripetal acceleration 
in the t racking t rajectory is at most  that  in the original trajectory. The centripetal 
acceleration for the t racking trajectory is constrained in direction and magni tude  
as described above;  however,  once the centripetal acceleration is fixed we are free 
to choose the magni tude  of the tangential  acceleration subject to the norm 
constraints.  We select the tangential  acceleration fit2(s) applied to be the m a x i m u m  
possible in the tangential  direction as shown in Fig. 6. The acceleration fiz(S) is 
then obtained as a vector  sum of the normal  (centripetal) and tangential  accelera- 
tions. Since we are following the original pa th  at each point  and since we start  
with a zero velocity, condit ions 1 and 3 in the l emma are satisfied. 

We now prove that  condit ion 2 is also satisfied. We show that  for two points 
with arc distance s and s + 6s, where 6s is sufficiently small, the difference 
~O(s) = ~)(s + ,Ss) - ~)(s) is nonpositive.  We have 

~ ( s )  = ~ltm~(s)ll + amax~At(s ). 

The general relat ionship between ~z(s), ~z(s), ~ = ~q(s + 6s), and v'2 = ~2(s + 6s) is 
as shown in Fig. 7. Since ~'~ and ~ are in the same direction, 

IIA~(s + ~s)Jl = I1~1( - I[~11. 

Similarly, 



472 J. Canny,  A. Rege, and J. Reif 

vl v~ 

alfit  I v~ 

Fig. 7 

and 

o A t ( s )  = t2(s  q- 6s)  - t l ( S  + 6s)  - t2 (s  ) -+- t l (S  ) 

= ( t2 ( s  + 6s)  - t2(s))  - ( t , ( s  + 6s)  - t l (S))  

o r  

~ A t ( s )  = ~ t 2 ( s  ) - 6tl(s ). 

Thus, 

6 ~ s )  = ( l t ~ l l  - I I ~ t l )  - ( l l ~ l l  - I1%tl) + amax(6t2(s) - -  6t~(s)) 

o r  

60(S)  = ( l t ~  [[ - -  HV, II) - -  (llV211 - -  ItV2[I) + amax(6t2(s)  - -  6 t l (S ) ) .  (8)  

We can assume, without loss of generality, the general picture shown in Fig. 7. 
As 6s approaches 0, the difference ( l l ~ l l -  It~111) in the norms of vl and ~ is 
measured in the direction perpendicular to the norm contour at ~. As shown in 
Fig. 8, the maximum change in ]tvlt] occurs in this direction. Since, in general, fi~ 
is applied in another direction, we do not achieve the maximum change. The 
discrepancy between the two can be measured by taking the difference between 
the maximum change in velocity and the projection of the given change in velocity, 
i~6t1 in the direction of the maximum change, as shown in Fig. 8. As 6s --* 0, this 
measures the actual discrepancy. Similarly, we can get the discrepancy in the ~2 
case. Since the direction of ~6tl  and .~ is the same (as is that of fi26t2 and ~), 
we can translate the discrepancies in velocities to those in accelerations as shown 
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in Fig. 6. As can be seen from Fig. 6, the discrepancies, given by ~t and ~2, are 
proportional to the centripetal accelerations. The actual discrepancy for a2 has 
value at most ~2 shown in Fig. 6 since, due to the convexity of the norm, the point 
p lies above the point q. Therefore, we have 

E2 - -  U2 ' 
(9) 

where Vl and v2 denote the magnitude of the corresponding velocities in the L 2 
norm. Now, in (8) we have (11~',11- [1~,11)= (amax- el)6tl and (11~iII- I1%11)= 
( a m a x  - -  e2)&2. Combining with (9) and rearranging we get 

6 ~ ( S )  = / 3 2 6 t  2 - -  g 1 6 t l  

= ~ 1 ( ~ 6 t 2 -  ~16tl 
\V l /  

= ~,(~,6t~" v~ -- v~6tl) 
(10) 

As 6s ~ O, we have v 1 = (6s/&O and v 2 = ( 6 s / 3 t 2 )  and therefore vl6tl = v2(~t 2. 

Therefore, 

/ /V2 - -  Vl" ~ 
(11) 

Since [ 2 ~/)1, t~(S) ~ 0 as 6s ~ O. In other words, 68(s)/6s is nonpositive, i.e., ~(s) 
is nonincreasing. []  
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6.2. A Lower Bound on the Loop Time 

We now prove a lower bound on the time spend in any loop by the object as a 
function of the loop entry and exit velocities. 

Lemma 3. Let a: [0, b] ~ 9~ 2 be a command acceleration such that ~: [0,/]  --* C, 
the corresponding arc-parametrized path, has the property ~(c) = ~(d) (i.e., the path 
contains a loop). Then the time taken by the corresponding trajectory is at least 

IF~(c)lr + II~(d~ll 

amax 

Proof. We can assume, without loss of generality, the picture in Figure 9. Here, 
c denotes the entry point of the loop and d the exit point. Figure 10 shows the 
velocity vectors v(c) = ~(c) and v(d) = ~(d) corresponding to the two points c and 
d with the norm contour of the given norm. Only the norm contour corresponding 
to the norm value of v(c) is shown for the sake of clarity. As the object traverses 
the loop the velocity moves in a clockwise manner. Our  aim is to split the motion 
along the loop into two nonoverlapping pieces with a lower bound on the time 
taken by each piece. To that end, consider the tangent to the norm contour at the 
point a corresponding to the velocity v(c). Consider the projection v.(c) of v(c) 
along the direction perpendicular to the tangent at a. Define point p in Fig. 9 to 
be given by the velocity direction in the loop parallel to the tangent at a in Fig. 

v(c) 

P 

q 

r 

v(d) 

Fig. 9 



An Exact Algorithm for Kinodynamic Planning in the Plane 475 

,(c) 

b L........,--"'~v(d ) 

v(q), 

Fig. !0 

10. This velocity is shown as v(p) in Fig. 10. When the object reaches this point 
in the loop the projection v.(c) is exactly zero. W show that the time required 
between the point c and the point p is at least II~,(c)ll/amax. At each instant, as the 
object traverses the loop between c and p, the maximum rate of decrease of the 
projection of v along the v.(c) direction is obtained by applying maximum 
acceleration along the -v(c)  direction (denote this projection by a.). This can be 
seen as follows: Suppose we apply the acceleration in some other direction. Because 
of the convexity of the norm contour, the magnitude of the projection of this 
acceleration applied in the direction opposite to that of v.(c) is less than that of 
the projection a.. This is true independent of the position in the loop the object 
is in. Hence, at each step, to obtain the fastest decrease in the projection of v in 
v.(c) direction, we should apply acceleration in the -v(c)  direction. 

From the above discussion, it follows that the time taken by the object to move 
from c to p in the loop has a lower bound given by the time taken to move between 
those two points with the acceleration held fixed in the -v(c)  firection. For this 
motion we have, since the acceleration is applied in the -v(c)  direction at all 
times, the time taken to achieve v. = 0 is given by 

IIv(c)lL 

amax 
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Similarly, we can define a point q in the loop such that the (reverse) motion from 
d to q takes time at least Hv(d)[I/amax. Here the point q is defined (Fig. 9), as point 
p was, by the velocity in the direction parallel to the tangent to the contour at b 
corresponding to the velocity v(d) (Fig. 10). However, it is possible a priori for the 
intervals corresponding to the motions from c to p and from q to d to overlap. 
This would mean that q appeared earlier in the loop than p. This is not possible 
due to the following three observations: the norm contour is convex, it is 
symmetric, and lastly the loop involves a rotation of at least 180 ~ From symmetry 
the tangent direction to the norm contour at the point b corresponding to the 
velocity vector -v(d)  as shown in Fig. 10 is the same as that corresponding to 
the vector v(d). Since the loop involves a rotation of at least 180 ~ the vector -v(d)  
lies within an angle < 180 ~ in the clockwise direction from the vector v(c). Finally, 
from convexity of the norm contour and the previous observations it follows that 
the tangent direction corresponding to -v(d)  makes an angle greater than that 
corresponding to v(c). Since the points p and q are defined by these tangent 
directions (respectively), it follows that q cannot appear earlier than p in the loop. 
In the limiting case, the object leaves the loop in a direction exactly opposite to 
the entry direction. In this case the two tangent directions coincide as do the points 
p and q. We can therefore conclude that the two intervals are disjoint and the 
lemma follows. [] 

6, 3. Proo f  o f  the Loop-Elimination Theorem 

We are now ready to prove the Loop-Elimination Theorem in the case of arbitrary 
norms: 

Theorem 1. Consider a solution al : [0,  ba] - -~R 2 to some given problem 
(O, a . . . .  v . . . .  S, F) where ~ = f = O. Let  Pi: [-0, ll] ~ C be the arc-parametrized path 
corresponding to this solution. I f  there exist c, d ~ [-0, ll], c < d, such that ~1(c) = 
pl(cO (i.e., the path intersects itself), then there exists a solution a2: [0, b2] ~ 9~ 2 with 
corresponding path P2: [0, 12] ~ C such that: 

1. b 2 ~ b r  
2. There do not exist  points c' and d' such that c' v~ d' and ~2(c') = ~2(d'), (i.e., 

the path does not intersect itself). 

Proof. The idea of the proof  is as follows: We construct the new trajectory by 
moving along the path of the original trajectory till we come to rest at the loop 
intersection point. At this point, we ignore the loop and continue along the rest 
of the path. We show that coming to a stop at the intersection does not penalize 
us and that the new trajectory takes time which is less than or equal to that taken 
by the original one. 

Consider the portion of the (arc-parametrized) trajectory from d to ll. By 
Lemma 1 above, there exists a solution a2 defined on [d, ll] such that ~2(s) = ~l(s) 
and ~(s) is nonincreasing in this interval and ~2(d) = 0. Similarly, we can define a2 
on the interval [0, c] by applying the above lemma, in the reverse direction, from 



An Exact Algorithm for Kinodynamic Planning in the Plane 477 

c to 0. Now,  G(c) = 0 and ~2(d) = 0. And c and d cor respond to the same point  
in C. So we can now define the new acceleration fi2 as stated with c = d. If there 
are any more  loops or self-intersections, we can repeat  the construct ion to 
eliminate them. (We note that  this includes trivial loops of the kind where the 
particle just moves  back and forth across the same por t ion of the path.) Since 
both pieces consti tute a solution to and follow the path  of the original trajectory, 
the combined  pa th  is a legal path  and the combined  solution is a solution to the 
original problem.  We now show that  for each loop elimination, we get a solution 
which takes t ime less than or equal to that  of the trajectory in the previous 
iteration. 

Consider  the por t ions  of the original and the new trajectories from d to 1 r (By 
abuse of notat ion,  we use the same arc-parametr iza t ion  for this piece of both  
trajectories.) Treat  these two trajectories as complete  trajectories in themselves 
from d to 11. Thus,  e.g., At(s) measures  the time difference start ing f rom d. But 
~(d) = IIA~(d)IP + At(d)am,~. Putt ing At(d) = 0 and ~2(d) = 0, we get 0(d) = H~(d)l]. 
Similarly, we get 9(1~) = At(lOama x. In like manner ,  consider the por t ions  of the 
original and new trajectories from c to 0 in reverse arc-parametr izat ion.  We get 
O(c) = II~(c)l[ and O{0) = At(0)ama X where we abuse our  nota t ion  and denote  the 
" t ime difference" between these two segments at 0 by At(0). F rom L e m m a  1 we 
have ~(d) > ~(ll) and 0(c) > 9(0). Thus, 

Ilv,(c)]l + Ilv,(d)[I >- (At(O) + At(lO)am. x. (12) 

F r o m  L e m m a  3, we have the time taken in the loop given by 

tl(d) -- tdc  ) >_ 
[1~,(c)1[ + I/~,(d)[I 

amax 

Combin ing  this with (12) we get 

tl(d ) - tx(c ) > At(0) + At(l 0. 

Thus, the t ime taken in the loop is at least as much  as the time difference between 
the two trajectories. Ergo, we can eliminate the loop to get a new trajectory,  
without  the loop, which takes t ime less than or equal to that  taken by original 
trajectory. Repeat ing this procedure,  we obtain a faster t rajectory which has a 
pa th  which does not  intersect itself. [ ]  

7. Optimality of the Canonical Trajectory 

In this section we show that  for any p rob lem there exists a canonical  solution 
which is t ime-opt imal  

Theorem 2. Let a i : [0 ,  b l ] - - , ~  2 be an optimal solution to some problem 
(O, a . . . .  v . . . .  S, F). Then there exists an optimal solution a2 to this problem which is 
canonical and which has O(n) segments. 
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Proof. We show the existence of an optimal canonical trajectory by deforming 
the path corresponding to the given acceleration homotopically into one which is 
canonical. Starting at s, we move along the path Pl till we reach a point z which 
has the following property: assume that the trajectory from (s, 8) to (z, 2) = Z is 
canonical. Thus we get a new trajectory from S to F such that the trajectory passes 
through S and Z but such that the new trajectory has a canonical portion from 
S to Z. The point Z is extremal in the sense that the canonical path from s to z 
is tangent to a vertex or to a segment of the obstacle space but is a legal path 
through C. In other words, we "canonize" the trajectory as far as we can till it 
touches some contact point. (We refer to points in CP such as Z = (z, 2), where z 
is a contact point in C, as "contact  points.") Denote this new trajectory by Ft. It 
is possible for the path corresponding to this trajectory to go through more than 
one contact point. Let Zt be the furthest contact point down the trajectory between 
S and Z. Since the portion of the trajectory between S and Z is canonical, it follows 
that the portion between S and Z1 is a canonical segment. We now repeat the 
process with the new trajectory FI, starting at Zl to obtain another trajectory F2 
and so on. Thus, at the kth step we have a trajectory Fk and contact points Zl to 
Zk on it such that the segments Zl, Zi+l (for 1 < i _< k - 1) are canonical. Then 
we canonize the trajectory from Zk till we obtain an extremal point Z'  such that 
the trajectory from Zk to Z'  has a contact point Zk+l which is closest to Z'. 

We need to prove several things in order to complete the proof of the theorem. 
First we need to show that for any k the deformation of the trajectory Fk into 
Fk+! is continuous so as to ensure that even if the saturated direction changes, 
the trajectory obtained does not pass through obstacle space, i.e., we need to ensure 
that there exists a point Z'  such that the canonized section between Zk and Z' 
passes through a contact point Z~+t. This can be done only by ensuring that we 
deform the trajectory continuously. But this follows from Lemma 1 proved in 
Section 5.1. We showed that the position and velocity were continuous functions 
of the end-point position and velocity. At the kth step we move along the path 
continuously from Zk. We are therefore varying the position and velocity of the 
end point continuously. Accordingly, the canonical segment so obtained, starting 
at Zk, also varies continuously. Hence, we are assured that either we reach the 
final position or the segment touches a point Zk+l of obstacle space. We then 
repeat the process starting at Zk+v This ensures the validity of the above process 
of obtaining a canonical trajectory from the given one. 

Next we show that we can obtain a trajectory which has O(n) contact points 
or we can transform it into one which does. If the trajectory passes through the 
same contact point more than once, then it has a loop and by the Loop- 
Elimination Theorem we can replace it with another trajectory which does not 
pass through the same point more than once. This clearly does not affect the fact 
that the trajectory is made of canonical segments. As shown in Fig. 1 l(a), it is 
possible for the path corresponding to this new trajectory to touch the same edge 
of the obstacle space at different points. Let w and w' denote the first and last 
points which touch the same edge as shown in the Fig. l l(a). We note that the 
velocity at w' either has the same or opposite direction as that at w. We can 
therefore treat the section of the trajectory from w to w' as a one-dimensional 
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W W' / 

(a) 

W W' / 
(b) 

Fig. 11 

problem. Hence we can replace the entire section with a path running along the 
edge from w to w' as shown in Fig. l l (b)-- the  command acceleration for this 
section being bang-bang and parallel to the edge. This transformation does not 
affect the canonical nature of the trajectory since in the one-dimensional case a 
single bang-bang switch gives the optimal trajectory. If we treat only the first and 
last points along such a path (i.e., one moving along an edge) as contact points, 
we see that each edge can contribute only two contact points to the path. Other 
configurations which may arise with contacts at a given segment are treated 
similarly. Thus, the path is made up of O(n) canonical segments. 

Finally, we see that the trajectory obtained is time-optimal: for all k, Fk+l takes 
time less than or equal to that taken by Fk. This follows from the fact that in F~ 
the section from Zk to Z' is bang-bang in the constrained direction and therefore 
takes time less than or equal to that taken by F~ between the same points. The 
theorem therefore follows. [] 

8. Generating the Optimal Canonical Trajectory 

In this section we sketch the process of generating the optimal canonical trajectory. 
From the previous section we know that there exists an optimal canonical 
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trajectory from S to F which passes through at most n distinct vertices and has 
at most 2n contact points which touch edges. In this section we show how to find 
it using only a polynomial (in the input) amount  of space. We use the theory of 
the reals to that end. An expression in the first-order theory of the reals has the 
form 

O l x l " " Q . x .  P(xl . . . . .  x.), 

where each Qi is one of the quantifiers 3 or V and P(x 1 . . . . .  x~) is a quantifier-free 
boolean formula with atomic predicates of the form fj(x 1 . . . . .  x,) = 0 or 
gk(x 1 . . . . .  x~) > 0, f~ and gk being real polynomials. 

For  any two (indeterminate) points in free space, with two (indeterminate) 
velocities, we can write a collection of polynomial clauses which describe the 
canonical segment between the two points, in terms of the end-point indetermi- 
nates, as was shown in Section 5. Combining these clauses with other clauses 
which check that the segment does not pass through obstacle space, we get a 
clause Q(zi,  Zi+l, u u ti, ti+ 1) which is true iff there exists a canonical segment 
(not touching the obstacle space)joining zi and zi+j with velocities vl and vi+~ and 
at times t~ and ti+ 1, respectively. Let M denote a sequence of vertices and edges, 
i.e., M describes a possible sequence of contact points for a canonical trajectory. 
For every vertex point in S, we have two indeterminates, the velocities in the x 
and y directions. Similarly, for every edge we have first two contact points, and 
for each contact point we have two indeterminates--one is the distance along the 
edge and the other is the velocity magnitude (since we know the velocity direction 
is along the edge from the first contact point to the second one). For each point 

(whether a vertex or edge point) we represent its indeterminates by p~ e 9~ 2. Let 
Ru(zo, z3,+l, t) (where (Zo, v0) = S and (z3~+1, v3,+0 --- F) be true iff there exists a 
path of at most 3n + 1 canonical segments from S to F following the sequence 
M. We can write Ru in terms of Q as follows: 

3pO3pl' ' '3p3n+13to3tl"' '3t3n+l (-] Q(Zi, Zi+l, Vl, Vi+l, ti, ti+l) C~(t = t3n+l) ,  
i = 0  . . . . .  n 

(13) 

where the pi's denote the indeterminates corresponding to each contact point as 
mentioned above. We try every possible sequence of vertices and edges. At each 
stage we compare  a new sequence M'  with the previous best, say M, using the 
following formula: 

3t', Vt (Ru.(z o, Z3n+l  , t')) /~ (Ru(zo, Z3 n + l  , t )  ===I> (t' < t)). (14) 

We note that the number  of alternations between V's and 3's is a constant (the 
Q's each have a V but all the Q's are placed together, so there is only one 
alternation). We can therefore use Renegar's PSPACE algorithm [R] for the theory 
of reals with a bounded number of quantifier alternations. This algorithm gives 
as output a polynomial of degree 2 ~~ where N is the size of the input, such that 
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the total time and velocities of the via points are roots of this polynomial. At each 
call to the above algorithm, we only need remember the previous best sequence, 
thus we need only a polynomial amount  of space to perform this computation. 
At the end of this computation we have a polynomial which encodes the optimal 
trajectory in the form of its roots. We can now apply Neffs algorithm [-Ne] to 
this polynomial. Neffs algorithm takes as input a polynomial p of degree k with 
all coefficients with absolute values bounded above by 2" and a specified integer 

and determines all roots of the polynomial with error less than 2 ~. It runs in 
parallel time O(log3(k + m + ~)) with at most POLY(k + m + I~) number of pro- 
cessors, which also implies that it takes space which is poly-logarithmic in the 
input quantities. Thus applying Neffs algorithm to our polynomial with k = # = 
m = 2 N~ we get an exponential number of bits of the time and contact velocities 
of the optimal trajectory using a polynomial (in the input N) amount of space. 

We note that the output of Renegar's algorithm is a polynomial of exponential 
degree and size and this polynomial is the input to Neff's algorithm. However, the 
entire computation can still be carried out in PSPACE using the standard 
PSPACE simulation of two PSPACE machines interacting as above via an 
exponential-size tape, where both machines use polynomial-size work tapes. 
Therefore, we have 

Theorem 3. Under the L~ norm, the two-dimensional kinodynamic problem 
(O, a . . . .  v . . . .  S, F), where S = (s, 0) and F = (f, 0), is in PSPACE. 

8.1. Comparison with Approximation Algorithms 

Although our algorithm can supply an exact description of the minimum-time 
trajectory, i.e., a polynomial with the contact velocities and time as roots, a robot 
controller would require the numerical approximation to-the trajectory which we 
obtain using NeWs algorithm as described above. It is therefore worth comparing 
our method with numerical approximation schemes such as [CDRX] or [ JHCP]  
for the minimum-time problem. It could be argued that we could use such a 
grid-based approximation algorithm (which normally runs in polynomial time on 
a polynomially large grid) and run it on an exponentially large grid to get an 
equivalent solution. This however is not the case. There are three critical differences 
between the exact method of this paper and a numerical approximation approach: 

(i) The first difference is that the path(s) the exact method would find is (are) 
the actual minimum-time path(s) whereas the numerical approach makes 
no such guarantees; the path found by the numerical approach a in 
[CDRX] need not even be homotopic to the minimum-time path. 

(ii) The second difference is that the grid-based approach is restricted to points 
which lie on the grid and as such is limited by the resolution of the grid. 
If an exponential number of points where used, the grid algorithm would 
return points within an accuracy of a polynomial number of bits whereas 
the exact algorithm would return an exponential number of bits of the 
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contact velocities, etc., and would give a far more accurate description of 
the minimum-time trajectory in the same time. 

(iii) The exact algorithm uses only polynomial space. The grid approach would 
perform a breadth-first search on an exponential-size graph and it is not 
obvious that this can be done in PSPACE. 

9. Conclusions and Open Problems 

In this paper we gave the first algorithm for generating an exact time-optimal 
trajectory for a kinodynamic planning problem in the plane. This algorithm runs 
in PSPACE and takes exponential time. We characterized the nature of a class of 
solutions which provides us with a time-optimal solution. We proved a tracking 
lemma which is applicable to arbitrary norms. This lemma should prove to be 
useful in dealing with the different variations to this problem and is also of general 
interest since it provides bounds on the time difference between a given trajectory 
and one which tracks it. We then showed how to eliminate loops from a given 
trajectory in order to limit the number of contact points a time-optimal trajectory 
might have. Finally, we drew upon the theory of reals (with a bounded number 
of alternations between quantifiers) to obtain a time-optimal solution. Several 
questions arise almost immediately: 

1. The complexity of this problem--is it NP-hard or can it be done in 
polynomial time? 

2. Can the above algorithm be modified to handle the case of nonzero velocities 
at the beginning and end of the trajectory? 

3. Can the above approach be extended to the case of arbitrary norms, 
especially the L z norm? (See [RT] for work in this direction.) We have shown 
how to eliminate loops for arbitrary norms; the main problem now is 
characterizing the time-optimal solutions. 

4. Exact algorithms for the three-dimensional case. 

The second problem mentioned above requires further elaboration: If we allow 
for nonzero start and end velocities, it is obvious that a time-optimal trajectory 
would, in general, contain loops (e.g., the trivial case where the start and end 
position are the same but have different velocities). It seems intuitive that the 
number of loops required would be some function of the terminal velocities. Each 
loop would add an extra segment to the optimal trajectory and hence an extra 
clause to the formula describing the optimal trajectory. Thus, if the function were 
poly-logarithmic, we would only have a polynomial (in the input) number of 
clauses added to the final description and the algorithm would run as before. 
However, it is not clear at present what form this function would take. 

There are several other open problems within the broad framework of kinody- 
namic planning. One of the most interesting problems, from both theoretical and 
practical viewpoints, is that of generating time-optimal motions for nonholonomic 
systems, i.e., systems for which the dynamical constraints are not integrable I-BL]. 
Jacobs e t  al. [JRL-] consider the problem of generating time-optimal motions for 
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an Hilare-like mobile robot (i.e., a robot with two independently controlled 
wheels). The form of time-optimal trajectories for such systems, even without 
obstacles, is not known at present. As mentioned earlier, Fortune and Wilfong 
[FW] and Jacobs [J] address the problem of determining the shortest bounded 
curvature path in the plane in the presence of obstacles. However, at present, only 
an approximation algorithm is known for this problem and it would be of 
significant interest to determine the complexity of this problem and to provide an 
exact algorithm for it. Additionally, a considerable amount of work needs to be 
done to translate such results into practice. 
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