
Discrete Comput Geom 6:369 381 (1991) Discrete & Competational Geometry
,~-~ 1991 Springer-Verlag New York Inc.

A Sparse Graph Almost as Good as the Complete Graph on
Points in K Dimensions

Pravin M. Vaidya*

AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

Abstract. A set V of n points in k-dimensional space induces a complete weighted
undirected graph as follows. The points are the vertices of this graph and the weight of
an edge between any two points is the distance between the points under some Lp
metric. Let ~: < 1 be an error parameter and let k be fixed. We show how to extract in
O(n log n + E-k log(1/~,)n) time a sparse subgraph G = (V, E) of the complete graph on
V such that: (a) for any two points x, y in V, the length of the shortest path in
G between x and y is at most (1 + e,) times the distance between x and y, and
(b) IEI= O(e, kn).

1. Introduction

A set V of n points in k-dimensional space induces a complete weighted undirected
graph as follows. The points are the vertices of this graph and the weight of an edge
between any two points is the distance between the points under some Lp metric.
Note that the L~ distance between x = (x 1, x z Xk) and y = (Yl , Y2 Yk) is
given by (~ = 1 Ixi - YiIP) lip. We study the problem of compact ly representing
some of the information represented by this graph. Specifically, given a set V of n
points in k-dimensional space, we show how to extract a sparse subgraph
G = (V, E) of the complete graph on V with the following properties:

(a) Let d(x, y) denote the distance between (x, y), and DG(x, y) denote the length
of the shortest path in G between x and y. (By convention, D~(x, x) = 0.)
Then, for any pair of points x, y in V, De(x , y) < (1 + e)d(x, y).

(b) IEI = o(2k(3 + 12Cp/E)kn) where Cp = k lip for the Lp metric. Note that cp is
the length of the diagonal of a unit box in the Lp metric.

* Currently at the Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA.

370 P.M. Vaidya

Furthermore, we show how to construct G in O(nlogn+e-klog(1/~:)n)
time for fixed k. Specifically, it is shown that G can be obtained from V in
o(4kn log n + k log(k/e)4k(3 + 12Cp/~)kn) time. (Note that G can be obtained in
O(n log n) time for fixed k and e.)

To motivate the problem we briefly discuss two applications. The first applica-
tion is mentioned in [1] and concerns the design of communication networks. One
way to design a communication network on a set of n points V (in say two or three
dimensions) is to use the complete graph on V; this minimizes the transmission
distance between two points but there are ft(n z) links which could be too many.
Using G instead of the complete graph reduces the number of links to O(~-kn) at
the expense of increasing the transmission distance by a factor of (1 + e).

The second applications is in finding approximate minimum spanning trees [11]
in the complete graph on V. Note that the length of a spanning tree is the sum of the
lengths of the edges in the spanning tree, and a minimum spanning tree is a
spanning tree of minimum length. Since DG(x, y) < (1 + e)d(x, y) for a pair of
points x, y in V, it follows that there exists a spanning tree in G whose length is at
most (1 + e) times the length of a minimum spanning tree in the complete graph on
V. Thus a minimum spanning tree in G is a good approximate minimum ~panning
tree in the complete graph on V. The graph G could also be used to find quickly a
perfect matching on V whose length is close to the minimum (for details, see [10]).

The problem of approximating the complete graph on a set V of n points in the
plane has been studied in [1]. In [1] it is shown that there is a planar subgraph of
this complete graph such that the length of the shortest path in the subgraph

between any two points x and y in V is at most ~ times the euclidean distance
between x and y. Specifically, the L1 Delaunay triangulation [1], [7] of V is such a
subgraph. Note that since the subgraph is planar it has O(n) edges. In [4] a similar
result is proved about the L 2 Delaunay triangulation I-7] of V; specifically, that the
length of the shortest path between x and y in the L 2 Delaunay triangulation is at
most 5.08 times the euclidean distance between x and y. For a set of points V in the
plane the graph G described in this paper is asymptotically a better approximation
to the complete graph on V than the Delaunay triangulation, since D~(x, y) <
(1 + e)d(x, y) for any pair of points x and y in V, and any given Lp metric. Also note
that the graph G provides a good approximation to the complete graph on points
in any fixed dimensional space rather than just for the complete graph on points in
the plane, and that the Delaunay triangulation is not useful for k > 2 because it
may not be sparse. Furthermore, if e is fixed, then the time for constructing G is
asymptotically the same as the time for constructing the Delaunay triangulation of
a set of n points in the plane; the construction of each of them requires | log n)
time.

It is worth noting that the simple algorithm given below, suggested by T. Feder
and N. Nisan 1-5], will find a subgraph H of the complete graph with distance and
sparseness properties similar to those of G.

Choose a tolerance angle 0 (related to e) and process edges in increasing order of
length as follows. For each edge (x, y), if H does not contain an edge (x, z) (or
(y, z)) such that the angle zxy (or zyx) is less than 0, then add (x, y) to H.

A Sparse Graph Almost as Good as the Complete Graph 371

H has bounded degree (for fixed k) but comput ing it takes O(n 2 log n) time. The
subgraph G on the other hand can be obtained in O(n log n) time. We also note that
in [3] Clarkson describes how to extract a subgraph of the complete graph on
points in three-dimensions, with properties similar to those of G, in O(n 2) t ime; his
technique utilizes nar row cones and is quite different from ours.

In Section 2 we give some notat ion and definitions. In Section 3 we define the
graph G = (V,, E) and in Section 4 we show that G has the propert ies (a) and (b)
ment ioned at the beginning of this section. In Section 5 we describe how to extract
the graph G from the set of points V in O(n log n + ~-k log(1/e)n) time for fixed k.

2. Notation and Definitions

We give some nota t ion useful in defining the graph G. We define a box b to be the
product J1 x Jz x ... x Jk of k intervals (either closed, semiclosed, or open), or,
equivalently, the set of those points x = (x l , x2 Xk) such that xl lies in the
interval Ji, for i = 1 k. A box is a cubical box iff all the k intervals defining the
box are of identical length. The size of cubical box b equals the length of each of the
intervals defining b and is denoted by size(b). Note that the m a x i m u m Lp distance
between a pair of points in a cubical box b is cp size(b). We only deal with cubical
boxes in this paper and box means cubical box. The centre O(b) of a box b is defined
to be the point (q; l(b) , ~k(b)) where Oi(b) is the centre of the ith interval defining
the box b, for i = 1 k. Let hi(b) be the hyperplane defined by hi(b) = {x: xi =
Oi(b)}, let L(hi(b)) be the left open half-space {x: x~ < 0~(b)}, and let R(hi(b)) be the
right closed half-space {x: xi > 0i(b)}.

Let Immediate-successors(b) be the set of boxes defined by

Immediate-Successors(b)

= {b': b' = b c~ fz c~...C~Jk , where Jl = L(hi(b)) or Jl = R(hi(b)), 1 <_ i <__ k}.

Immediate-Successors(b) is the set of 2 k boxes obta ined upon cutting up b by k
mutual ly or thogona l hyperplanes passing through the center of b, each plane being
perpendicular to one of the k coordinate axes.

Cor responding to a cubical box b, let shrunk(b) be a cubical box such that:

1. If lb c~ V[_< 1, then shrunk(b) = b c~ V.
2. If I b c~ V t -> 2, then (i) shrunk(b) c_ b, (ii) shrunk(b) c~ V = b c~ V, and (iii) the

m a x i m u m L~ distance between a pair of points in shrunk(b) n V equals the
size of shrunk(b).

Intuitively, obtaining shrunk(b) corresponds to shrinking b as much as possible
without destroying its cubical shape or forcing outside any point in V that is within
it.

For a cubical box b such that t b c~ V I > 2, let Successors(b) be the set of boxes
defined as

Successors(b) = {b': b' = shrunk(b"), b" e Immediate-Successors(b),]b" r~ V[>_ 1}.

372 P.M. Vaidya

Whereas if I b n V I ___ 1, then Successors(b) = ~ . Each box in Successors(b) has
been shrunk as much as possible so that further shrinkage would either destroy the
cubical shape of the box or push out of the box a point in V that was originally in
the box.

Let Box-Tree be a rooted tree of boxes defined as follows:

Each node in the Box-Tree is a cubical box, the root is a smallest cubical box
containing all the points in V, and the children of each nonleaf box (node) b in
the Box-Tree are the boxes in Successors(b).

Note that each nonleaf node in the Box-Tree has at least two children. Further-
more, each leaf is a singleton set containing exactly one point in V, and the leaf
boxes partition the set V. The Box-tree is similar to the cell-tree [2] and the quad-
tree [6].

3. The Graph G = (V, E)

We now describe the graph G = (V, E). Let B be the set of all the boxes (nodes) in
the Box-Tree. Let father(b) denote the father or box b in the Box-Tree. For a box
b e B, let rep(b) be a representative point in b n V. (Note that for a leaf box b, rep(b)
is the unique point in b n V.) Some of the edges in E incident to rep(b) will be
defined in terms of a list of boxes in the "neighborhood" of b which will be denoted
by Near(b). Let dmin(b , b') denote the minimum distance between a point in b and a
point in b'. For a box b E B, Near(b) is defined as

Near(b) = {b': b' e B, size(b') < size(b), size(father(b'))

6cp }
>_ size(b), drain(b, b') <_ ---- size(b) .

Note that Successors(b) c_ Near(b) and that the boxes in Near(b) are disjoint. Also,
observe that the boxes in B are (partially) ordered by containment. Near(b) is
obtained by taking the set of all boxes smaller than b whose minimum distance
from b is less than (or equal to) a certain threshold ((6Cp/e)size(b)), and then picking
the maximal boxes in this set.

The set of edges E (and thus G = (V, E)) is defined as follows:

where

E = Ex w E2,

E 1 = {(rep(b), rep(b')): b e B, b' e successors(b), rep(b) # rep(b')}

A Sparse Graph Almost as Good as the Complete Graph

and

E 2 = {(rep(b), rep(b')): b e B, b' ~ B, b' ~ Near(father(b))}.

373

4. G = (V , E) is a Good Approximation to the Complete Graph on V

We show that G = (V, E) has the following properties.

(a) For any two points x, y in V, DG(x, y) < (1 + e)d(x, y) where the DG(x, y)
denotes the length of the shortest path in G between x and y.

(b)]El = o(2k(3 + 12C,/e)kn) where c, = k lip for the Lp metric.

To prove proper ty (a) we require the following lemma.

Lemma 1. Let x be a point in V and let b be a box in B such that x ~ b. Then
D~(x, rep(b)) <_ 2cp size(b).

Proof Let ({x} = b o, bl b, = b) be the path from {x} to b in the Box-Tree.
Then bi ~ Successors(hi+ 1) and size(bl) < �89 size(hi+ 1), 1 < i < r. Moreover , for any
of the Lp metrics there is an edge in E 1 (and thereby in E) of length at most
Cp size(bi+ 1) between rep(bi) and rep(bi+ 1). Thus

r - 1 r 1

D~(x, rep(b)) < ~ D~(rep(bi), rep(bi+ 1)) < ~ cp size(bi+ 1) < 2cp size(b). []
i=O i = 0

We now show that G has proper ty (a) described above.

Lemma 2. For a pair of points x,y in V, Da(x, y) < (1 + e)d(x, y).

Proof For a point z e V, let Path(z, r) be the set of all boxes b e B such that b is on
the pa th from {z} to the root in the Box-Tree and size(b) > r. Note that, for each
box b e Path(z, r), z ~ b if r >_ 0. Let b~ be the smallest box in Path(x, ed(x, y)/6%),
and let by be the smallest box in Path(y, ed(x,y)/6cp). Let /4 x be the box in
Successors(bx) such that x E b'~. (It could be that b'~ = {x}.) Similarly, let b'y be the
box in Successors(by) such that y e b'y.

We have

DG(x, y) < D~(x, rep(b'~)) + DG(rep(b'~), rep(b'y)) + DG(y, rep(b'y)). (i)

' r ' We bound D•(. , rep(bx)), DG(y, rep(b'y)), and D~(ep(bx), rep(b'y)) in terms of e and
d(x,y). From L e m m a I it follows that Da(x, rep(b'x))<_2c ~ size(b'~) and
D~(y, rep(b'y)) <_ 2cp size(b'y)). Since b~ is the smallest box in Path(x, ~d(x, y)/Scp),
and b'~e Successors(b~), size(b'x) < ed(x, y)/6cp, and hence Da(x, rep(b'~)) <
(e/3)d(x, y). Similarly, we can show that D~(y, rep(b'y))< (e/3)d(x, y). We show

p below that D~(rep(b'~), rep(by))< (1 + e/3)d(x, y). Then from (i) above it would
follow that Da(x, y) < (1 + e)d(x, y).

374 P.M. Vaidya

I We now show that DG(rep(b'x), rep(by)) < (1 + e/3)d(x, y). We assume that the
p t t boxes b'~ and b r are distinct. (Otherwise, DG(rep(b~), rep(br)) = 0.) Suppose that

size(bx)<size(by). (The case where size(br)<size(bx) is similar.) Then
b'y ~ Near(b~). This follows from the following three observations and the definition
of Near(bx). First, since size(b~) > Ed(x, y)/6cp, we have

Second,

! dmi,(bx, by)<_d(x, y)<6Cpsize(bx) .

~d(x, y)
size(b'y) <_ < size(bx).

6cp

Third, size(father(b'y)) = size(by) >_ size(b~).
Since father(b'x) = b~ and b'y ~ Near(bx), (rep(b'x), rep(b'y)) ~ E 2 and thus (rep(b'x),

rep(b'y)) ~ E. Then, for any of the Lp metrics,

Da(rep(b'~), rep(b'y)) = d(rep(b'~), rep(b'y))

< d(x, y) + d(x, rep(b'~)) + d(y, rep(b'y))

<_ d(x, y) + cp size(b'~) + Cp size(b'~.)

ed(x, y) ed(x, y)
< d(x, y) + cp + cp 6% 6Cp

[]

To bound the number of edges in G we require a bound on the size of Near(b) for
each b e B. Such a bound is provided by the following lemma.

Lemma 3. For b ~ B, let A(b) be a subset of B satisfying the following two
conditions:

1. For each b' ~ A(b), dmi,(b, b') < r6, and size(father(b')) > 6 > size(b).
2. For any pair of boxes b', b" in A(b), b' c~ b" = ~ .

Then lA(b)l < 2k(3 + 2r) k.

Before giving a proof of Lemma 3 we give an intuitive sketch. First, observe that
a box b' in A(b) is obtained by shrinking a box of size at least 6/2 in Immediate-
successors(father(b')); thus the parameter 6 is a measure of the size of the empty
space around a box in A(b). Based on this observation we can construct a set of
disjoint boxes of the same cardinality as A(b), -vith each box in the set of size 6/2
and contained in a box of size approximately 2r6 around b. A bound on IA(b)l may
then be obtained by noting that at most O(vr)*, v fixed, disjoint boxes of size 6/2
may be packed in a box of size 2r&

A Sparse Graph Almost as Good as the Complete Graph 375

Proof of Lemma 3. Recall that lmmediate-Successors(b') is the set of 2 k boxes
obtained by cutting up b' by k mutual ly or thogona l hyperplanes passing through
the center of b', each plane being perpendicular to one of the k coordinate axes. Let

A I(b) = {b': b' e Immediate-Successors(father(b")), b' ~_ b", b" e A(b)}.

We have

Vb' ~Ay(b), size(b')>_ 6/2>size(b)/2.

Since the boxes in A(b) are disjoint, the boxes in Ai(b) are also disjoint and thus

IAi(b)l = IZ(b)l.

We bound lAf(b)[. Note that, for each b 'e Ai(b), dmin(b , b')< r6 and size(b')>__
6/2 > size(b)~2. Shrink each box b' ~ Ay(b) to obtain a box b" such that size(b") =
6/2 and dmin(b , b") = dmin(b , b ') ; let A}(b) be the set obta ined by shrinking the boxes
in Ai(b) in this manner . It is clear that

IA~r(b)l = IAf(b)L.

Let /~ be a box such that 0(/;) = 0(b) (i.e., b and ~; have the same center) and
size([~) = (3 + 2r)& This choice for size([~) together with the condit ion that
dmi~(b, b") <<_ r6 for each b" e A}(b), guarantees that each box in A}(b) is a subset
of b.

Since, for each box b" e ASy(b), b" ~_ [~, and as boxes in A}(b) are disjoint we have

[A)(b)l
volume of/ ;

< 2k(3 + 2r) k.
volume of a box in A}(b) -

Thus

IA(b)l = IAi(b)l = IA}(b)l ~ 2k(3 + 2r) k. []

The number of edges in E is bounded as follows. The number of edges in E 1 is
upper bounded by the number of nodes (boxes) in the Box-tree, and so IEI[< 2n.
There is an edge in E2 between rep(b) and rep(b') only if b ~ Near(father(b')) or
b' ~ Near(father(b)). Thus

IE21 ~ ~ INear(b)l.
b e B

Since the boxes in Near(b) are disjoint, we can apply L e m m a 3 with A (b) =
Near(b), 6 = size(b), and r = 6cp/e, and conclude that

(I Near(b)[<_ 2 k 3 + P

376

Hence

Finally,

P. M. Vaidya

(IE2[< ~ [Near(b)l = 0 2 k 3 + ~ .
b e B

IEI <_ IEII + IE2I = O(2k(3 +12~p)kn).

We have shown that G has the property (b) mentioned at beginning of the section.

5. Speedily Constructing G = (V, E)

We see that the Box-Tree can be constructed in O(4kn log n) time. We also show
that once the Box-Tree is available, the sets Near(b) can be obtained for all the
boxes b e B in O(n log n + k log(k/e)4k(3 + 12cp/e)kn) time. The representatives in
all the boxes in B can be chosen in O(n) time by starting with the leaf boxes
in the Box-Tree, and, for a nonleaf box b, letting rep(b) equal rep(b') for some b' e
Successors(b). It then follows that G can be obtained in o(4knlogn +
k log(k/e)4k(3 + 12cp/e)kn) time.

The Box-Tree can be obtained in o(4kn log n) time as a byproduct of the
All-Nearest-Neighbors Algorithm in [9]. We start with a tree consisting of just the
root box, and grow the tree by splitting a leaf box in the current tree that has the
largest volume among all the leaf boxes in the current tree. A box b is split by k
mutually perpendicular hyperplanes through its center to give the boxes in
Immediate-Successors(b) and the boxes in Immediate-Successors(b) are then suita-
bly shrunk to obtain the boxes in Successors(b). The leaf boxes in the current tree
partition the points in V. For each leaf box b in the current tree, k sorted lists of the
points in b n V are maintained, each list containing the points ordered on one of
the k coordinates. The ordered lists enable efficient splitting of boxes. For details
the reader may refer to [9-1.

We now describe how to obtain the sets Near(b) for the boxes in B. The boxes in
B are processed irr non-increasing order of size; Bp denotes the set of processed
boxes in B. Let B, be the set of boxes given by

Bs = {b: 3b' e Bp s.t. b e Successors(b'), b q~ np}.

For each box b e B s, we maintain two sets of boxes, ~(b) and fl(b), where

A Sparse Graph Almost as Good as the Complete Graph 377

and

fl(b) = {b': b e ~(b')}.

The set ~(b) is eventually used to obtain the set Near(b).
At each step the largest box in Bs, denoted by b L, is processed. The set Near(bL)

is obta ined from ~(bE), bL is moved from B~ to Bp and the boxes in Successors(bL)
are added to Bs. The ~ and fl sets are created for the boxes in Successors(bL), and
suitably updated for the boxes in ~(bL) u fl(bL). We note that the ~ sets of only the
boxes in Successors(bL) U fl(bL) are affected during a step, and the fl sets of only the
boxes in Successors(bL) w ~(bL) are affected during a step.

To compute Near(bL) quickly during a step we rely on the following l emma
which is proved later.

L e m m a 4. At the start of each step,

Near(bL)~(~176 �9

To create and update the ~, fl sets efficiently we utilize the following observat ions:

1. A box b is added to or deleted from fl(b') whenever b' is added to or deleted
from ct(b).

2. For each b e Successors(bE), a(b) ~_ (ct(bL) u Successors(bE)) and fl(b) ~_
(fl(bL) w Successors(bE)).

3. For each b e ct(bL) (resp. b e fl(bL)), only a box in Successors(bE) can get added
to fl(b) (resp. ct(b)).

We now give the a lgor i thm for comput ing the sets Near(b). Initially, B v is empty
and B s is the singleton set containing the root of the Box-Tree.

Procedure Construct-Near-sets
Begin
/* Initialize */
Bp:= ~ ; B s :-- {root}; bE:= root;
~(root),= {root}; fl(root),= {root};
While size(bE) > 0 do
Begin

/* Process bL */
/* Compute Near(bE) from 0~(bL) */
Near (bE).'= ~(bE) U (Ub~,tbL) Successors(b));
Delete f rom Near(bE) each box b such that

size(b) >_ size(bE) or size(father(b) < size(bE);
Delete f rom Near(bE) each box b such that dmi,(b E, b) > (6cp/e) size(bE);
/* Update ~, fl sets and Bp, B s */

378 P.M. Vaidya

For all b e Successors(bE) do
~(b).'= ~(bE) W S u c c e s s o r s (b E) - {bE};

/3(b).'=//(bE) ~ Successors(bE) - {bE};
For all b e (/3(bE) -- {bE}) do

at(b).'= ct(b) u Successors(bE) -- {bE};
For all b e (or(bE)) -- {bE}) do

/3(b),=/3(b) w Successors(bE) -- {bE};
For all b ~ (Successors(bE) u/?(bE) -- {bE} do

Delete from ~t(b) each box b' such that dmi,(b, b') > (6cp/e) size(b)
and whenever b' is deleted from ~(b) also delete b from/3(b');

Bp ..= Bp w {bE}; B~ ,= B~ w Successors(bE) - {bE};
b E : : largest box in B,;

endwhile
For each leaf box b e B, Near(b) ,= ~ ;

end Construct-Near-sets

First, we show the correctness of the above procedure, and then bound the time
requirement. An execution of the while loop in the above procedure is referred to as
a step. It is easily seen that the ~ and/3 sets are correctly updated at each step.

Lemma 5. Let H = (bo, bl bin) , m > 1, be any path in the Box-Tree such that
b o is a leaf, bi+ 1 = father(bi), 0 < i < m, and b,. is the root. At the start o f each step
H satisfies the following condition:

There exists an r >_ 0 such that (1) b r e Bs, (2) b i 6 (B - (Bp w B~)), 0 < i < r, and
(3) b jeBp , r < j < m.

Proof By easy induction based on the observation that at the end of a step b L is
moved from B~ t o Bp and all the boxes in S u c c e s s o r s (b L) a re added to B,. []

From Lemma 4 it follows that when the above procedure has terminated,
Near(b) has been correctly computed for each box in Bp. From Lemma 5 it follows
that when the procedure terminates, Bp w B s = B, and each box in B s is a leaf. So
the procedure correctly computes Near(b) for all b e B.

To bound the time requirement of the procedure we need to bound the sizes of
the ct and fl sets. The next lemma is useful in proving bounds on the sizes of the ct
and fl sets.

Lemma 6. At the start o f each step the following statements hold:

(1) The boxes in Bs are disjoint.
(2) For each b ~ B~, size(father(b)) >_ size(bE).

Proof. (1) follows from Lemma 5. (2) follows by an easy induction based on the
observation that during each step the largest box in B s is processed. []

We next bound the sizes of the ct and fl sets.

A Sparse Graph Almost as Good as the Complete Graph 379

L e m m a 7. At the start of each step, for each box b e Bs the followin9 bounds hold:

(I) Ict(b)l < 2k(3 -4- 12Cp/e) k.
(II) Ifl(b)l -< 2k(3 + 12Cp/e) k.

Proof F r o m the definition of ct(b) and L e m m a 6 it follows that the condit ions of
L e m m a 3 are satisfied with A(b) = ct(b), 6 = size(b), and r = 6cp/e. (I) then follows
by the appl icat ion of L e m m a 3.

Next note that, for each box b' ~ fl(b),

6% 6% size(bL). drain(b, b') <_ size(b') <_

Then from L e m m a 6 it follows that the condit ions of L e m m a 3 are satisfied with
A(b) = fl(b), 6 = size(be), and r = 6Cp/e. (II) then follows by the applicat ion of
L e m m a 3.

We now show L e m m a 4.

L e m m a 4. At the start of each step,

Proof Note that

Near(bL)

[]

6% }
= b: size(b) < size(bL), size(father(b)) >_ size(bL), dmln(bL, b) <_ size(bL) .

We first show that

\ \b~n,

F r o m L e m m a s 5 and 6 it follows that, for all b ~ Bp, size(b) >_ size(bL). Thus

Near(bL) c~ Bp = ~ . (ii)

F r o m L e m m a 5 we get that, for each b e B - (Bp u Bs), size(b) < size(bL). Hence,

for each b ~ Near(bL), father(b) e (Bp u Bs). (iii)

Equa t ion (i) then follows from (ii), (iii), and L e m m a 5.

380 P.M. Vaidya

N o w suppose that b e Near(bL). From the definition of Near(bL) we get that
drain(bE, b) < (6cp/e)size(bL) and that dmin(bL, father(b)) < (6c~/e) size(bL). Thus if
b e Bs we can conclude that b e ~(bL). So suppose b ~ B s. Then from (i) we get that
father(b) e B s and hence fa ther (b)e or(bE). Thus we may conclude that, for each
b e Near(bE), either b e ~(bL) or father(b) e or(bE). Lemma 4 then follows. []

The running time of Procedure Construct-Near-sets is upper bounded as follows.
By maintaining a heap [8] for the boxes in Bs, bL may be selected in O(log n) time
per step; the total time for heap maintainence and selection of b L is O(n log n).
F rom Lemma 7 it follows that the sizes of ~ and fl sets are bounded by a constant
(dependent on k and ~) and hence there are a constant number of additions to ct and
fl sets during each step. Thus the total number of additions to and deletions from
and fl sets is O(n). For a box b, we implement ~t(b) by a data structure which allows
insertions and deletions to be performed in O(log(10t(b)l)) time, and allows access to
a box b', with the largest value of the parameter dr, i,(b, b') in O(log(lct(b)l)) time.
The set fl(b) is also implemented by an identical data structure. Note that it suffices
to implement 0t(b) and fl(b) as a heap or a 2-3 tree [8]. So the ct and fl sets can be
maintained in a total of O(n) time. Furthermore, during a step Near(bL) is also
obtained in constant time; so comput ing the Near sets also requires a total of O(n)
time. Explicitly evaluating the constants gives a running time of O(nlog n +
k log(k/e)4~(3 + t2cp/e)kn) for the Procedure Construct-Near-sets.

6. Remarks

The number of edges in G have an exponential dependence on the dimension k
which could be as bad as (ck) k where c is a constant that does not depend on k. An
open question is whether this dependence on the dimension can be reduced to (c') ~
where c' does not depend on k; furthermore we would like c' to be small, say less
than or equal to 4. Better still is it possible to reduce the dependence on k to a
polynomial in k at the expense of increasing the dependence on n by a small factor,
say log n?

References

1. P. Chew, There is a planar graph almost as good as the complete graph, Proc. 2nd Annual
Symposium on Computational Geometry, 1986, pp. 169-177.

2. K. L. Clarkson, Fast algorithms for the all-nearest-neighbors problem, Proc. 24th Annual
Symposium on Foundations Computer Science, 1983, pp. 226-232.

3. K. L. Clarkson, Approximation algorithms for shortest path motion planning, Proc. 19th Annual
ACM Symposium Theory of Computing, 1987, pp. 56-65.

4. D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good as complete
graphs, Discrete Comput. Geom. 5 (1990), 399-408.

5. T. Feder, Personal communication, 1989.
6. R. A. Finkel and J. L. Bentley, Quad-trees: a data structure for retrieval on composite keys, Acta

Inform. 4 (1974), 1-9.

A Sparse Graph Almost as Good as the Complete Graph 381

7. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

8. E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice
Hall, Englewood Cliffs, N J, 1977.

9. P. M. Vaidya, An O(n log n) algorithm for the all-nearest-neighbors problem, Discrete Comput.
Geom. 4 (1989), 399 408.

10. P. M. Vaidya, Approximate minimum weight matching on points in k-dimensional space,
Algorithmica, 4 (1989), 569 584.

11. A. C. Yao, On construction minimum spanning trees in k-dimensional space and related problems,
SlAM J. Comput., 11 (1982), 721-736.

Received April 14, 1988, and in revised form November 26, 1990.

