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Abstract. Many applications of digital image processing now deal with three- 
dimensional images (the third dimension can be time or a spatial dimension). In 
this paper we develop a topological model for digital three space which can be 
useful in this context. In particular, we prove a digital, three-dimensional, analogue 
of the Jordan curve theorem. (The Jordan curve theorem states that a simple closed 
curve separates the real plane into two connected components.) Our theorem here 
is a digital topological formulation of the Jordan-Brouwer theorem about surfaces 
that separate three-dimensional space into two connected components. 

Topological  properties of two-d imens iona l  images on cathode ray tubes have 
been  util ized and s tudied for some years, but  so far there seems to be no consensus 
about  how to extend these ideas to three-d imens iona l  images (see, for example,  

[8] in reference to difficulties with shr inking algorithms).  
A natura l  way to begin  such a ( two-dimensional )  theory is to give a defini t ion 

of connectedness  for subsets of a digital p lane  which allows us to prove a Jordan  
curve theorem. (The Jordan  curve theorem states that a simple closed curve 
separates a p lane  into two connec ted  subsets, the inside and  the outside.)  The 
general ly accepted approach  to this has been a graph-theoret ical  Jo rdan  curve 
theorem, due original ly to Rosenfeld,  which is not  based on a topology and  
in fact requires two different defini t ions of connectedness ,  one for the curve 
(8-connectedness)  and  one for its complemen t  (4-connectedness) ;  see, for 

example,  [13] or [14]. 
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This graph-theoretical approach has been refined and extended to three- 
dimensional images; see [10], [11], [12], [6], and [7]. In [6] Kong and Roscoe 
prove a three-dimensional Jordan surface theorem which does not include the 
graph associated with our topological construction here (because 10-adjacency 
arises in our theory but not in theirs; see Fig. 4). In [7] Kong and Roscoe study 
a very general class of  graph-theoretical settings for three-dimensional digital 
pictures (called "normal  digital pictures"); this class does include the graph from 
our construction here, but they do not consider the Jordan surface theorem there. 
See also [9], where an approach similar to ours was proposed without proof. 

In [5] we introduced a purely topological context for a digital plane and 
proved a Jordan curve theorem. ([5] was based on earlier work by Khalimsky; 
see [2]-[4].) This paper  extends this approach to three dimensions by proving 
an analogous theorem for Jordan surfaces. By placing two- and three-dimensional 
computer  graphics formally within point set topology, we get natural analogues 
of  the usual topologies for two- and three-dimensional Euclidean space. The 
crucial step is to utilize a natural connected topology on a finite, totally ordered 
set; the topologies on the two- and three-dimensional digital spaces are then just 
the associated product topologies. Furthermore, this permits us to define path, 
arc, and curve using continuous functions on such a parameter  interval. 

In order to make this paper  self-contained, we begin by summarizing the 
necessary background from [5]. We define a topology cr on the set of  integers Z 
by specifying the minimal open (topological) neighborhoods at each point (see 
Fig. 1). There are two types of  points, and they alternate. If  p is of  one type, 
its minimal neighborhood is N(p)={p-l ,p,p+l}.  Similarly, N ( p + 2 ) =  
{p+l,p+2, p+3}. The intermediate point, p + l ,  must then have N ( p + l ) =  
{ p +  1} (as the intersection of two open sets). Thus { p - 1 }  and { p +  1} are open, 
while {p} and {p+2} are closed (their complements are open). Thus the points 
alternate between being open and closed. A COTS (connected ordered topological 
space) is an interval C of  (Z, tr) with the inherited topology. (A more detailed 
discussion of COTS in a more general context is given in [5], but that given here 
is sufficient for the purposes of  this paper.) I f  C is finite, then the first and last 
points of  C are called its endpoints. 

Now assume that X~, )(2, X3 are finite COTS and X = X1 x )(2 x X3 with the 
product  topology z. Since this space, the digital counterpart  of  three-dimensional 
real space, is the setting for our main theorem, let us now sketch some of its 
properties, using three diagrams for illustration. All three of  these diagrams deal 

Fig. 1. A portion of a finite COTS showing the minimal neighborhoods of each point. 
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A uni t  cube  in d ig i ta l  3 space 

�9 = mixed point 

O = pure point 

Fig. 2. A unit cube in X showing which pairs of points are connected. Note that there is exactly 
one diagonal in each face and one internal diagonal which connects the two pure points, 

with aspects of  the question of which pairs of points are topologically connected. 
In the diagrams a line segment between two points indicates that they are 
topologically connected; this is purely schematic of  course, since the digital space 
consists only of the points. (A more formal treatme:nt, with detailed proofs, is 
given in [5].) Before giving the diagrams, we need some more definitions. 

Definition. A dyad in X is a connected two-point set. Similarly, a triad (resp. 
tetrad) is a mutually connected three- (four-) point set. 

Definition. The adjacency set of a point p 6 X (written ~r is the set of  points, 
each of which forms a dyad with p. That is to say, ~ r  is 
connected and x ~ p}. 

It turns out that, in terms of adjacency sets, there are just two classes of  points, 
which we now define. It is natural to call a point in X open (resp., closed) if 
each of its coordinates is open (closed). We shall see that open and closed points 
behave similarly. A point in X which is either open or closed is called pure; a 
point which is not pure is mixed. 

We illustrate the topology of X by showing the connectedness relationships 
in a unit cube of X (Fig. 2); with an appropriate rotation and /or  reflection, any 
unit cube in X can be reduced to this configuration. 

The adjacency set of  a pure point is shown in Fig. 3, while the adjacency set 
of  a mixed point is shown in Fig. 4. 

Before proceeding to the main result of  this paper  we need definitions of  
digital analogues of  arc, Jordan curve, and Jordan surface. 

Adjacency sat of a pure point 

�9 = mixed point 

0 = pure point 

Fig. 3. This shows a portion of the adjacency set of a pure point; this pure point and the three 
other faces of the adjacency set are not shown here. 
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Adjacency set of the mixed point �9 

�9 = mixed point  

O = pure point  

Fig. 4. This shows the complete adjacency set of a mixed point for the case in which the mixed 
point has the form open-open-closed or closed-closed-open (i.e., the x and y coordinates are of 
the same topological type). Recall that the center point does not belong to the adjacency set. 

Definition. A digital arc is a homeomorph ic  image of  a COTS. A digital Jordan 
curve is a connected subset J with [JI -> 4 such that J - {j} is an arc for any j c J. 
I f  no confus ion  can arise, we may omit the adjective digital. 

I f  J is a finite connected  subset o f  a topological  space with IJ I -> 4, then J is 
a Jordan  curve if and only if IM(j) c~ JI = 2 for each j ~ J,  in which case these two 
points are the endpoints  o f  J - { j }  (proved in [5]). Furthermore,  no proper  subset 
o f  a digital Jo rdan  curve can be a digital Jo rdan  curve. ( I f  K is a proper  nonvoid  
subset o f  a digital Jo rdan  curve J, then K has a point  p such that Ise(p) c~ K I < 2; 
see 17(a) o f  [5].) Note  that  this also shows that  no proper  superset o f  a Jordan  
curve can be a Jo rdan  curve. 

Definition. The border of  X is the set o f  all points o f  X, at least one o f  whose 
coordinates  is an endpoin t  o f  the cor responding  Xi (i = 1, 2, 3). 

Definition. A digital Jordan surface in X is a T-connected subset S o f  X which 
does not meet the border  o f  X and such that for all p ~ S, M(p)  c~ S is a digital 
Jo rdan  curve. The fol lowing lemma gives some properties which begin to justify 
calling such sets surfaces. 

Lemma. I f  S is a digital Jordan surface then: 

(1) Each dyad in S is contained in exactly two triads in S. 
(2) S contains no tetrads. 

Proof. (1) Let p e S ;  M ( p ) n S  is a digital Jo rdan  curve, J say. Observe that 
{p, q, r} is a triad in S if and only if {q, r} is a dyad  in J. However ,  IM(q) c~ JI = 2, 
and so it follows that for  a given p and q there are exactly two such r. 

(2) I f  {p, q, r, s} is a tetrad in S, then {q, r, s} is a triad in S n  g t (p )  which is 
a contradic t ion since this latter set is a digital Jo rdan  curve. []  

We are now in a posi t ion to prove the main  theorem which is a digital analogue 
o f  the J o r d a n - B r o u w e r  theorem for compac t  two-manifolds  embedded  in R 3 
(proved for  instance in Theorem 27.10 o f  [1]). 
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Theorem. I f  S is a digital Jordan surface in X, then X \ S  has exactly two 
z-components. 

Proof. It is c lear  that  the set X is a subset  o f  the integer  lat t ice poin ts  of  R 3. 
Let  u be the usual  Euc l idean  topo logy  for  R 3. We define an ope ra t ion  A as fol lows:  
i f  A is a subset  o f  X, then A ̂  denotes  the  subset  o f  R 3 fo rmed  by the union  of  
all the i so la ted  poin ts  and  the (Euc l idean)  convex hulls of  the dyads ,  t r iads,  and  
te t rads  con ta ined  in A. We now show that  S ̂  is a compac t  two-man i fo ld  in R 3. 
To verify this it suffices to show that  each p ~ S ̂  has a n e i g h b o r h o o d  in R 3 whose 
in tersec t ion  with S ̂  is h o m e o m o r p h i c  to a 2-disc. We cons ide r  three cases:  

(1) I f  p lies in the in ter ior  of  some t r i angu la r  face of  S ~, then there is c lear ly 
an e > 0  such that  S^c~ BE(p) (the e-ba l l  centered  at p )  is h o m e o m o r p h i c  
to a 2-disc. We omit  the detai ls .  

(2) I f  p lies on a segment  o f  S ̂  but  is not  a vertex,  then,  by par t  (1) of  the 
l emma,  p lies on the b o u n d a r y  o f  prec ise ly  two t r i angula r  faces of  S ̂ . 
Aga in  we omit  the  deta i ls ,  but  it is c lear  that  there  is an e-ba l l  centered 
at p whose in tersec t ion  with S ̂  is a 2-disc. 

(3) Suppose  now that  p is a vertex o f  S ̂ . By hypothes is  , ~ ( p )  c~ S is a digi tal  
Jo rdan  curve. Let D be a dyad  with p ~ D, say D = {p, q~}. Aga in  by par t  
(1) o f  the l emma,  D is con ta ined  in two t r iads ,  so choose  one o f  them, 
{P, q~, q2} say. The  dyad  {p, q2} is con ta ined  in one o ther  t r iad,  {p, q2, q3} 

say. In  this way we de te rmine  a finite set of  e lements  ql, q 2 , . . . ,  q, in 
~r  c~ S; by the finiteness of  ~r  eventua l ly  one o f  the e lements  will 
repeat .  Let q, be the first that  repeats ;  q, = qj, j <  n. Then j = 1, since 
o therwise  qj ~, qj§ q, ~ are  dis t inct  e lements  o f  the Jo rdan  curve ~r  
S, each of  which is ad j acen t  to q , ,  a cont rad ic t ion .  The set of  qi's has the 
p rope r ty  that  each m e m b e r  is in the ad j acency  set of  two o ther  members .  
Such a set canno t  be a p r o p e r  subset  of  a digi tal  Jo rdan  curve, and  so the 
q~'s must  exhaus t  the digi tal  Jo rdan  curve ~ ( p ) c ~  S. N o w  as before ,  it is 
c lear  that  there  is e > 0  such that  B ~ ( p ) n S  ^ is a 2-disc. 

Thus we have shown that  S ̂  is a 2-mani fo ld ;  being a finite un ion  o f  t r iangles ,  it 
is compac t .  The J o r d a n - B r o u w e r  theorem states that  a c ompa c t  2 -mani fo ld  
s e p a r a t e s  R 3 into two z , -components  Ie and Ee (the inside and the outs ide  of  
S^). Let I = Xc~ le and  E = X  c~ Ee. It remains  to show that  ! and  E are the 
n o n e m p t y  r - c o m p o n e n t s  of  X \ S ,  that  is to say, I and  E are r - s epa ra t ed ,  
r - connec t ed ,  and  nonempty .  

(a) We first show tha t  I and  E are z - separa ted .  To this end,  assume to the 
cont rary .  It fo l lows (see Theorem 13(c) o f  [5]) that  there  are poin ts  p ~ I 
and  q c E such tha t  {p, q} is z -connec ted .  The segment  pq in R 3 has one 
e n d p o i n t  p in le and  the o ther  e n d p o i n t  q in Ee, hence pq must  meet  S ̂ . 
N o w  segment  pq does  not  meet S, s ince p and  q are not  in S and they 
are  the only  po in ts  on pq with in teger  coord ina tes .  So pq meets  A ̂  for 
some dyad  or  t r i ad  A in S. It is c lear  that  every dyad  or  t r iad  in X must  
be con ta ined  in some unit  lat t ice cube like that  p ic tu red  in Fig. 2. We see 
f rom that  d i a g r a m  that  if  a dyad  D has no poin ts  in c o m m o n  with a dyad  
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or  triad W, then D ^ and W ̂  are disjoint. This contradicts the fact that 
the segment pq = {p, q}^ meets A ̂ , and the contradict ion proves (a). 

(b) We now show that I is z-connected and nonvoid  (the p roof  for E is 
similar). Since Ie is connected and nonvoid  it suffices to construct  a 
cont inuous  surjection f :  (I , ,  v ) ~  (/, z). We construct  f as a composi t ion  
z rop  of  cont inuous  functions,  where p: (Ie, v)-- , ( I  ^, v) and zr: ( I  ̂ , v ) ~  
(I, z). ( In  fact 7r is a quotient mapping  and p is a retraction, but we do 
not  need these further properties.) 

To define zr, we first construct  ~rl, a cont inuous  quotient  mapping  of  the reals 
R with the usual topology  onto the integers Z with a COTS topology.  Since X 
was identified as a set o f  integer lattice points in R 3, the desired ,r is then obtained 
as the restriction to I ^ o f  the product  mapping  zrz = 7rl x 7r~ x zr~. Assuming for 
definiteness that Z has the COTS topology in which the even integers are closed 
and the odd  integers are open,  we can for example define 7rl by 7rt(2n) = 2n and 
Try(x) = 2n + 1 if 2n < x < 2n +2 .  If  T ̂  is the te t rahedron arising from a z-tetrad 
T, it follows f rom the definition of  ~rt that  7r2 maps  T ̂  onto its set o f  vertices T; 
similarly for dyads  and triads. Hence 7r maps I ^ onto I, as required. 

It remains to construct  p. Since some points in I are z-connected to points o f  
S, we must  retract Ie onto  I ^ before taking the quotient.  Thus we define 19 to be 
the identity mapping  on I ^. l e - I  A consists o f  all segments, triangles, and 
tetrahedra which are incomplete  in the sense that they lack vertices, edges, a n d / o r  
faces which lie in S. We will define p on each such segment, triangle, or te t rahedron 
in a consistent manner ,  so that  we can be sure that the definitions agree on the 
intersection o f  adjacent  (closed in the subspace topology)  pieces. The resulting 
funct ion is then cont inuous.  ( I f  a funct ion is defined on a finite union  of  closed 
subsets so that  its restriction to each such subset is cont inuous,  then the function 
itself is cont inuous  [15, Theorem 7.6].) 

Case 1. I f  a segment,  triangle, or te t rahedron has just one vertex in I ^, then map 
it onto that vertex. 

Case 2. 

(i) I f  a triangle has only two vertices in I ^, then project f rom the missing 
vertex onto the edge determined by the other  two. 

(ii) I f  a te t rahedron T ̂  has only two vertices in I ^, then each point  o f  T ̂  - I ^, 
together  with these two vertices, determines a plane whose intersection 
with T ̂  is a triangle; project  in that triangle as in Case 2(i). 

Case 3. I f  a te t rahedron has exactly three vertices in I ^, then project  f rom the 
missing vertex onto the triangle in I ^. 

We now show that  the union  of  the segments,  triangles, and tetrahedra 
considered in Cases 1-3 contains the whole o f  I e -  I ^. I f  p c Ie is not  a lattice 
point,  then p lies in the Eucl idean interior o f  some segment (or triangle or  
te t rahedron)  defined by a dyad  (or a triad or  a tetrad) o f  X. If  none  o f  the vertices 
o f  this segment  (respectively triangle, te t rahedron)  lie in Ie, then they must lie 
in S (since Ie and Ee are separated by S A, they do not  lie in E~). But since S ̂  
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contains the convex hull of every dyad, triad, and tetrad in S it follows that 
p ~ S ̂  which is a contradiction. This completes the proof  that p is well defined 
and also shows that I is nonvoid, thereby completing the proof  of  the theorem. [] 

We have thus completed the proof  of  the digital analogue of  the three- 
dimensional Jordan-Brouwer theorem. While we make no attempt at a proof 
here, a similar method can be used to prove a digital analogue of  the 
(two-dimensional)  Jordan curve theorem (see [5]). 
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