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Abstract. It was conjectured by Gilbert and Pollak [6] that, for any finite set of
points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to
the length of a minimal spanning tree is at least v/3/2. To date, this has been proved
only for at most five points. In this paper, some analytic formulas for the length of
full Steiner trees are considered. These provide an alternative proof of the conjecture
for quadrilaterals, and the foundation for a possible approach for more complicated
polygons.

1. Introduction

Let P be a set of n points in the Euclidean plane. Denote by L, (P) the length
of the minimal spanning tree of P, and by L (P) the length of the Steiner minimal
tree of P. It was conjectured by Gilbert and Pollak [6] that

L(P)=(v3/2)Ln(P)

for all P. At present, this has only been verified for n =<5. The case n =3 is easy.
Pollak [9] provided the first proof for n =4, by considering all possible patterns
for minimal trees. In subsequent papers, Du et al, provided a very much simpler
proof for n =4 [4] and, later, proved the case n =5 [5]. Generalizations for n =6
do not seem to be available yet.

The example of an equilateral triangle shows that v3/2 cannot be replaced
by a larger number, while in the opposite direction, it has been proved by Chung
and Graham [1] with computer-edited computations, that L(P)=0.824L,.(P)
for all networks in the plane. It is also well known [6] that in order to prove the
Gilbert-Pollak conjecture, only full Steiner trees need be considered.

In the present paper we derive some analytic formulas for L(P). If P consists
of four points these provide an alternative proof of the results of Du et al.
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2. Preliminary Results

We recall that a given set of vertices may have many full Steiner trees. Here, we
wish to consider just one “topology” or full Steiner configuration, associated
with the given set of vertices. Thus we assume that we are given a set of m+1
vertices which we label A,, A,,..., A,,,and m —1 Steinerpoints S,, S, ..., S.-1,
always two less in number than the given vertices together. We may assume [6]
that each vertex A; is joined by a line segment to exactly one Steiner point, and
each Steiner point is an endpoint of three segments, meeting mutually at 120°.

It is well known [6], [7] that there exist at least two distinct pairs of vertices
A;, where each of the pair is joined to the same Steiner point. Label the two
vertices from one pair as P,, P,, and the corresponding Steiner point S, in such
a way that the path P,S,P, changes angle by 60° clockwise at S,. Now the
remaining vertices may be relabeled uniquely and unambiguously as
P,, P;,..., P,, by requiring that the unique path from the vertex P, via the
Steiner points to the vertex P,,,, always changes angle by 60° clockwise at
each Steiner point. For convenience, we denote P, ,, = P,. Now label the remain-
ing Steiner points as S,,..., S, _;, any of the possible permutations may be
selected here. For illustrations, see Figs. 1 and 2. For each integer k, 0 k=m,
the path as described from P, to P, is denoted by ﬁk. Notice that exactly three
of these clockwise paths, one for each pair of segments meeting it, pass through
each Steiner point.
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Fig. 2

Now observe that if m =3, then the paths f’, and ﬁm meet in a common
segment S, 5, joining two Steiner points. A unique path P ,q#1, g# m, unique
since three paths pass through S;, and two of these are P, and 13,,,, also passes
through S,. Clearly, 1 <g<m.

If g =3, then the paths 13, and 13q also share a common segment which has
S, at one end, and another Steiner point S, at the other. There is then a unique
third path through S;, ﬁq,, defining g’ such that 1 <gq'<q. Similarly, if m—g=2,
there is a corresponding path 13q~ with g < ¢”"<m.

The procedure can clearly be repeated until all paths, I3k, 1=k=m, are
accounted for. The procedure, in fact, describes how, given certain integers s, ¢
with t—s=2, and 1 =5 <t=m, an integer g is defined, s <g <1 so that IA"., ﬁq,
and 13, share a common Steiner point.

Define distances by

a, = | PPy if k=0,1,2,...,m

3

a, =|PP| if 0=j, k=m+l.

For angles, let P,P, be the vector defining the direction of the positive x-axis in
the usual sense. S, is then in the upper half-plane. With this coordinate system,
define B, to be the angle of the vector P, P,.,, measured anticlockwise. Indeed,
by regarding the x-axis as the real axis of the complex plane, then, via a translation,
B, is such that

PkPk+1 = Ay eiB“.
More generally, define angles 8, by 0= B, <2, and

PP, = ay e’n
for

O<jk=m+1.
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Define also the angle A, 0<A <, by

P,S, =|P.S,| e

im/3

Finally, put @ =¢'""", and define the sequence {y,}, 1 =g = m, inductively by:

-1

D n=Ly.=ow .
(ii) Given y, and y,, 1=s5<t=m, then

oy, t oy, =y, (1)

where q is the integer, previously described, so that s <g <1 and 133, f’,,
P, share a common Steiner point.

With the above notation, we can now state
Theorem 1. The length z of the Steiner tree is given by the formula
ze* =Y ay e
k=1

Proof. The proof is by induction on m. Assume that m =2. The configuration
is then a triangle for which y,=1 and y,=w . Draw the equilateral triangle
P, P, Q, with the vertex Q exterior to the given triangle P,P, P, (Fig. 3). By [7],

Fig. 3
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the points P,, S,, P,, Q are cocircular, hence

L P,QP, =/ P,QS,
=/ P,P,S,

=1 A
Moreover [6], z=|QP,|. With a little elementary trigonometry,

zcos(w—A)=a,+a,cos(57/3—8,)
and
zsin(mr—A)=a,sin(57/3~B,)
so that

I P
ze'(" A):a0_+_a2 e'(‘ﬂ/'} Bz). (2) ~

But, by considering vector addition, we also have

ap+a, e®r+a, e®P=0, (3)

agta, e Pita,e =0 (4)

Eliminating a, between (2) and (4) yields

—if,

ze " =a,eP+a,ePr—q,e

5
“w
=a,e ®itwa,e
and hence, by complex conjugation,

ze*=a,e® tw 'a, e

=an eiB“*'az)b e’

as required.

Now assume that the theorem is already proved for a value of m — 1. Consider
the configuration for m, as hitherto described. As noted, there is a positive integer
r, 1 <r<m, for which P, and P,,, are both joined to the same Steiner point T.
Construct an equilateral triangle, with P,P,,, as its base, with its other vertex R
so that T and R are on opposite sides of P,P,.,. Put

a, = ]Pr-—lRL

a’r+l = |RPr+2L
and let B,_,, B.,, be respectively the angles given by the directions of the vectors
P._,R and RP,,. Notice that T is joined to just one other Steiner point T, (see

Fig. 4).
As noted before, R lies on the line T, T produced, such that

|TP,|+|TP..s|=|TR|.
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Fig. 4

The configuration, in which P,_,P,, P,P,,,, P,.,P,.,, is replaced by P,_,R, RP,.,,
has one less segment and one less vertex than that given. Hence by the induction
assumption,

- M*l N
ze* =Y byz e,
k=1

where, from the construction,

bk:ak if 1$k$r-2,

b =a; 4,

b =a.,,

b, = ay, if r+lsk=m-1,
Zi = Vi if 1=k=sr-1,
Zi = Viewr if r<k=m-1,

and

Y& = Bi if 1sk=sr-2,
Ye1=Bro,

Yr = Bles,

Y = Biaa if rvlsk=m-1.
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Thus

r—

ze™ Z bz e+ b, ,z,_, €71+ bz, e+ Z bz, e™
= k=r+1

r2 m—1

13 8,
Z ayie +aly, et tal gy efot Y aye, e

k=r+1

-2
=¥ aype® ty la, e ta etV
k=1

+yr+l[arei(3'+‘”/3)+ar+l eiﬁ,“]_# Z aiyleﬁ
j=r+2

1

A Pt aly, o +y el et T gy e”

k=r+1 *

r

I

k

H

il

m
Y oa e
k=1

by (1). This completes the proof. O

Remark. If both z and A are required, then the initial values =1y, = o'
are both necessary. If z alone is required, then y,=¢", y,, = ' " for any real
a will suffice.

Consider any spanning tree consisting of m line segments joining the (m+1)
points Py, P, P,, ..., P,. Each segment of the spanning tree can be described
by a vector d; e'” where d, is its length and §; determines its direction and sense.

Each vector PP, is a unique linear combination of some vectors from the
spanning tree, with coefficients +1. So, for each k,

a e =Y g,d e, (5)

Jj=1

where the coeflicients ¢,; =0, 1, or —1 are uniquely determined. This leads immedi-
ately to

Theorem 2. Let 4, e, j=1,..., m, describe the vectors of any spanning tree of
the (m+1) points Py, P, ..., P,. Then there exist scalars x;, depending only on
the configuration and the choice of spanning tree, such that

dxe/
1

zet =

;
H'Ms

J

Moreover, each x; belongs to the lattice L defined by the three numbers 0, 1, and
. im/3
w=e"'".
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Proof. By Theorem 1 and equation (5),

say, where x; =Y, _| vy
Itis clear that y,=1€ L, y,, = @' € L, and by the construction (1), each y, € L.
Since &, =1, —1 or 0, each x; € L. 0

Example 1. Consider the full Steiner tree on four points Py, P,, P, Py as shown
in Fig. 5. We have y, =1, y;=w ', so that

=0 yitoy
=1+ "
By Theorem 1,
ze =q, ePi+a(1+tw ') e+ a0 e
Since

ap+a, e® +a,ePrta e =0

Fig. §
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it also follows that

ze* =g, e® +a,(1+w ") ePrtw [~a;—a, e® —a, e?:]
=w’a,+ wa, e®' +a, e,

2

o ~ . ) ‘
w et =a,+tw 'a, e®r+w la, e®

By taking complex conjugates and multiplying, we obtain

2’ =ay+ai+a3+2aya; cos(60-B,)
+2a,a, cos(60+ B, — B,) +2aqa, cos(120 — 3,)
=aj+al+ai+2aya, cos(120 — )

+2a,a, cos(120 — a,) + 2a,a, cos(240 — ay— a»), (6)
where aq, a, are respectively the internal angles £ P,P, P, and / P,P,P;.

Example 2. In Example 1 let P,P;=a; e'®:. Then

ze” =w’ay+ wa, e +a, e

=w’aytwa, ePr+[—a, eP +a,; e’
=wla,+twia, e® +a,; e
or

. 4 ~ .
20 e =apt+a, e®itw la;; e

which determines z in terms of the spanning tree P,P,, P,P,, and P, P;.
By taking modulus, it follows that

?=al+a’+al,+2a.a, cos B,
+2a1al3 COS(613—'31"120)+2a0a13 COS(613—120)
=aj+tai+al,+2aya, cos(60—vy)
+2a,a,ycos(120—8)+2aqa, cos(180— 86 —y),
where vy =/ PyP,P; and 6 = £ P;P,P,.

Example 3. In Example 1 let P,P,=a,, e®», Then, from Example 2,

— iA i5 -2 i85
2w e = —ay, eP2+w Pa,; e,

. ) B 5
ze:,\ =d e15|3+w 1a24e| 24’
and hence

2l =ay+ a3+ 20,304 c08(85,— 8,3 60).
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If the diagonals P, P, and P,P, meet at I, and £ P,IP, = ¢, then this yields
2= aly+ als+2a,3a54 c0s(120— ) (7)
since 180 — ¢ = 6,,—8,3.

This formula shows that z depends only on the lengths of the diagonals, and
the angle between them. However, we should note that the two diagonals do not
constitute a spanning tree. In general, we do not need to consider intersecting
pairs of segments.

Corollary. It is well known [6] that for four given points, there are just two possible
full Steiner trees, namely, the one just considered, as in Fig. 5, and the one illustrated
in Fig. 6. By Example 3, with ¢ replaced by 180~ , the length z' of this other
Steiner tree is given by

2% = a’,+ad,+2a,,a4, cos(y — 60).

Consequently, z< 7' if and only if cos(120— ) < cos(¢ —60), that is, if and only
if & = 90°. In particular, the two Steiner trees have the same length when the diagonals
meet at right angles.

Remark. This reproves Lemma 4 of Poilak’s paper [9]. The results of Example
3, and its corollary, including equation (7), also appear in Ollerenshaw’s paper [8].

Fig. 6



Analytic Formulas for Full Steiner Trees 9

r+l

Fig. 7

Example 4. We consider the case where the Steiner points all lie on one path,
with the path turning through angles 60° anticlockwise at S,,S,, Ss,..., and
through 60° clockwise at S3, Ss,..., as shown in Fig. 7. We assume that the
number of Steiner points m —1 is even, and that r=(m+1)/2.
The topology guarantees that y,=1, y,, =w ' and
Wl w, = LW = g,
Wyt Wy, =2w T =y,

Wyt wy, = 142w =y,
and in general

Ve=1+(k—1)w™", k=1,2,...,r,
Vmics1=kw ™", k=1,2,...,(r—1).

Now suppose further that the path P,P,P,P,P;P,,_,--- P.P.., is a zigzag path
with constant angle «, at each P,. Put

uk:[PkPm+2—kL kzl’za"'7ry
vkzlPkPm+3~k" k=25"',r‘
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By some elementary trigonometry,

akeiﬂ‘:_uk‘*‘vmlem, k=1,2,...,(r—1),
B ket = - i = -
Ay - kc+3 6’, . ' Uy Uk+1 elﬂf, k_192""$(r 1)
and
a,ePr=—u,.

It follows, by substitution, that

ze™ =Y ay.e™
k=1
r—1 .
(et v €1+ (k—Dw ' 1—u,[1+(r-Dw ']
k=1

i

r—1
+ ¥ (e = Uk em)(kWAl)
k=1
r X r—1
==Y wtew ¥ v
Kk ==

k=1 =1

on simplification, Consequently,

and hence

zz=( i uk> Jr(ril ka) -—2cos(60+a)( 2’: uk> (r‘z ka).
k=1 k=1 k=1 k=1

An easy modification deals similarly with the case when m is even. This result
may be compared with that recorded by Du et al. [3].

3. Steiner Ratio for Quadrilaterals

By employing some of the previous formulas, we can now present a short proof
of the Steiner ratio conjecture for four points. We need one lemma.

Lemma. Let b, e, b,e*, ..., b, e be given complex numbers, with b,>0,
j=1,...,m If

(max e —e=m/3,

then

bj-

1

V3
2_—_
2,

I P13
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Proof. By a rotation and some relabeling if necessary, we can assume that
O=¢,=¢,=<gy---<¢,=m/3.
But then b, e = ¢,+d, e’ uniquely, where ¢,=0 and d,=0 for each j, and
b=c¢+d,.

If we write C=Y"", ¢

and D=Y" d

,.1 d,, 1t then suffices to show

TRV
’C+De"”3§27(C+D)
for C and D=0. But this is equivalent to (C—D)*=0 by squaring and
rearranging. O

Theorem 3. Let L, and L, denote respectively the lengths of the Steiner minimal
tree and the minimal spanning tree on four points. Then

L.=(/3/2)L,,.

Proof. Tt is enough to consider full Steiner trees [6]. It is enough, in the notation
of this paper, to prove that there is a spanning tree of length at most (2/v3)z,
for any given Steiner configuration. By the previous lemma, it is enough to write
z in the form

D

- 1€
z= b e,

FEED |
where b,, b,, b; are the lengths of the segments of a spanning tree, with

rp;éa‘z()e,—sk\sfr/l

Consider the configuration illustrated in Fig. 5. It is immediate that 8,=60.
By symmetry, we may assume that 8,= 180 (otherwise interchange P,P, with
PyP;). Next we may assume B, = 3,/2 (otherwise interchange P,P, with P,P;).

By Theorem 1,

ze® =gyt a,w ' ePita,w? e

=a, ei°+a1 ei(ﬁl—st))+a2 e (B2 1200,

Since |8, — 120| = 60, and |8, — 60| < 60 by choice, and —60 = (8, — 120) — (B, — 60),
the proof is complete if 8, — B, =120, by the above lemma. Otherwise, 8,~ 8, >
120, whence

B, < B,—120= 180 — 120 = 60.
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If 8,5—B,> 60, then

ze =qgytw 'a, e +w [—a, e® +a,; e]

=ap+a, ef +a 0 e’

may be used. If not, then §,;— 8, <60, 50 B,—8,;>60 and 8,> B,+120=120, so

ze* =aytw '[a;; e’ —a, e® ]+ a0 e
=ay,tw 'a;; e+ a0 e®:
can be used instead. This completes the proof. |
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