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Abstract. It was conjectured by Gilbert and Pollak [6] that, for any finite set of 
points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to 
the length of a minimal spanning tree is at least ~ / 2 .  To date, this has been proved 
only for at most five points. In this paper, some analytic formulas for the length of 
full Steiner trees are considered. These provide an alternative proof of the conjecture 
for quadrilaterals, and the foundation for a possible approach for more complicated 
polygons. 

I. Introduction 

Let P be a set of  n poin ts  in the Euc l idean  plane .  Denote  by Lm(P ) the length 
o f  the min imal  spann ing  tree o f  P, and by L~(P) the length of  the Ste iner  min imal  
tree o f  P. It was con jec tu red  by  Gi lber t  and  Pol lak  [6] that  

L~( P) >- (x/3/2)Lm( P) 

for all P. At present ,  this has only been verified for n -< 5. The case n -- 3 is easy. 
Pol lak  [9] p rov ided  the first p r o o f  for n = 4, by cons ider ing  all poss ib le  pa t te rns  
for  min imal  trees. In subsequen t  papers ,  D u e t  al., prov ided  a very much  s impler  
p r o o f  for  n = 4 [4] and ,  later,  proved the case n = 5 [5]. Genera l i za t ions  for  n -> 6 
do  not  seem to be ava i lab le  yet. 

The example  of  an equi la te ra l  t r iangle  shows that  x/3/2 cannot  be rep laced  
by a larger  number ,  while  in the oppos i t e  d i rec t ion ,  it has been  p roved  by Chung  
and G r a h a m  [1] with compu te r - ed i t ed  computa t ions ,  that  Ls(P)>-O.824Lm(P) 
for all ne tworks  in the p lane .  It is also well k n o w n  [6] that  in o rde r  to prove  the 
G i l b e r t - P o l l a k  conjec ture ,  only  full Ste iner  trees need be cons idered .  

In the p resen t  p a p e r  we der ive  some analy t ic  fo rmulas  for  L~(P). If  P consists  
of  four  po in ts  these p rov ide  an a l ternat ive  p r o o f  of  the results  of  Du et al. 
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2. Pre l iminary  Resu l t s  

We recall that a given set of  vertices may have many full Steiner trees. Here, we 
wish to consider just one " topology"  or full Steiner configuration, associated 
with the given set of  vertices. Thus we assume that we are given a set of  m + 1 
vertices which we label Ao, A~ . . . . .  A~, and m - 1 Steiner points S~, $2, �9 �9  S,,_,, 
always two less in number  than the given vertices together. We may assume [6] 
that each vertex A~ is joined by a line segment to exactly one Steiner point, and 
each Steiner point is an endpoint of three segments, meeting mutually at 120 ~ 

It is well known [6], [7] that there exist at least two distinct pairs of vertices 
A~, where each of the pair is joined to the same Steiner point. Label the two 
vertices from one pair as Po, PI, and the corresponding Steiner point S, in such 
a way that the path PoSIP, changes angle by 60 ~ clockwise at S~. Now the 
remaining vertices may be relabeled uniquely and unambiguously as 
/'2, P 3 , . - - ,  Pro, by requiring that the unique path from the vertex Pk via the 
Steiner points to the vertex Pk§ always changes angle by 60 ~ clockwise at 
each Steiner point. For convenience, we denote Pm§ = ,to. Now label the remain- 
ing Steiner points as $ 2 , . . . ,  Sm-~, any of the possible permutations may be 
selected here. For illustrations, see Figs. 1 and 2. For each integer k, 0 ~< k-< m, 
the path as described from Pk to Pk§ is denoted by fig. Notice that exactly three 
of  these clockwise paths, one for each pair of  segments meeting it, pass through 
each Steiner point. 

P6 
P7 

Po ~ P8 

5 

P1 P2 ~ ( 

Pa 

Fig. 1 
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PO ~S P3 

1 $2 

P1 
P2 

Fig. 2 

Now observe that  if m->3 ,  then the paths /3 and /3m meet  in a c o m m o n  
segment  S~$2 joining two Steiner points. A unique path /3,  q # 1,^q # m, unique 
since three paths pass through $2, and two of  these are P, and Pro, also passes 
through $2. Clearly,  1 < q < m. 

If  q-> 3, then the paths /3 and /3q also share a c o m m o n  segment  which has 
$2 at one end,  and another  Steiner point $3 at the other. There is then a unique 
third path  through $3, /3q,, defining q' such that 1 < q' < q. Similarly, if m - q -> 2, 
there is a cor responding  pa th  P<. with q < q" < m. 

The procedure  can clearly be repeated  until all paths,  /3k, 1 <-k-< m, are 
accounted  for. The procedure ,  in fact, describes how, given certain integers s, t 
with t - s - > 2 ,  and 1 < s < t <- m, an integer q is defined, s < q < t so that  P~, Pq, 
and i 6, share a c o m m o n  Steiner point. 

Define distances by 

a k = I P k P k . , t  if k = 0 ,  1 , 2 , . . . ,  m, 

a,k=lP, Pkl if O ~ j ,  k - < - m + l .  

For angles,  let PoP~ be the vector  defining the direction of  the posit ive x-axis  in 
the usual sense. S, is then in the upper  half-plane.  With this coord ina te  system, 
define /3k to be the angle of  the vector  PkPk§ measured  anticlockwise.  Indeed,  
by regarding the x-axis  as the real axis of  the complex  plane,  then, via a t ranslat ion,  
/3k is such that  

Pk Pk + i = ak e i~ . 

More general ly,  define angles [3jk by O~-~j k <2rr ,  and 

PiP~, : ajk e ie'k 

for 

O < _ j , k < - m + l .  
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Define also the angle  A, 0 < A < 7r, by 

P, SI = IP ,  S , I  '~ e . 

Final ly ,  put  to = e i~/3, and  define the sequence  {yq}, 1 -< q -< m, induct ive ly  by: 

- -1  
(i) y l = l ,  Ym=t~ 

(ii) G iven  Ys and  y,, 1 -< s < t -< m, then 

- 1  oJ y , + w y , = y q ,  (1) 

A ^ 

where  q is the integer,  previous ly  descr ibed ,  so that  s < q < t and P~, P,, 
/3  share  a c o m m o n  Ste iner  point .  

With  the  above  nota t ion ,  we can now state 

Theorem 1. The length z o f  the Steiner tree is given by the formula 

m 

z e ix = ~ aky k e ifj~. 
k = l  

Proof. The p r o o f  is by induc t ion  on m. Assume that  m = 2. The conf igurat ion 
is then a t r iangle  for which  .y~ = 1 and Y2 = to ~. Draw the equi la tera l  t r iangle  
PoP, Q, with the vertex Q exter ior  to the given t r iangle  PoP, P: (Fig.  3). By [7], 

Po 

a 2 

/ 

P1 

Fig. 3 
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the points Po, S~, P~, Q are cocircular, hence 

l-PoOP2 =/ -PoQS,  

= l-PoP1 $1 

= ' r r - A .  

Moreover  [6], z = IQP2I. With a little elementary tr igonometry,  

z c o s ( ~ r - A ) =  ao+a2 cos (5n ' /3 - /32)  

and 

so that 

z sin(rr - A )  = a 2 sin(5 n-/3 -/32) 

73 

ITP~[+ITP,+,[=[TRI. 

z e  i ( ~ - ~ =  a o + a 2 e  "5~/3 ~ (2 ) -  

But, by considering vector addition, we also have 

ao+ a l e  '~' + a2 e i~2 = 0, (3) 

ao+ a l e  - '~,+a2 e ,~2=0. (4) 

Eliminating ao between (2) and (4) yields 

- iA " " z e - = a l e  ' 1 3 ' + o 2 e  ~'e '2-  a 2  e "~ 

= a I e q 3 t + t o a  2 e ~132 

and hence, by complex conjugat ion,  

z e  ix = a 1 e '~ ,+w l a 2  ei~32 

= alyl  e iot+ a2Y2 e i132 

as required. 
Now assume that the theorem is already proved for a value of  m - 1. Consider  

the configurat ion for m, as hitherto described. As noted, there is a positive integer 
r, 1 < r <  m, for which Pr and P~+, are both joined to the same Steiner point  T. 
Construct  an equilateral triangle, with PrPr+, as its base, with its other vertex R 
so that T and R are on opposi te  sides of  PrPr+,. Put 

' -IPr RI a r  1 - -  --1 

' IRa  I a r + l  = + 2  , 

and let/3'~_~,/3'~+~ be respectively the angles given by the directions o f  the vectors 
P,_~/~ and RP,+2. Notice that T is joined to just one other Steiner point  T~ (see 
Fig. 4). 

As noted before,  R lies on the line T~ T produced,  such that 
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TI R 

Fig. 4 

The configuration, in which Pr ,P~, PrPr+l, Pr+~Pr+2, is replaced by P,_tR, RP~+2, 
has one less segment and one less vertex than that given. Hence by the induction 
assumption, 

where, from the construction, 

and 

m - I  
z e iA : ~,  b k z  k e iTk, 

k = l  

bk = a k  

b~_~ = a'r_l, 

b~ = O ' r + l ,  

b k - -  a k +  1 

7"k = Y k  

Zk = Yk+~ 

Tk=flk 

.y._, = fl'._. 

')'r = fl','+. 

"A -- fl/~+1 

if 1-< k-< r - 2 ,  

if r + l < - k < - m - 1 ,  

if l < - k < - r - 1 ,  

if r<-k<-m-1 ,  

if 1-< k-< r - 2 ,  

if r + l < - k < - m - 1 .  
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Thus 

z e  th : 
r - 2  m - 1  

~ bkzke i~+b~ IZ~ l e i~ - ,+b~z~e i~+ Y. bkZke i~ 
k ~1 k = r + l  

r 2 m I 

akYke'tJtq'-a'r ly, ~ e '~; ,+a'+~y,+~ eit3;+,+ 
k = l  k : r + l  

r - 2  

E 
k = l  

a k + l Y k +  l e '~+, 

akyk e ~ + yr-~[ar ~ e ~" '+ a , e  "~'-~/3)] 

m 

+y~+l[a~e"tL+=/3)+a~+ 1 e i ~ - , ] +  ~ aiy, e i~' 
/ = r + 2  

r 1 m 

~ a~kei~ l + y ~ . l t O ] e ' ~ , +  Y. a ~ k e  ;& 
k = l  k ~ r + l  

a k Y k  e 43~ 
k = l  

by (1). This comple tes  the proof .  [] 

- I  Remark.  I f  bo th  z and  h are required ,  then the init ial  values yl = 1, y,, = tO 
are both  necessary.  I f  z a lone  is required ,  then y~ = e i", y~ = tO-~ e i~ for any real 
a will suffice. 

C o n s i d e r  any spann ing  tree consis t ing of  m line segments  jo in ing  the (m + 1) 
points  Po, P~, P2, . . . ,  Pro. Each segment  of  the spanning  tree can be descr ibed  
by a vec tor  d; e '~, where d r is its length and  6~ de te rmines  its d i rec t ion  and  sense. 

Each vector  PkPk+~ is a un ique  l inear  combina t i on  of  some vectors  from the 
spann ing  tree, with coefficients •  So, for each k, 

ak e i~ ~ ekjdj iv = e ,, (5) 

where  the coefficients ekj = O, 1, or  - 1  are un ique ly  de te rmined .  This leads  immedi -  
ately to 

Theorem 2. Let  dj i~ e ,, j = 1 , . . . ,  m, describe the vectors o f  any spanning tree o f  
the ( r e + l )  points Po, PI , . . . , Pro. Then there exist scalars xj, depending only on 

the configuration and the choice o f  spanning tree, such that 

z e i~ = ~ djxi e i~''. 
.j= 1 

Moreover, each xj belongs to the lattice L defined by the three numbers 0, 1, and 
tO = e irr /3 .  
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Proof 
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By Theorem 1 and equation (5), 

z e ix = ~ akyk e il3k 
k=l  

: ~ yk ~ ek jd je  i'j 
k=l  j = l  

j = l  k=l  

= ~ djxj e m, 
j = !  

say, where xj - k=,  Ykek). 
It is clear that y~ = 1 e L, y,, = to-~ e L, and by the construction (1), each Yk 6 L. 

Sifice ekj = 1, --1 or 0, each xj �9 L. [] 

Example 1. Consider the full Steiner tree on four points P0, P~, P2,/'3 as shown 
in Fig. 5. We h a v e y ~ = l ,  y 3 = t o  ~ , s o t h a t  

1 
Y2 = to Y~ + t~ 

= l + t o  1 

By Theorem 1, 

Since 

z e  ia = a ~  eitL + a2(1 + t o  -1 )  e~t32+a3to ~ e i/33, 

a o +  a~ e i ~ +  a2 eil3z-F a3 eq33 = 0 

PO = P~ 

a 0 

P1 

a 3 

S 2 

s 

Fig. 5 

P3 
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it also follows that 

z e `a = al e'& + a2( l + w ~)ei&+w l [ - a o - a l e i & - a 2  ei& ] 

= o j2ao  + oJa,  ei~, + a2 e~,2, 

z to -2e 'a=ao+tO lalei,8~-}-oj-2a2ei,82" 

By taking complex conjugates and multiplying, we obtain 

Z 2 2 2 = at,+ a, + a~+ 2aoal cos(60-/31) 

+ 2aj a2 cos(60 +/3~ -/32) + 2aoa2 cos(120 - 132) 

= a~+ a~+a~+2aoa,  cos (120-ao )  

+ 2a,a2 cos (120-  % ) +  2aoa2 cos(240-  Uo-  a2), 

where ao, a2 are respectively the internal angles • and ZP1P2Ps. 

Example 2.  In  E x a m p l e  1 let  P~p~ = a13 e '~''. Then 

z e'* = to2a o  + t oa  1 e '& + a 2 e 'r 

= o92ao+toal e ' & + [ - a l  e43,+a13 e'G3] 

= to2ao @ t o2a l  eg3~ + 013 e iG3 

o r  

ZtO- 2 e,,X = ao + a!  e i~t + 09 2a13 e i613 

which determines z in terms of the spanning tree POP[, GP21 and GP~. 
By taking modulus, it follows that 

z 2 = a2+ a2+ a213+2aoal cos fll 

+ 2ala13 c0s(313-131- 120)+ 2aoa~3 c0s(613- 120) 

= a2+a2+a~3+2aoa13 cos (60-  3') 

+ 2a~a13 cos(120 - 3) + 2aoal cos (180-  6 - y), 

where Y=/-PoP~P3 and c5 =zP~P~P2.  

Example 3. In Example 1 let P2P4 = a24 el'S24. Then, from Example 2, 

ZO) 2 eia = _(124 e i ,S2a+o) -2a l3  ei~13 

z fiA ~ a13 e i~'~3-t.- 02, l a24 e i~S24 ' 

and hence 

z 2 2 2 C0S(~24-- 313 -- 60). = a 13 q'- a24  q- 2 a l 3 a 2 4  

77 

(6) 
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I f  the d iagonals  P~P3 and P2P4 meet at /, a n d / - P o l P I  = 4', then this yields 

2 .2-- a~3 + a~4+ 2a,3a24 cos(120- 4') (7) 

since 1 8 0 -  4' = ~524- ~3 .  

This fo rmula  shows that  z depends  only on the lengths of  the diagonals ,  and 
the angle be tween  them. However ,  we should note that  the two diagonals  do not 
const i tute a spanning tree. In general ,  we do not need to consider  intersecting 
pairs o f  segments.  

Corollary.  It is well known [6] that for four given points, there are just two possible 
full Steiner trees, namely, the one just considered, as in Fig. 5, and the one illustrated 
in Fig. 6. By Example 3, with 4' replaced by 180 -4 ' ,  the length z' of  this other 
Steiner tree is given by 

z '2= a~3+a~4+2a,3a~4 c o s ( 4 ' -  60). 

Consequently, z <~ z' i f  and only if cos( 120 - ~b) -< cos(4'  - 60), that is, if and only 
if4' <- 90 ~ In particular, the two Steiner trees have the same length when the diagonals 
meet at right angles. 

Remark. This reproves  L e m m a  4 of  Pol lak 's  pape r  [9]. The results of  Example  
3, and its corollary,  including equat ion (7), also appea r  in Ol lerenshaw's  pape r  [8]. 

~ P3 

P 1 

Fig. 6 

P2 
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Pm-1 

Pr 
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P2 

Fig. 7 

Example  4. We cons ider  the case where the Steiner  points  all lie on one path ,  
with the pa th  turn ing  th rough  angles 60 ~ ant ic lockwise  at $2, $4, $ 6 , . . . ,  and  
th rough  60 ~ c lockwise  at $3, $ 5 , . . . ,  as shown in Fig. 7. We assume that  the 
n u m b e r  o f  Ste iner  poin ts  m - 1 is even, and  that  r = ( m +  1)/2. 

The t o p o l o g y  guarantees  that  y~ = 1, Ym = w -~ and 

w ly~+wy,, ,=l+w 1=y2,  

w-~y2+wy,,=2w ~ = y,,_~, 

w-ly2+ wy,,_t = 1 + 2 w  ~ =Y3, 

and  in genera l  

yk=l+(k- -1)W -~, k = l , 2 , . . . , r ,  

y,,,_k+l=kw 1, k =  1 , 2 , . . . , ( r - I ) .  

N o w  suppose  fur ther  that  the pa th  P~PoP2PmP3P,,-~'" " PrPr+~ is a zigzag pa th  
with cons tan t  angle  a,  at each Pk. Put 

k =  1 , 2 , . . . , r ,  

k = 2 , . . . , r .  
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By some elementary trigonometry, 

and 

a k  e il3~ = - - U k  + /,)k+ I eU~, 

iof 
a m _ . k +  1 e '~ ' ' '  ~ * '  = U k +  1 - -  V k +  1 e , 

It follows, by substitution, that 

z e ix = ~ a k Y k  e i~t 
k - 1  

a r  eiO~ = _ Ur. 

k = l , 2  . . . . .  ( r -  1), 

k =  1 , 2 , . . . , ( r - I ) .  

r 1 

= ~, ( - - U k + V k + , e i " ) [ l + ( k - - 1 ) w - ' l - - u ~ [ l + ( r - - 1 ) W  '] 
k = l  

r - 1  

"Jr- ~ .  ( U k + l - - V k +  1 e"~)(kw -1) 
k 1 

= --  U k -t- e i a w  ~ V k +  1 
k = l  k = l  

on simplification, Consequently, 

Z e - i x  = - -  t l  k @ e - i t ~ w  1 ~ ,  V k + l  

k = l  k = l  

and hence 

Z2=(k~=, Uk)2-~-(ii 11 Pk+l)2--2 COS(60+O~)(k~l Uk)(i@ll Vk+l) " 

R. S. Booth 

An easy modification deals similarly with the case when m is even. This result 
may be compared with that recorded by Du et al. [3]. 

3. Steiner Ratio for Quadrilaterals 

By employing some of the previous formulas, we can now present a short proof 
of the Steiner ratio conjecture for four points. We need one lemma. 

it: 1 ie2 ie Lemma. Let b~ e , b2 e , . . . ,  bme ,,. be given complex numbers, with bj > O, 
j = l , . . . , m .  I f  

then 

max l e j -  ekl<-- 7r/3, 
I ~ j < k ' ~ r n  
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Proo f  By a rotation and some relabeling if necessary, we can assume that 

O= el ~ e2 <- e3 �9 �9 "-<- e,, <- 7r/3. 

But then b! e",  = C! + d je  '"/3 uniquely, where c, -> 0 and d~ -> 0 for each j, and 

b, <~ cj + dj. 

m , r n  

If  we write C =Y~ :1 q and D = ~ , I  (/i, it then suffices to show 

IC + Dei,~/3I>~73 2(C+D) 

for C and D>-0 .  But this is equivalent to ( C - D ) 2 > - O  by squaring and 
rearranging. [] 

Theorem 3. Let  L~ and Lm denote  respectively the lengths o f  the S te iner  min imal  
tree and  the m in ima l  spanning tree on f o u r  points.  Then 

L~ -> (-,/3/2) Lm. 

Proof. It is enough to consider  full Steiner trees [6]. It is enough,  in the notation 
of  this paper,  to prove that there is a spanning tree o f  length at most  (2/x/-3)z, 
for any given Steiner configuration. By the previous lemma, it is enough to write 
z in the form 

3 

z = V b ,  " f ~, 

! : :  I 

where bl, b: ,  b 3 a r e  the lengths o f  the segments of  a spanning tree, with 

m a x l e j -  ekl -< 7r/3. 

Consider  the configurat ion illustrated in Fig. 5. It is immediate that /32-> 60. 
By symmetry,  we may assume that /32-  < 180 (otherwise interchange P~P2 with 
P0~) .  Next we may assume /31 </32/2 (otherwise interchange PoP1 with P2P3). 

By Theorem 1, 

z e  ia = a o + a ~ w  i e i l 3 ~ q _ a 2 0 ) - 2  ei~2 

= ao e i~ at e i(13~ 60~ + a2 e i(132 120). 

Since ]/32 - 1201 -< 60, and 1/31 - 60] < 60 by choice, and -60-<  (/32 - 120) - (/3, - 60), 
the p roof  is complete  if/32 -/31 < 120, by the above lemma. Otherwise, /32-/31 > 
120, whence 

/31 </32 - 120 <~ 180 - 120 = 60. 
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I f  t ~ 1 3 - - f l l > 6 0 ,  t h e n  

z e ix = a 0 +  t o - l a l  e i/3~ h- t o - 2 [ - - a  I e ~~ + a l3  e ia,~] 

= n o +  a l  e '~' + a l3to  2 ei8~3 

m a y  be  used .  I f no t ,  t h e n  ~ 3  - /31 < 60, so/32 - ~513 > 60 and/32  > /3  ~ + 120 -> 120, so 

z e ix = a o +  t o - l [ a ~ 3  e '~i~3 - a2 e ifl2] + a2to-2 e~2 

_- a o +  t o - l a l 3  e i~3+ ci2to -3 eifl2 

can  be u sed  ins tead .  This  c o mp l e t e s  the proof .  [] 
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