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Theorems on the Existence of Separating Surfaces* 
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Abstract. Let ,~ and ~ be finite of sets in E ~. This paper presents theorems on the 
existence of strict linear and spherical separators of ~' and ~ that are similar to the 
fundamental separation theorem of Kirchberger. Kirchberger's theorem implies that 
the strict linear separability of finite sets R and G is determined by the separability of 
all subsets of up to d + 2 points of R w G. This paper shows that under certain 
conditions, the linear separability of .~ and ff is determined by the separability of 
significantly fewer than all subfamilies of up to d + 2 members of ~ w ft. The same 
treatment is made of Lay's extension of Kirchberger's theorem to separation by 
hyperspheres. 

1. Introduction 

Two subsets P and Q of the d-dimensional  Eucl idean space E a are said to be 
(strictly) linearly separable if there exists some hyperplane h such that P is 
conta ined in one of the two open half-spaces bounded  by h, and  Q is conta ined in 
the other. In 1903 Kirchberger  published a fundamenta l  theorem on the existence 
of strict l inear separators for finite point  sets in E d [5] : 

Theorem 1.1 (Kirchberger),  Two finite subsets P and Q of E a are strictly linearly 
separable if  and only i f  for each set T consistin# of at most d + 2points of P u Q, the 
sets T n P and T n Q are strictly linearly separable. 

A not ion  closely related to that of l inear separabil i ty is spherical separability. 
Two subsets of E d are said to be (strictly) spherically separable if there exists some 
hypersphere s such that the interior of s conta ins  one subset and  the exterior of s 
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contains the other. Lay [6] extended Kirchberger ' s  theorem to spherical separabi-  
lity in the following manner :  

Theorem 1.2 (Lay). Two .finite subsets P and Q ~f  E a are strictly spherically 
separable if  and only iJ~ for each set T consistin9 of  at most d + 3 points o[ P w Q the 
sets T n P and T n Q are strictly spherically separable. 

One s tandard  p roof  of Kirchberger ' s  theorem, that  of Rademacher  and Schoen- 
berg [7], employs  the well-known theorem due to Helly concerning the existence of 
points in the c o m m o n  intersection of convex sets [3], I l l .  Whereas  the original 
theorem of Helly is somewhat  more  general, we require only the following 
restricted formulat ion:  

Theorem 1.3 (Helly). The members of  a .finite family Of of  convex subsets o f  U 
have a common intersection point i f  and only if, for  each family ,Y- consisting of  at 
most d + 1 members of  gg, the members o J ' Y  have a common intersection pohlt. 

These theorems are similar in that  a "g loba l "  proper ty  of sets (linear separabi-  
lity, spherical separability,  c o m m o n  intersection) is dependent  upon the same 
proper ty  considered " loca l ly"  over subsets of bounded  cardinality, these cardinali- 
ties being d + 2 for Ki rchberger ' s  theorem, d + 3 for Lay 's ,  and d + 1 for Helly's.  It 
is not difficult to produce examples  which demons t ra te  that  the respective 
cardinalities cannot  be decreased using the formulat ions  given above. However,  
there is still a significant dissimilarity between Helly 's  theorem and the others. To  
illustrate this dissimilarity, let us consider an example.  Let .of = { K 1 , K z . . . . .  K,} 
be a family of n convex sets of E e, n > d, defined as follows (see Fig. 1): 

1. Sets K 1, K 2 . . . . .  Ke+ 1 are closed half-spaces whose bounding  hyperplanes  
contain the d + 1 facets of some d-dimensional  simplex in E ~. 

2. These half-spaces do not contain the interior of this simplex. 
3. The remaining convex sets of #f ,  if any, are closed balls containing the 

simplex. 

It is easily verified that  the members  of ) f  have no point  in common ,  yet with the 

r. 

q 

Fig. I. Convex sets in E 2 with exactly one subfamily of three sets nonintersecting. 
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exception of the subfamily {K 1, K 2 . . . . .  Kd+ 1}, every subfamily consisting of at 
most d + 1 members of o,~ has a common point of intersection. If we were to test a 
family of a convex sets for common intersection using Helly's theorem as a guide, 

( n )d i f f e r en t sub fami l i e so fca rd ina l i t y  we would expect to have to test all d + 1 

d + 1, in the worst case, before being able to make a decision. On the other hand, it 
is not hard to see that there are no examples of point sets P and Q of E 1, of 
combined cardinality n > 3, such that P and Q are not linearly separable but only 
one subset of P w Q of cardinality three is not linearly separable. A similar situation 
exists in the setting of spherical separability. These observations suggest the 
possibility that Kirchberger 's and Lay's  theorems are not "optimal,"  in that fewer 

n / subsets of P u Q in E d need be tested for local linear separability in than d + 2 
/ 

order to ascertain whether P and Q are themselves linearly separable, and fewer 

( n ) subse t sneedbe tes ted toascer ta inwhe therPandQarespher ica l l y  than d + 3 

separable. Indeed, this is reflected in the following refinement of Kirchberger 's 
theorem, due to Watson [8]: 

Theorem 1.4 (Watson). Let P and Q be disjoint finite sets of points in E a, and let x 
be any point in P w Q. Sets P and Q are strictly linearly separable i f  and only if, for 
each set T ~_ P u Q consistin 9 of at most d + 2 points and containin9 x, the sets 
T c~ P and T r~ Q are strictly linearly separable. 

The main result of the next section is a generalization of Watson 's  refinement to 
finite families of arbitrary subsets of E d. Two such families ~ and c~ are said to be 
(strictly) lineary separable if there exists some hyperplane h such that the member 
sets of .~ are contained in one of the two open half-spaces bounded by h, and the 
member sets of f# are contained in the other. In an analogous fashion, we may also 
define the spherical separability of finite families. Section 3 concerns itself with 
similar treatments of Lay's  theorem. 

2. Separation Using Hyperplanes 

Let h = {x ~ Edl ft. x = 1 } be a hyperplane avoiding the origin, where ~ e E a, rc ~: 0. 
Of the two open half-spaces delimited by h, we say that the half-space containing 
the origin, h § = {x ~ Eal ft. x < 1}, be called the inner half-space of h. Similarly, the 
other half-space, h -  = {x~ Eal~.x > 1}, is known as the outer half-space of h. 
Consider the point-hyperplane dual transform ~ that maps each point p ~ E a 
(p ~ 0) into the hyperplane ~ ( p ) =  {x ~ Ed[p.x = 1}, and each origin-avoiding 
hyperplane h = {x E E~lrt . x = 1} into the point ~(h)  = ~. The following observa- 
tion is fairly straightforward: 

Observation 2.1. Let p be a point E d other than the  origin, and let h be a 
hyperplane of E d avoiding the origin. If point p is contained in hyperplane h, then 
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point 9(h)  is contained in hyperplane 9(p). Otherwise, ifp is contained in the inner 
(outer) half-space of h, then 9(h)  is contained in the inner (outer) half-space of 
~(p). 

Let ~ and fr be finite families of subsets of the d-dimensional Euclidean space 
E a, such that the members of,~ and ff are coloured red and 9reen, respectively. We 
consider an augmentation 9 "  of the dual transform 9 that maps red sets R e 
into a collection of outer half-spaces 9*(R),  and green sets G e (r into a collection 
of inner half-spaces 9*(G). That is, if r is an element of some red set R, then the 
outer half-space 9 ( r ) -  is a member of 9*(R);  the green case is defined analogously. 
Since 9 is undefined on the origin, we say that a red point at the origin is mapped 
under 9 "  to the empty set ~ ,  and that a green point at the origin is mapped to the 
entire space E d. The empty set and the space E d can be thought of as the outer and 
inner half-spaces of a hyperplane at infinity, respectively. Finally, if P is a coloured 
set, we denote the common intersection of the half-spaces of 9*(P)  as J (P ) .  It 
should be noted that J ( P )  is necessarily convex (possibly empty), as it is the 
intersection of convex sets. The set J ( P )  has an interesting interpretation in light of 
separation: 

Lemma 2.2. Let P be a 9reen (red) subset of E a, and let J ( P )  be the common 
intersection of the members of g*(P) as defined above. Then point x ~ 0 is contained 
in J ( P )  if  and only i f  its dual hyperplane 9 (x )  has all points of  P contained in its inner 
(outer) half-space. 

Proof Let h* be any member of 9*(P).  By definition, h* is either an inner (outer) 
half-space of some hyperplane h whose dual point 9(h)  is a point of P, or the entire 
space E d (empty set ~ ) .  If h* = E d, then the point 9*(h*) of P is the origin, and is 
contained in the inner half-space of every hyperplane that is the dual under 9 of 
points of J(P)\{O}. (If h* = ~ ,  the set J ( P )  is empty.) Otherwise, let x 4:0 be a 
point of E ~ contained in h*. Since x is contained in the inner (outer) half-space of h, 
by Observation 2.1 we have green (red) point 9(h)  contained in the inner (outer) 
half-space of hyperplane 9(x).  Then h*\{O} is precisely the set of all points of E ~ 
whose dual hyperplanes under 9 have inner (outer) half-space containing green 
(red) point 9(h). Therefore J(P)\{O} is the set of all points of E d whose dual 
hyperplanes under 9 have inner (outer) half-spaces containing P. [] 

Theorem 2.3. Let 5~ and f9 be nonempty finite families of  subsets of E a, and let P be 
any nonempty member of ~ w f~. Then ~ and (~ are strictly linearly separable i f  and 
only if, for each family ~ consisting of d + 1 or fewer members of ~ w f~, the families 
(M u {P}) c~ .~' and ( ~  u {P}) n c~ are strictly linearly separable. 

Proof If suffices to prove the nontrivial implication. Without loss of generality, 
we assume that P is a member of f# and that the members of ~ and f9 are coloured 
red and green, respectively. Also without loss of generality, we may translate the 
sets of ~ and (~ such that the set P contains the origin. Let ~ be a set of d + 1 or 
fewer members of ~ u f#. By assumption, there exists a hyperplane h that separates 
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the families :SR = (.8 U {P}) n o~ and ~c, = (N' u {P}) c~ ~. Since P contains the 
origin, hyperplane h must avoid it, and P is contained in the inner half-space of h. 
Thus all sets of ~ a  must be contained in the inner half-space of h, and all sets of ~R 
must be contained in the outer half-space. Lemma 2.2 then implies that if B is a 
member of ,~R u , ~ ,  the point @(h) of E d is contained in .Jr(B), which in turn 
implies that the common intersection of these sets is non-empty. Since every such 
subset ~ of d + 1 or fewer members of ~'  u ff has this property, Helly's theorem 
implies that the common intersection I of all sets of the form {J(Q)IQ e ~ u f#} is 
nonempty. 

It should be noted that ! does not contain the origin: otherwise, since no outer 
half-space may contain the origin, the set ~'  would be empty, violating the 
assumption. Let x 4:0 be a point of I. Since x is contained in J ( Q )  for each 
Q e ~ u a/, Lemma 2.2 again implies that each member R of ~ is contained in the 
outer half-space of hyperplane ~(x),  and each member  G of aj is contained in the 
inner half-space. Therefore the sets ,~ and ff are strictly linearly separable as 
required. [] 

The open half-spaces of a linear separator for families N and f# may be labeled 
according to the family contained by each. In the context of Theorem 2.3, this 
labeling involves a degree of freedom that is eliminated by the choice of some 
distinguished set P o f ~  w fr In this sense, P acts as a "focus" or a "reference" for 
the local tests of linear separability. The next theorem shows that we may refer to a 
distinguished direction instead of a distinguished set. 

For simplicity of exposition, we assume that the distinguished direction is that of 
the positive Xd-axis, and refer to it as the vertical direction. A hyperplane h that does 
not contain a translate of the xd-axis is said to be nonvertical. The open half-spaces 

d 1 of h can be described analytically as h + =  {xeEnlxd > ~ i = 1  r~ixi + red} and 
h- = {x ~ Enlxn < ~ -  ~ rtlx i + ~td}. The half-spaces h + and h-  are called the upper 
and lower half-spaces of h, respectively. The points of h + are said to be above h, and 
the points of h are said to be below. 

Theorem 2.4. Let ~ and ~ be nonempty finite families of  subsets of E a. Then ~ and 
are strictly separable by a nonvertical hyperplane with ~r above the hyperplane and 
below if and only if, for each family ~ consistin9 of d + 1 or fewer members of 

.~ u f#, the families ~ c~ f# are strictly separable by a nonvertical hyperplane with 
n ~ above and ~ c~ ~ below. 

Proof Let M be a family of d + 1 or fewer members of ~ u ff as defined above, 
and let hb be a nonvertical hyperplane such that ~ c~ ~ is above h b and ~ c~ ff is 
below. Also, let P be the intersection of all upper half-spaces of hyperplanes h b over 
all finitely many choices of subfamily ~ '  of ~ u fg. Note that P cannot be empty. 
Then the families ( ~  u {P}) n ( ~  u {P}) and ( ~  u {P}) c~ fq are linearly separable. 
Therefore the families ~ w {P} and f# are strictly linearly separable by Theorem 
2.3. But every vertical hyperplane intersects P, so the separator must be nonverti- 
cal. Finally, P being above the linear separator implies the result. [] 
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3. Separation Using Hyperspheres 

In the proof of this theorem on spherical separability, Lay transforms an instance 
of a spherical separability problem in E d into a linear separability problem in E d+ 1, 
by means of a stereographic projection. In this new setting, Lay applies Kirch- 
berger's theorem directly to obtain his result. In this section we adapt  Lay's  proof 
in proving existence theorems for spherical separators similar to the linear 
separation theorems of the previous section. 

Let h be a hyperplane in E ~, and let a be a hypersphere tangent to h at point p. 
Let p' be the point of a antipodal to p. The stereographic projection r of point x e h 
onto a (based at p') is defined as being the intersection of the line containing x and 
p' with a\{p'}. This establishes a bijective correspondence between points of h and 
points of a\{p'}. Before presenting the theorems of this section, we present (without 
proof) some basic properties of stereographic projections. For additional informa- 
tion on stereographic projections and geometric transformations in general, the 
reader is refered to 1-2] and [-4]. 

Lemma 3.1. Let h be a hyperplane in E d + 1 and let tr be a d-dimensional hypersphere 
of unit radius tangent to h at point p. Let z be the stereoyraphic projection of h onto cr 
based at the point p' antipodal to p in a. Let s be a ( d -  1)-dimensional sphere 
contained in h, and let s + and s- be its interior and exterior relative to h, respectively, 
Then: 

1. The projection r(s) of s onto t~ is the intersection of or and some hyperplane h~. 
2. The projections r(s +) and r ( s - )  are each contained in different open ha(f-spaces 

defined by h,. 

See Fig. 2 for an illustration of these relationships. A flat f of dimension d - 1 
contained in h may be viewed as a degenerate (d - 1)-dimensional sphere centered 
at infinity with infinite radius. Obviously, the stereographic projection of f is 
contained in the intersection of a and a hyperplane passing through both p' and f. 

Theorem 3.2. Let ~ and f# be nonempty finite families of subsets o r e  d, and let P be 
any nonempty member of ~ • f#. Then J~r and f# are strictly separable by a (possibly 
degenerate) hypershpere (land only' ([~for each family ~ consistin9 of d + 2 or fewer 

pt 

x(s) C r ~ h  /' 
Fig. 2. The stereographic projection of a (d - l)-dimensional sphere. 
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members of Jl u f~, the families ( ~  u {P}) n ,~ and (~' u {P}) n c~ are strictly 
separable by a (possibly degenerate) hypersphere. 

Proof Let E d be embedded in some hyperplane h of E a+l, and let tr be a 
d-dimensional unit sphere tangent to h at some arbitrary point p. Let z be the 
stereographic projection of h onto tr based at the point of p' antipodal to p. Let 
be a family consisting of d + 2 or fewer members of ~ w ff such that Ma = 
(~  ~ {P}) n ~ and ~ o  = (~  w {P}) n fr are spherically separable in h by some 
(d - 1)-dimensional sphere s. If hs is a hyperplane containing r(s), then Lemma 3.1 
implies that the families z(MR) and ~ ( ~ )  are strictly linearly separable by h~. 
Therefore, by Theorem 2.3, the families r (~)and z(ff) are linearly separable. 

Let h', be a linear separator of r(~l') and r(f#) such that h'~ intersect tr in some 
( d -  l)-dimensional sphere s'. Since r (~)  and r(ff) are both nonempty, such a 
separator must exist. Then the (possibly degenerate) ( d -  1)-dimensional sphere 
z- l(s ' )  strictly separates .~ and f#. [] 

Figure 3 gives an example of two families of sets in E z where every subfamily of 
five members is strictly spherically separable, but the only separator for the entire 
collection is degenerate. It should be noted that the closure of the triangles of Fig. 3 
intersect the separator h, but the triangles themselves do not. In the formulation of 
the previous theorem, if we restrict the members of.~' and fq to be compact (closed 
and bounded) sets, we can guarantee the nondegeneracy of the separating 
hyperspheres: 

Theorem 3.3. Let .~t and f~ be nonempty finite families of  compact subsets of  E a, and 
let P be any nonempty member of ~t w f#. Then ~ and f# are strictly spherically 
separable i[" and only if, for each family ~ consisting of d + 2 or fewer members of 
.~ u f#, the families ( ~  u {P}) n ~ and (~  w {P}) n f# are strictly spherically 
separable. 

Proof As in Theorem 3.2, we embed E d into a hyperplane h of E d + t and apply a 
stereographic projection, arriving at a hyperplane h's that separates ~(,~') and T(f#). 
If h'~ contains the previously defined point p', then, due to the compactness of z(~) 
and r(c~), we may perturb h'~ into some new separator h" that avoids p'. If s" is the 
intersection of h" and a, then the (d - 1)-dimensional sphere z -  l(s") is a nondegen- 
erate strict separator for ~ and ~. [] 

�9 �9 

h 
i 

Fig. 3. The only spherical separator is degenerate. 
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In Theorem 2.4 the need for a distinguished set P o f ~  u c~ for linear separability 
was obviated by the introduction of a distinguished direction. In the setting of 
spherical separability, this distinction of direction becomes more natural. Let s § 
and s -  be the open interior and exterior of hypersphere s, respectively. We say that 
the points of s § are inside s, and that the points of s -  are outside s. We now state a 
theorem of spherical separability analogous to Theorem 2.4. 

Theorem 3.4. Let ~t and f~ be nonempty finite families of  subsets of  E a. Then ~l and 
f# are strictly separable by a hypersphere with ~i inside the hypersphere and ~ outside 
if  and only if, for each family ~ consisting of d + 2 or fewer members of ~ u ~, the 
families ~ ~ ~ and ~ c~ ~ are strictly separable by a hypersphere with ~ n ~ inside 
and ~ ~ ~ outside. 

Proof. Let ~ be a family of d + 2 or fewer members of 9t w fq as defined above, 
and let sb be a hypersphere whose interior contains ~ n ~ and whose exterior 
contains ~ n f~. Also, let sp be a hypersphere whose interior contains sb for all 
finitely many choices of subfamily M of ~t u fr If P is the exterior of Sp, then the 
families ( ~  w {P}) n ,~' and (~' w {P}) n (f# w {P}) are spherically separable. 
Therefore the families ~t and fr u {P} are (possibly degenerately) strictly spheri- 
cally separable by Theorem 3.2. But every hyperplane intersects P, so the separator 
cannot be degenerate. Finally, P being outside the spherical separator implies the 
result. [] 
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