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Abstract. In this paper we present an O(n 4 log log n) algorithm to find a shortest 
watchman route in a simple polygon through a point, s, in its boundary. A watchman 
route is a route such that each point in the interior of the polygon is visible from at 
least one point along the route. 

1. Introduction 

A number  of researchers have considered the problem of stationing watchmen in a 
gallery so that  every point  in the gallery can be seen by at least one watchman (art- 
gallery problem). Most  of the results on  gallery watchmen and related problems 
can be found in [O].  The watchman-route  problem was introduced in I-CN]. The 
problem is to find a route in a polygon with the proper ty  that each point  in the 
polygon (interior and boundary)  is visible from at least one point  along the route. 
Two points in a polygon are visible to each other  if no point  on the straight line 
segment connecting them is exterior to the polygon.  The goal is to minimize the 
length of the route. 

Finding a shortest wa tchman route is known to be N P - h a r d  for polygons with 
holes and for simple polyhedra  [CN] .  For  simple rectilinear polygons,  an O(n) 
algori thm that constructs a shortest wa tchman route is given in [ C N ]  (if we allow 
O(n log log n) time for tr iangulat ion [TV]).  A shortest  wa tchman route follows the 
boundary  of the polygon as it moves in and out  of areas that  allow the watchman 
to see a round  corners. The extent to which a shortest  route needs to come into a 
certain area is captured by the concept  of  essential lines. These are straight line 
segments inside the rectilinear polygon such that any watchman route must  visit 
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them and any route that visits them is a watchman route. After the essential lines 
are identified, the portions of the polygon that lie outside them can be removed 
(since a shortest watchman route never needs to enter them). The resulting polygon 
is triangulated and "unrolled" using the essential lines as mirrors so that the 
problem of finding a shortest watchman route becomes that of finding a shortest 
path from a point to an image of itself inside a simple polygon. Existing O(n) 
algorithms [GH*]  are used to solve the shortest-path problem and a shortest 
watchman route is obtained by "folding" back the shortest path. The approach is 
illustrated in Fig. 1. Fig. l(a) shows a simple rectilinear polygon and the set of 
essential lines for it. Fig. l(b) shows the reduced polygon when areas that a shortest 
watchman route does not need to enter are removed. In Fig. l(c) we have the result 
of the "roll-out" process (the idea is to straighten a ray that reflects on a mirror 
into a ray that passes through the mirror, where the ray is the watchman route and 
the mirrors are the essential lines; to achieve this, triangles d, c, and the degenerate 
triangle e3 reflect on e2, e3 reflects on itself, then e3 and the triangles c, b, a, reflect 
on the degenerate essential line e4 and finally triangles a, b, c, d reflect on el). Fig. 
l(c) also shows a shortest path from a point, s, that must be on the shortest 
watchman route to its image, s'. Finally, in Fig. l(d) the shortest watchman route 
(obtained by folding the shortest path at its intersections with the essential lines) is 
shown. 

In this paper we present a polynomial-time algorithm for the watchman-route 
problem in simple polygons. We assume that a "starting" point, s, on the boundary 
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Finding shortest watchman routes in simple rectilinear polygons. 
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of the polygon is specified for the route, i.e., the route starts at s and has tb return to 
s. Usually, s can be selected so that it lies on a shortest watchman route. Also, in 
most  applications s is already specified and the route has to be designed through it. 
The problem without  a fixed starting point remains open. In the next section we 
give an overview of the algorithm. In Section 3 we prove that the shortest 
watchman route in simple polygons is unique. Finally, in Section 4, we give an 
algori thm to construct  the shortest watchman route and analyze its complexity. 

2. Overview of the Algorithm 

Consider an n-sided simple polygon P with a point  s on its boundary.  The polygon 
can be described by a sequence of vertices v o, v 1 . . . . .  v,_ 1 or a sequence of edges 
E 0, E 1 . . . . .  E ,_  1 indexed in the order that they appear  in a clockwise scan of  the 
boundary  of P starting at s (E i connects v~ with vi+ 1 and v o = v, = s). We assign an 
orientation to the edges of the polygon as implied by a clockwise scan, i.e., edge Ei 
is oriented from v~ to v~+ 1. 

Definition 1. Let vi be a reflex vertex in P. The cuts C~_1 and Ci in P are the 
longest straight line segments that contain E i_ 1 and El, respectively, and do not 
intersect the exterior of P. 

For  the next three definitions, the orientation we assign to a cut Ci is the same as 
the orientat ion of the edge E i associated with it (the orientations are redefined 
later). Each cut is described as an ordered pair C i = (s~, q),  where s i and t i are the 
starting and ending points of Ci, respectively. Cut  Ci separates (cuts) the boundary  
of P into two disjoint chains, one from sl to tl and one from tl to sl (the directions 
are those implied by a clockwise scan). We denote them as LC i, RC i, respectively. 

Definition 2. Cut  C i is a visibility cut in P and s is in LC i. 

Without  loss of generality, we assume that C i -~ Cj if i C j  for all i, j. The 
importance of visibility cuts stems from the fact that  a wa tchman  must  visit at least 
one point  on Ci in order to see the whole edge El. There are at mos t  O(n) visibility 
cuts inside P. Some of them are not  impor tant  in determining the shape of a 
shortest watchman route and can be disregarded. 

Definition 3. Visibility cut Ci dominates visibility cut Cj if RC~ contains RCI. 

The notion of dominat ion  is also used in [S]. Clearly, if Ci dominates  C j, any 
route that visits Ci will automatical ly visit C j, i.e., Cj can be disregarded. The cuts 
that are not  dominated  may be impor tant  in determining the shape of  the shortest 
watchman route. 

Definition 4. A visibility cut Ci is an essential cut if, and only if, there is no C j, 
i ~ j, such that  RCj is properly contained in RCi. 
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The set of essential cuts can be identified in O(n) by applying the above 
definition in a scan of the boundary. Once we have the set of essential cuts for P, it 
is convenient, for the discussion in the remainder of this paper, to index them in the 
order in which endpoints first appear in a clockwise scan of the boundary. We still 
describe each essential cut as an ordered pair Ci = (s~, t~ but now s~ is the 
endpoint that is visited first in a clockwise scan of the boundary. The orientation of 
the cut is taken to be from s~ to ti, e.g., when we say that something is to the left 
(right) of C~, we do so with reference to somebody moving along C~ from s~ to h. 
Also, note that the index of the cut and the index of the edge that gave rise to it, will 
not be the same in general (a correspondence can be easily kept). 

We then partition the set of essential cuts into a number of corners. 

Definition 5. A corner is an ordered set of essential cuts C~, Ci§ 1, - �9 Cj such that: 

(1) each C k intersects C k - 1 ,  i < k < j ,  
(2) Ci does not intersect C~_ 1, and 
(3) C i does not intersect Cj+t. 

Definition 6. An e-segment  is any line segment along an essential cut C~ that starts 
at s~ or at an intersection p~ (of Ci with some C j), ends at t~ or at an intersection P~k 
(of C~ with some Ck), and does not contain any intersections with other essential 
cuts in its interior. 

The set of essential cuts in P can be easily partitioned into a number of disjoint 
corners in O(n) time. In a corner with k essential cuts, there are at most k - t 
intersections along each cut and thus there are at most O(k 2) e-segments in a 
corner consisting of k essential cuts. Each intersection corresponds to a switch in 
dominance between the intersecting essential cuts. For example, consider C i and C i 
in Fig. 2. On one side of the intersection Pij, cut Cj dominates Ci (in the sense that 
any route that visits Cj will also visit C~) while the opposite is true on the other side 
of the intersection. In Fig. 2 there are four e-segments along Ck. The problem faced 
by our watchman is to select O(k) out of the O(k 2) possible e-segments so that 

, , / ~ ,  / \x,~ c?-.., ti 
j/ R \\  \tm 

Fig. 2. Types of contacts between a watchman route and essential cuts. 
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visiting them in some appropria te  order will mean that each point  in the corner  will 
be seen from the route and the distance traveled will be minimum. 

It is helpful to consider a physical analog for the process we use to find a shortest 
watchman route. Consider a string that is threaded through a set of  small rings that 
are free to slide along the essential cuts (we have at least one ring per cut) and can 
move through intersections of essential cuts if a certain amoun t  of force is applied. 
The two ends of the string come together at the point  s. Suppose now that  we pull 
the string at s so that it is taut and the threading is such that the string forms a 
convex chain in each corner. Then the string traces a wa tchman route since it 
makes contact  with all the essential cuts. This watchman route will be the shortest 
among  all the watchman routes that have bends at the same set of  e-segments. 
Suppose now that we apply additional force at s. In general, a sequence of  
adjustments will take place as rings move through intersections. Each adjustment 
will make the string inside the polygon shorter. The process will eventually 
terminate when no ring moves regardless of how much addit ional force is applied. 
At that stage, the string traces a shortest watchman route. The impor tant  issues 
here are to assure that the process is not  stuck at some local op t imum and to find a 
short adjustment sequence. 

Let us consider some properties that any shortest watchman route must  have. 

L e m m a  1. There is a shortest watchman route that v&its the set o f  corners in the 
order in which the), appear in a clockwise scan of  the boundary of  the polygon. 

Proof Consider  any shortest watchman route in P and orient it in a clockwise 
fashion. Suppose that it visits the corners in an order other than the one in which 
they appear  in a clockwise scan of the boundary.  Then there must  exist four corners 
(the point  s may  be one of them) that are visited as shown in Fig. 3. We note that we 
can easily replace this route with one that  visits the corners in the specified order. 
The new route has exactly the same visibility properties and is no longer than the 
original route. [ ]  

The above lemma states that a shortest watchman route need not  "c ross"  itself. 
This property also applies inside a corner, i.e., the shortest wa tchman route will 
visit a selected set of segments on the essential cuts so that it does not  properly 
intersect itself (overlapping sections are possible). Let us now consider how a 

Fig. 3. A shortest watchman route does not need to "cross" itself. 
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shortest watchman route can come in contact with the essential cuts. We 
distinguish three types of contacts. 

Definition 7. A watchman route make a reflection contact with an essential cut if 
the route and the cut have exactly one point in common. A perfect reflection occurs 
when the angles formed by the incoming and outgoing sections of the route with 
the essential cut are equal. We say that a watchman route makes a crossing contact 
with an essential cut if there are two common points between the route and the 
essential cut. Finally, they make a tangential contact if they share a line segment. 

The three contact types are illustrated in Fig. 2 where the route makes reflection 
contacts with Ci, C j, a tangential contact with Ck, and a crossing contact with C,,. 
In a reflection contact the route comes into the essential cut, makes contact at a 
single point, and then "reflects" on this cut, i.e., it changes direction and moves 
away from the essential cut. If the point of contact occurs at an internal point of the 
essential cut, then an opt imum route must reflect perfectly on the essential cut. If 
the point of contact occurs at the intersection of two essential cuts, then reflection 
need not (and usually will not) be perfect with respect to either cut. 

In a crossing contact, the route passes through the essential cut on its way into a 
corner and passes through the cut a second time on its way out of the corner. When 
a shortest watchman route makes a crossing contact on a cut C,., it must make a 
reflection contact on some other cut Cj and the point of contact on Cj must be to 
the left of C,, (Fig. 2). A tangential contact occurs when the portion of the route 
between two successive reflection contacts happens to overlap with an essential cut 
(Ck in Fig. 2). Tangential contacts are degenerate cases of reflection contacts. 

A shortest watchman route can be defined by the set of e-segments (on some 
subset of the essential cuts) that the route makes reflection contacts with. If we have 
the "best"  set of e-segments, the shortest watchman route can be found using the 
same approach as that described in [CN] for the watchman-route problem in 
simple rectilinear polygons. The portions of P that are behind (as viewed from s) 
each of the selected essential cuts C~ are removed, the interior of the resulting 
polygon P' is triangulated and P'  is rolled-out by treating the selected segment on 
each cut C~ as a mirror  and reflecting corresponding portions of the polygon with 
respect to these mirrors. This process reduces the problem of finding a shortest 
route to the problem of finding a shortest path from s to an image s' of itself inside a 
simple polygon. 

Our  approach for finding a shortest watchman route is to construct an initial 
watchman route R ~ Then, by checking local optimality properties at e-segments 
where reflection contacts are made, the route goes through a sequence of 
adjustments so that: 

(a) the route is made shorter after each adjustment and 
(b) a shortest watchman route is obtained when no more adjustments can be 

made. 

We start by specifying how the initial route R ~ is obtained. First, we select a set 
of extended line segments within each corner so that, if a watchman route (e.g., R ~ 
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makes reflection (or tangential) contacts  with these segments, it will visit all 
essential cuts in the corner. An extended line segment is any cont inuous  por t ion of 
an essential cut Ci, starting at s i or some intersection p~j and ending at an 
intersection Pik or at t~ (i.e., a set of consecutive e-segments). 

We select a set of extended line segments (from which R ~ will be constructed) in 
each corner and keep them in a queue as follows: Let Ci be the first (least index) cut 
in some corner. We denote Ci as the current cut and s~ as the current initial point. 
We repeat the following process, which we call Navigat ion in a Corner :  

Navigation in a Corner. Walk from the current initial point  along the direction of 
the current cut Ci until an intersection is encountered. 

(1) If the next intersection is pij (the intersection of Ci and a new cut C j) we look 
for intersections of C~ with some other cut C k that we have not  visited yet 
and such that P~k is to the left of the current cut Ci. If such an intersection 
exists, we continue to walk along the current cut. If no such intersection 
exists, we place the current extended segment (from the current initial point  
to p~) in the queue, Pit becomes the current initial point, Cj becomes the 
current cut, and we continue along Cj. 

(2) If the next intersection is t~ (at the boundary) ,  we add the extended line 
segment from the current initial point  to t~ to the queue. If  the current cut is 
the last cut in this corner, we are done;  otherwise, let Cj (the next cut in this 
corner) be the current cut, let sj be the current initial point, and continue 
along C i. 

The process of navigating a corner is illustrated in Fig. 4, where a corner  with six 
essential cuts is shown. The heavy lines are the extended segments that will be 
placed in the queue by this process. The navigation process starts at sl and we 
move along C 1 . At Pl3, we determine that  C3 intersects C 2 (a cut that we have not  
visited as yet) at a point  that  lies to the left of C1 ; thus, we continue moving along 

t 1 t 2  $4  S 5 , 

5 

st I ~ l  

Fig. 4. Navigation in a corner. 
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C 1 and we reach P12. There, we determine that C2 does not intersect any cuts we 
have not visited and such that the intersection is to the left of C 1 (note that C3 has 
been visited since we passed through Pl 3); thus, we place the extended line segment 
from s 1 to P12 in the queue, C2 becomes the current cut and P12 becomes the 
current initial point. We now move along C 2, reach t2, insert the extended line 
segment from P12 to t 2 in the queue and repeat the process starting at s4 and 
moving along Ca. 

It is clear that the navigation process visits each essential cut C i either 

(1) along a portion (line segment) of Ci in the direction from si to t~, or 
(2) it crosses C~ twice. 

The set of extended line segments forms a convex chain in each corner (we make no 
left turns). A shortest watchman route that reflects on the extended line segments 
has to visit them in the order in which they were placed in the queue by the 
navigation process. If it does not, another watchman route can be easily con- 
structed that visits the same set of extended line segments in the specified order and 
has less or equal length (as in Lemma l). Note that any shortest watchman route 
will also consist of convex chains within each corner. Concave sections can occur 
only where the route comes in contact with the boundary of the polygon. If a 
concave section was to occur inside a corner, this section could be stretched out to 
obtain a shorter route. 

After the navigation process is completed in all the corners, we find the initial 
route R ~ by constructing (and then folding back) a shortest path from s to its 
reflection inside the polygon obtained by unrolling P using the extended line 
segments as mirrors (as in [CN]). Route R ~ visits the extended line segments in the 
order that they were recorded by the navigation process. The set of e-segments (one 
per extended line segment) that R ~ reflects on is defined to be the active segment set 
A ~ In the example of Fig. 4, the active segment set is 

hO = {(P13, P12), (P12, t2), (P34, P45), (P45, P56), (P56, t6)}" 

Lemma 2. Route  R ~ is a watchman route. 

Proo f  By contradiction. If R ~ is not a watchman route, then there exists an 
essential cut C~ such that R ~ does not contact Cj. From the process of navigation, 
we know that either 

(1) a portion of C~ is in the recorded extended line segment set, or 
(2) there is a recorded extended line segment of some Ck that is to the left of Cj. 

In case (1), R ~ must make a reflection or tangential contact with C~ because a 
portion of C~ is used as a mirror in unfolding P; the unfolding process forces the 
path from s to its image to cross all the mirrors, i.e., the route obtained by folding 
this path must make reflection contacts with them. In case (2), R ~ must make a 
reflection contact with Ck to the left ot" Cj which implies that it must make a 
crossing contact with Cj (e.g., in Fig. 4, the route reflects on C 2 at a point that is to 
the left of C a, i.e., it crosses C3). Thus, R ~ is a watchman route. [] 
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~ s; u; 

R" ~ ~ R ~ 

S~+ 1 

C~ 

Fig. 5. Route R" is adjustable at u~- 1. 

The shortest watchman route is obtained by adjusting the current route R", 
where nt >_ 0. Each adjustment involves a change in the current active segment set 
and results in a shorter watchman route. Let S), S ] . . . . .  S) "j be the segments on 
essential cut Cj and let u) be the common endpoint of S)-1 and S), 1 < i _< mj. 
Assume that S~ is a segment in the active segment set Am. Consider the example 
shown in Fig. 5. The watchman route R m makes a reflection contact with segment 
S) at its left endpoint u)- 1. Since the incoming angle of R" with respect to Cj is less 
than the outgoing angle of R m with respect to C~, the watchman route R m can be 
made shorter by moving the contact point with Cj to the left of u)- ~. Similarly, i fR"  
made a reflection contact at u 5 and the incoming angle was greater than the 
outgoing angle, then R m could be made shorter by allowing its contact with C~ to 
move to the right of u~. 

' - '  (u~) from S~ to i-1 (S~+l) Definition 8. A watchman route R m is adjustable at uj Sj 
on some essential cut Cj if, and only if: 

, - 1  (a) Rm has a reflection contact with Cj at uj 
(b) the incoming angle between R m and Cj is smaller (larger) than the outgoing 

angle between R m and Cj and 
(c) the route remains a watchman route if its contact with Cj is shifted to the left 

of u~- 1 (right of u~). 

An adjustment involves a change in the current active segment set. Since an 
adjustment occurs at the intersection of two essential cuts, one or two segments in 
the current active segment set will be affected. We distinguish three basic 
adjustment types as shown in Fig. 6. Each of them has the property that the 
incoming angle of R m with C i is smaller than the outgoing angle of R m with Cj (for 
each type, there is a symmetric case where the adjustment occurs at the other 
endpoint of S~ and the incoming angle is larger than the outgoing angle). The bold 
segments in Fig. 6 stand for segments that belong to the current active segment set 
Am. The discontinuous segments represent the segments that will replace them to 
form the next active segment set A m+ 1. A possible next route, R m+ 1, is also shown. 

In Fig. 6(a) R m makes reflection contacts with both Cj and Ck at their 
intersection. The adjustment involves moving the reflection contact with Cj from S~ 
to S~- 1 (note that we should not adjust along C k as that would leave Cj without a 
contact with the new route). The next route, R m+ 1, will make a reflection contact 
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s~ -~ j 

~ s~ ' c~ 

-" \\R" 
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\ c ,  
s~ - '  \ s5 Cj 

(b) 

~i / C  j 

I R "  

, i -  1 S~ Cj 

(c) 

Fig. 6. The three basic adjustment types: (a) ( - 1)-type adjustment, (b) O-type adjustment, and (c) a 
(+ l)-type adjustment and a ( +  l)-switch. 

with Cj but a crossing contact with C k. We call this a ( -1)- type adjustment as 
[A m+l ] = [Aml - 1 (delete S~ and replace S~ with S~-1). We note that a ( -  1)-type 
adjustment also arises if the contact with Ck is tangential. 

In Fig. 6(b), R" makes a reflection contact with C i and a crossing contact with 
CR. Adjusting on the intersection point from S~. to S~- ~ does not affect the crossing 
contact with C k. We call this a O-type adjustment sincelA'~+ll = [A'~[ (replace S~ 
with S~-1). The next route, R ' - 1 ,  still reflects on Cj and makes a crossing contact 
with Ck. 

In Fig. 6(c) R" is supposed to make a reflection contact with Cj and a crossing 
contact with Ck. Since the contact point is at the intersection of the two essential 
cuts, the intended crossing contact with Ck has degenerated into a reflection 
contact. To account for this, we replace S~ with S~- 1 and insert S~ (at the position 
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following S~- 1) into A" to obtain A" + 1. Depending on the angles formed by C~, Ck, 
and R", the next route will either be shorter (reflecting at distinct points on C~, Ck), 
or the same as R". We refer to the first case as a ( + l ) - t y p e  adjustment, as 
IA"+ll = I A"l + 1. If R "+~ = R", the operation serves only to change the active 
segment set to account for the degeneracy of the crossing contact with Ck and we 
call it a ( + 1 )-switch. ( + !)-switches are easy to perform (the route does not need to 
be reconstructed) and their total number is at most O(number of adjustments). The 
following lemma follows directly from the definitions of the various adjustment 
types. 

Lemma 3. I f  R"  is an adjustable watchman route, then R"  + 1 is also a watchman 
route. 

The algorithm proceeds by finding a point at which the current route is 
adjustable, updating Am to Am+l and constructing R "+ 1. This is repeated until no 
further adjustments are possible. Since each adjustment results in a shorter route 
and the number of possible active segment sets is at most exponential (in the 
number of essential cuts), it follows that the process will eventually terminate. Two 
important  questions remain: 

(a) Will we end up with a shortest watchman route? 
(b) How many adjustments do we need to make? 

We treat these issues in the next two sections. 

3. Uniqueness of the Shortest Watchman Route 

In the previous section we outlined how an initial watchman route can be 
constructed. Let R be the nonadjustable watchman route obtained from R ~ by 
continuing to adjust the current route until it is not adjustable any longer. This 
approach raises the following question: If we start from a different initial route that 
makes reflection contacts with active segment set B ~ B ~ ~- A ~ will the resulting 
nonadjustable watchman route R' be different from R? In this section we show that 
the shortest watchman route is unique and that any other watchman route must be 
adjustable. 

We note that the essential cuts that a watchman route has reflection contacts 
with, form a convex chain in each corner. The watchman route that reflects on a 
given set of essential cuts is obtained by unrolling the polygon using these essential 
cuts as mirrors. Consider the example shown in Fig. 7. It shows a watchman route 
that reflects on four essential cuts in a corner of a polygon and also the rolled-out 
version of the corner and the route. Note that the essential cuts in Fig. 7(a) become 
diagonals in the polygon of Fig. 7(b), they cross from one side to the other in a 
zigzag fashion and the route is now a path (in this case a straight line) that crosses 
the diagonals corresponding to the essential cuts. 
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Fig. 7. A watchman route in a corner (a) and its rolled-out version (b). 

Definition 9. Let R, Q be two watchman routes. The angle o f  divergence, 0~, of the 
two routes at cut C~ is the angle formed by the extensions of the out-going segments 
of the two routes as they last visit C~. 

Lemma 4. Perfect reflections preserve the angle o f  divergence between two 
watchman rouges. 

Proo f  Consider the two cuts Ci, Cj and let R, Q be watchman routes that reflect 
perfectly on C~ and then on C~ (see Fig. 8(a)). We have that 0~ = r ~ -  q ~ -  
1 8 0  - r r -  x = ( 1 8 0  - qj  - x )  = q r -  rr = Or. [] 

Lemma 5 .  / f  two nonadjustable routes R, Q, reflect on C~ and then on C j, then 

O~ < O r. 

Proo f  If the reflections are perfect, the angles of divergence are equal by Lemma 
4. If the reflections are not perfect, then they must occur at vertices. We have that 
0i = r i -  ql = q j x -  ril, where qjL, ri1 are the angles formed by the incoming 
segments of Q, R with Cj. Since the two routes are not adjustable, they are not 
adjustable toward each other (i.e., in the directions that would bring their contacts 
with a cut closer to each other). This implies that q jl < qjz and rjl > ri2 , where qj2, 
rj2 are now the angles formed by the outgoing segments of Q, R with Cj. Then 
0i < qr2 - rr2 = 0r- 

Note that it is possible that 0i < 0 r. In Fig. 8(b) we have that qrl < qr2 and 
rrl > rr2. Then the contacts of R, Q with C r are trying to slide away from each other 
along C r but cannot do so because of other essential cuts (like cuts C', C" in Fig. 
8(b)). If two routes are nonadjustable, they are not adjustable away from (as well as 
toward) each other. That  is, we would have that qr~ > qj2 and rrt _< rrz in Fig. 8(a). 
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Then, if one or both  inequalities hold, it would lead to the opposi te  conclusion, i.e., 
that  0~ > 0j. This does not occur because, in order  for the routes to be nonadjust-  
able, we must  have essential cuts C', C" (as shown in Fig. 8(c)) that  prevent  the 
contacts  a long Cj from sliding toward each other. But then route Q must  visit C" 
which means that  the outgoing segments  of R, Q from Cj must  intersect to the right 
of C~ (Fig. 8(c)). Similarly, route R needs to visit C' which implies that  the outgoing 
segments  of R, Q from C~ intersect to the right of Ci. There  must  be a first t ime when 
the outgoing segments  of the two routes intersect to the right of a cut, i.e., we must  
have the si tuat ion shown in Fig. 8(d). But then route R does not  visit cut C', which 
contradicts  our premise that  R is a wa tchman  route. [ ]  

Definition 10. The characteristic vector, VR, of a wa tchman  route, R, is a binary 
vector  with one entry for each essential cut such that  VR i = I if route  R reflects on 
C~; VR~ = 0, if R crosses Ci. (Essential cuts are indexed in the order  that  they are 
first visited in a clockwise scan start ing at s.) 

L e m m a  6. Let R, Q be watchman routes and assume that VRI = VQi = O. I f  we 
remove Ci (without changing the e-segments along other cuts), R, Q are still watchman 
routes in P and they are adjustable if, and only if, they were adjustable before the 
removal of  Ci. 
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Proof The shape of a watchman route is determined by the e-segments with 
which the route makes reflection contacts. The removal of a cut that is crossed by 
R, Q, will not disturb the routes. Adjustments take place only along essential cuts 
that a route reflects on. Then the only concern is that a route that was not 
adjustable before removing Ci will become adjustable once we disregard it (i.e., the 
new route will not contact Ci and will not be a watchman route in the original 
setting). This cannot happen in a O-type adjustment since the route would cross C~ 
both before and after adjusting. No crossing contact is affected by the other 
adjustment types (note that crossing contacts that have degenerated into reflection 
contacts are taken care of by (+l)-switches in the route constructed by the 
algorithm). []  

Lemma 6 allows us to disregard essential cuts that are crossed by both routes as 
far as the immediate adjustability of these routes is concerned. We are now ready to 
prove that there is only one nonadjustable watchman route. 

Theorem 1. There is a unique nonadjustable watchman route in P. 

Proof The proof is by contradiction. Let us assume that R, Q are watchman 
routes in P and both of them are not adjustable. We start with a slightly simplified 
case that captures all the important issues and generalize it later. In our simplified 
case, we assume that the two routes R, Q meet the boundary of the polygon only at 
s. Also, without loss of generality (Lemma 6), we assume that there are no essential 
cuts that are crossed by both R and Q. 

Since R, Q are distinct, they must diverge from each other at some point. The 
essence of the contradiction that we will develop is that once the two routes start 
diverging, nonadjustability implies that they will continue to diverge and then they 
cannot both return to the same point s. We consider a number of cases: 

Case 1: VR = VQ. Then both routes reflect on the same set of essential cuts. 
Consider the unrolled version of the polygon (see Fig. 9). Then both routes are now 
paths from s to its image s' inside a simple polygon. Clearly, there is a unique 
shortest path from s to s'. Since reflections cannot reduce the angle of divergence 
(Lemmas 4 and 5), it follows that the two routes cannot both get to s'. In order to 

Fig. 9. Routes R, Q reflect on the same set of cuts. 
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do so, one or both of them must be adjustable toward the shortest path (by 0-type 
adjustments). 

Case 2." VR  ~ VQ. Let the first difference be at cut C~ and (without loss of  
generality) assume that VRI = 1 (R reflects on Ci), while VQ~ = 0 (Q crosses C~). 
Then Q must reflect on a cut C i and its reflection contact  with Cj must be to the left 
of Ci. 

Case 2.1: j = i + 1 and V R j  = 0. The situation is illustrated in Fig. 10. We have 
that 0 i - l = r i - l - q i - 1  = 1 8 0 - r i l - b -  1 8 0 + q j l  + a = q j l - r i  1 + ( a - b ) .  
Since neither route is adjustable toward the other, we have that qjl < qrz and 
ril _> r~:. Also, from the convexity of  the essential cuts in a corner  we have that  
a < b .  Substituting, we have that 0 i_1 < q r 2 - r l z = 0 r + x - y - x < 0  r, i.e., 
0~_ 1 < Oj. 

Case 2.2." j = i + l and V R j  = 1. The situation is illustrated in Fig. 1 l(a) and (b). 
The difference in the two parts of the figure is the relative position of the two routes 
as they come into Ci_x. For  the situation in Fig. l l ( a )  we have that 01_ ~ = 
r i - x - q i - ~  = 1 8 0 - x - z -  1 8 0 +  x + y = y - z = q j ~ - r j l - z  < _ q ~ 2 - r j 2 = O  j. 
In Fig. l l (b)  we have that 0i_ 1 = q~_~ - ri_ ~ = 1 8 0 -  x -  a -  180 + ril + a = 

r~ - x <_ ri2 - -  X - - - -  180 - rj1 - b - x = ql j  - r~j - 2x  <_ q 2 j  - -  r 2 j  = Oj.  Thus, in 
both cases, we have that 0~_ x < Oj. 

Case 2.3: j > i + 1. This means that there is a (long) sequence of differences in the 
characteristic vectors before both  routes reflect on the same cut. We show that  
01-~ < Oj by extending the arguments  used in Cases 2.1 and 2.2. First assume that 
V R  has the pat tern (...11..100..0...) and the corresponding pat tern in VQ is 
(...00..011..1...). This is similar to Case 2.1 with the difference that we have sequences 
of reflections (1 's) rather than a single reflection. Consider  Fig. 10 and let the cut C~ 
in Fig. 10 correspond to the last reflection in the sequence in VR.  Also, let the cut Cj 

in Fig. 10 correspond to the first reflection in the sequence in VQ. If  the remaining 
reflections did not  exist, we have, from the arguments  in Case 2.1, that  the angle of 
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Fig. 11. Case 2.2 of Theorem 1. 

divergence between the two routes increases. Consider now the effect of the 
remaining reflections on the angle of divergence. The additional reflections of R 
imply that the angle r~l is smaller than in Fig. 10 and the segment of R that forms Oj 
will be rotated clockwise. The additional reflections of Q imply that the segment 
that forms 0j will be rotated counterclockwise. Thus, the net effect of the additional 
reflections is to increase 0j even more than in Fig. 10 and it follows that 0~_ 1 < 0i. 
Similarly, if VR has the pattern (... 11.. 11...) and the corresponding pattern in VQ is 
(...00..01...), we have a situation similar to that of Case 2.2. Again, the effect of the 
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additional reflections of R is to rotate its outgoing segment clockwise and the angle 
of divergence increases further. 

Continuing with the proof of Case 2, we have established that a difference in the 
characteristic vectors increases the angle of divergence between the two routes. 
Then the two routes cannot meet at s (note that s cannot be one of the intersection 
points of the two routes in the figures because, at those intersection points, one of 
the routes has not visited all the cuts the other has visited, i.e., if s is such an 
intersection, one of the routes is not a watchman route). 

To complete the proof, we need to remove the assumption that the two routes 
contact the boundary of the polygon only at s. Clearly, a shortest watchman route 
may have to contact the boundary in many places. Let x be the first point at which 
routes R, Q separate and let R, Q next contact the boundary at points y, z, 
respectively. If y = z, we produce a contradiction exactly along the lines used 
above, i.e., once the routes start diverging at x, they cannot come together at point 
y unless at least one of them is adjustable. If y 4: z, consider the last straight line 
segments along the two routes as they move out of a corner to reach y, z. Then, 
either these two segments intersect before they get to y, z, or their extensions past y, 
z intersect (perhaps outside P). (The two segments cannot be parallel because that 
would imply a zero angle of divergence.) In either case, we can use this intersection 
point to show (using the same approach as above) that once the two routes start to 
diverge, they cannot come together at the intersection point unless at least one of 
them is adjustable. []  

Corollary 1. A watchman route R is a shortest watchman route if, and only if, R is 
not adjustable. 

Proo f  First, assume that R is a shortest watchman route but it is adjustable. Then 
R can be made shorter by performing the appropriate adjustment, a contradiction. 
Conversely, assume that R is not adjustable but there is another watchman route Q 
that is shorter than R. Then Q, or some route derived from and shorter than Q, is 
not adjustable. This would give us two nonadjustable watchman routes contradict- 
ing Theorem 1. [] 

Corollary 2. The shortest watchman route through s in a simple polygon is unique. 

4. Algorithm and Complexity 

In Section 2 we described an approach for constructing the shortest watchman 
route in a simple polygon. We construct an initial watchman route and adjust it 
repeatedly until no further adjustments are possible. From the results of the 
previous section, it then follows that the resulting route is the shortest watchman 
route. The algorithm is shown below: 

Algorithm: W A T C H M A N - R O U T E .  
1. Find all essential cuts and partition them into disjoint corners. 
2. Do Navigation in each corner. 
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3. Obtain the initial route R ~ and the initial active segment set A ~ Let i, j = 0. 
4. While R j is adjustable D o 

(a) Pick the first segment that is adjustable in A t and construct the next 
active segment set, A t§ 1 

(b) Use A i§ to construct R t+ 1 as follows: 
(1) remove the portions of the polygon that lie outside the segments in 

hi+ 1. 

(2) triangulate the resulting polygon; 
(3) unroll the polygon using the extended segments containing the 

segments in A t§ 1 as mirrors; 
(4) find a shortest path from s to its image s' in the unrolled polygon; 
(5) fold the shortest path to obtain the route R t § ~. 

(c) L e t j = i +  1. 
5. Report R i as the shortest watchman route. 

We start the complexity analysis of the algorithm by examining the navigation 
process (step 2). We have: 

Lemma 7. The "navigation in a corner" process can be performed throughout the 
polygon in O(n 2 log n) time and O(n 2) space. 

Proo f  To access the intersection points easily, prior to the navigation, we sort the 
intersection points in the direction from s t to t~ on every essential cut C t. There can 
be O(n) intersection points on each of the O(n) essential cuts. So, sorting takes O(n 2 
log n) time and O(n 2) space. For  the navigation itself we use a vector to mark the 
essential cuts that have been visited and we use the sorted lists to move and search 
along the essential cuts. The process takes O(n 2) time and space. Therefore, the 
overall time complexity is O(n 2 log n) and the space complexity is O(n2). [] 

Most of the work in the algorithm is done in step 4. In step 4(a) we choose the 
first among the many possible candidates that may be adjustable. We refer to this 
selection rule as adjust at the f i rs t  choice. Note that the segments in each active 
segment set are ordered according to the index of the essential cut they are part  of. 
In turn, the essential cuts are indexed in the order that they are first visited in a 
clockwise scan of the boundary of the polygon starting at s. Suppose that s~ is the 
first segment in A t such that R t is adjustable at the left (right) endpoint of sj~ along 
Cj. The algorithm will next perform a (possibly empty) sequence of adjustments on 
cuts with index less than j  before it again adjusts on a cut with indexj or higher. We 
have: 

Lemma 8. Let  six be the f i rs t  segment in the active segment set A t such that R ~ is 
adjustable at six. Let  R i+1 (the result o f  the adjustment) contact Cj to the left (right) 
of  the left (right) endpoint o f  six. Let  R ~+d be the watchman route at the next  time that 
the f i r s t  adjustment is along Ck, k > j. Then the adjustments that take R t to R t+d (all 
on cuts with index less than j )  will not cause R ~+d to contact the left  (right) endpoint o f  
six (i.e., there is no oscillation on C j). 



Shortest Watchman Routes in Simple Polygons 27 

�9 - / "  " ~ ~  S ~ 

/ 

X , i - "  " / / 

,' _.,,,, 

Fig. 12. Adjustments on previous cuts cannot cause oscillation along Cj. 

Proof Without loss of generality, assume that the contact point moves to the left 
of the left endpoint of six when R i is adjusted. Consider the unrolled version of the 
route up to Cj (Fig. 12). Clearly, the effect of moving the contact point on Cj to the 
left (with respect to the route) will be to (perhaps) make the route adjustable on 
previous cuts but we note that the adjustments made on these previous cuts will all 
be in the same direction, i.e., the contact point with Cj may move further left but it 
can never move to the right because of them. [] 

Theorem 2. The time complexity of algorithm WATCHMAN ROUTE with the 
"adjust at the first choice" selection rule is O(n 4 log log n). 

Proof. Lemma 8 establishes that the route cannot oscillate back and forth on Cj 
while adjustments resulting from an adjustment along C~ are performed on 
previous cuts. However, it is possible that the contact point with Cj will oscillate 
back and forth as adjustments on cuts with index higher than Cj are made. The 
worst case occurs when the unrolled path past Cj zigzags at every cut and each 
adjustment causes it to swing back and forth all the way across Cj each time. Since 
there can be at most O(n) essential cuts with index higher than that of C j, and at 
most O(n) segments along C j, it follows that the total number of adjustments on Cj 
is at most O(n2). Then the total number of adjustments performed by the algorithm 
is at most O(n3). For each adjustment, we need to construct the corresponding 
route which takes O(n log log n). Thus, the time complexity for all the adjustments 
is O(n 4 log log n). This dominates the time complexities of the other steps in the 
algorithm. We also note that we need O(n 2) space to store the O(n 2) intersection 
points. []  

Figure 13 shows an example of the computat ion of the shortest watchman route. 
In Fig. 13(a) the extended line segments that are identified by the navigation 
process are shown as heavy lines. Fig. 13(b) shows the unrolled polygon with 
respect to these segments and the shortest path from.s to s'. Folding this path 
produces R ~ (Fig. 13(c)). The first active segment set is 

A~ = {(sl ,  P12), @12, P23), (P23, P34), (P3,*, t4), ($5, /5)}" 
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Fig. 13. 
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The construction of (a)-(c) R ~ (d) R z, (e) R 2, (11) R a, and (g) the shortest watchman route R 4. 

The first adjustment is a ( -  1)-type adjustment along C 2 resulting in 

A1 = {(s2,  P12>, (P23,  P34>, (P34,  t4>, (ss, t5>} 

from which we construct R 1 (Fig. 13(d)). Next comes another (-1)-type adjust- 
ment, this one along C4, resulting in 

A2 = {<s2, P12>, <P24, P34>, ($5, ts)} 

and producing the route R 2 (Fig. 13(e)). The large shift of the reflection contact 
along C 4 gives rise to a (+ 1)-type adjustment along C2. The active segment set 
becomes 

A3 = {(sl, P12>, (P12, P23>, (P24, P34>, (ss, ts>} 
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Fig. 13 (continued). 

and the watchman route constructed from it is R 3 (Fig. 13(f)). Next, we have a 
0-type adjustment at P23 which creates the active segment set 

/t4 ----- {(Sl ,  P12~, (P23, P2,a-~, (P2a, P34~, (Ss, ts~}" 

The route R 4 in Fig. 13(g) is constructed from A 4. This route reflects perfectly on 
C1, C2, C4, and C5. Since no further adjustments are possible, R 4 is the shortest 
watchman route. 

5. Concluding Remarks 

We have presented a polynomial-time algorithm for finding a shortest watchman 
route in a simple polygon. The complexity of the algorithm is O(n 4 log log n) 
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compared with the O(n log log n) algorithm for the case of simple rectilinear 
polygons in [CN] and the intractability of the watchman-route problem for 
polygons with holes and simple polyhedra [CN]. 

We conjecture that the algorithm WATCHMA N  ROUTE can be modified to 
improve its complexity (O(n 2 log log n) seems possible). From the proof of 
Theorem 2, we have that the "adjust at the first choice" selection rule may lead to 
repetitions of the same adjustments along an essential cut Cj as the route swings 
back and forth along Cj due to large adjustments in cuts with higher indices. It may 
be possible to improve the performance of the algorithm, if we try to reduce this 
"swing" effect. A way to do this is to replace the "adjust at the first choice" 
selection rule in step 4(a) with an "adjust at Maximum Tension" rule. 

Assume that a watchman route R is adjustable on cut Ci. We define the slidin9 
tension of the route at Ci as the length of the vector sum of the projections on Cj of 
two unit vectors with origin at the contact point and directed toward s along the 
incoming and outgoing portions of R. This definition suggests the following 
alternative rule for selecting a candidate for adjustment: Adjust at M A X  Tension: 
Select the segment at which the route is adjustable and the sliding tension is 
maximum. The new selection rule does not eliminate repeated adjustments 
completely but appears to reduce them significantly. 

Another possible improvement to the algorithm is in the handling of 0- 
adjustments. Rather than treating each adjustment in a sequence of 0-adjustments 
as independent and reconstructing the route each time, we could group them 
together and adjust only once. The fact that the set of essential cuts on which 
reflections occur does not change due to a 0-adjustment makes this possible, 
However, it is not always clear how many of these adjustments can be safely 
grouped together at each extended line segment. We conjecture that combining the 
max tension rule with the grouping of certain 0-adjustments can reduce the number 
of adjustments performed by the algorithm from O(n 3) to O(n). 

An O(n log log n) algorithm for the watchman-route problem in simple 
rectilinear polygons is given in [CN]. An interesting related problem is to find 
other classes of polygons for which faster algorithms can be developed. The 
algorithm in [CN] does not assume a fixed starting point for the route, i.e., it finds 
the shortest route overall. For  simple polygons, we have assumed that a starting 
point is specified. This makes it possible to show that the shortest watchman route 
is unique. In most cases, the starting point can be selected to be on the shortest 
watchman route, i.e., the algorithm can find the shortest watchman route overall. 
For example, in any polygon containing two corners that are not visible to each 
other, a fixed point that must be in any shortest watchman route can be easily 
identified. We conjecture that the shortest watchman route remains unique even 
when there is no fixed starting point except for very special cases where there is an 
infinite number of shortest routes of equal length (e.g., consider four essential cuts 
that form a square). 

If a starting point that must lie on a shortest watchman route cannot be easily 
found, the algorithm can be used to obtain an approximate shortest route as 
follows. We select a starting point and find the shortest route through it. Then 
select another starting point along this route (preferably at a place least affected by 
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the previous choice) and reconstruct the shortest watchman route through the new 
starting point. If this process is repeated a few times, the resulting route will be very 
close to the overall optimum watchman route. 
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