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Abstract. Heron of Alexandria showed that the area K of a triangle with sides a, 
b, and c is given by 

l r  = x / s ( s  - a)~s - b •  - c ) ,  

where s is the semiperimeter (a + b + c)/2. Brahmagupta gave a generalization to 
quadrilaterals inscribed in a circle. In this paper we derive formulas giving the areas 
of a pentagon or hexagon inscribed in a circle in terms of their side lengths. While 
the pentagon and hexagon formulas are complicated, we show that each can be 
written in a surprisingly compact form related to the formula for the discriminant of 
a cubic polynomial in one variable. 

1. Introduction 

Since a triangle is determined by the lengths, a, b, c of its three sides, the area K of  
the triangle is determined by these three lengths. The well-known formula 

K = x / s ( s  - aXs  - b X s  - c), (1.1) 

where s is the semiperimeter (a + b + c)/2, makes this dependence explicit. (This 
formula is usually ascribed to Heron  of Alexandria, c. 60 B.c., a l though some 
attribute it to  Archimedes.) 

For  polygons of  more  than three sides, the lengths of  the sides do not  determine 
the polygon or  its area. However,  if we impose the condition that the polygon be 
convex and c y c l i c  (i.e., inscribed in a circle), then the area of the polygon is uniquely 
determined. Moreover ,  it is a symmetric function of  the sides. The symmetry can 
be seen by regarding the polygon as the union of isosceles triangles each bounded 
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by two radii and an edge of the polygon. From this point of view changing the 
order of the sides leaves the area unaffected. Given positive real numbers a 1 . . . . .  a, ,  
a convex n-gon can be constructed with the aj's as the lengths of the sides provided 
that the largest aj is smaller than the sum of the remaining ones. In this case it is 
also possible to construct a convex cyclic n-gon with the same sides (this is 
not quite so easy to establish as might be imagined) and this cyclic n-gon has 
the largest area of all n-gons with the given side lengths. We refer the reader to 
pp. 56450 of [1] for the interesting discussion which brought this problem to our 
attention. 

There is a formula analogous to (1.1), given by Brahmagupta in the seventh 
century, for the area K of a cyclic quadrilateral whose four sides have lengths a, 
b, c, and d. It is 

K = x / ~ ( s  - -  a ) ( s  - -  b ) ( s  - c ) ( s  - d), 

where again s is the semiperimeter (a + b + c + d)/2. The proof of this formula is 
now a fairly routine exercise and is given, for example, in [1]. 

Curiously this seems to be the end of the line. Apparently no one has derived 
formulas giving the area of cyclic polygons with more than four sides. In this paper 
we derive such formulas for pentagons and hexagons and make some conjectures 
for polygons of more than six sides. While the pentagon and hexagon formulas 
are complicated, we shall see that it is possible to write them in a surprisingly 
compact form. 

The condition of convexity is algebraically somewhat unnatural, so we also 
consider the following slightly modified problem. Given positive real numbers 
a 1 . . . . .  a, ,  we seek the areas of all n-gons, convex or not, whose side lengths 
are a I . . . .  , a, and whose vertices lie on a circle. Here we take as the definition 
of the area of a polygon in the Cartesian plane whose vertices are, in order, 
(xl, Yt) . . . . .  (x,, y,), the expression 

�89 xl Yl + + . . . +  . 

\ [ X2 Y2 X3 Y3 Xl Yl 

Defined this way the area is the sum of the areas of the components into which 
the polygon divides the plane, with each component  weighted by winding number. 
Its sign depends on the direction in which the vertices of the polygon are traversed, 
but we shall see that all our formulas, like those of Heron and Brahmagupta, 
involve only the square of the area. 

Heron's  formula can be restated 

1 6 K  2 = 2a2b  2 + 2a2c 2 + 2b2c2-a4-b*-c4, 

so that 16K 2 is a polynomial with integer coefficients in the squares of the sides 
of the triangle. 



Areas of Polygons Inscribed in a Circle 225 

Brahmagupta 's  formula is 

16K 2 = 2 a 2 b 2 + . . . + 2 c 2 d 2 _ a 4 _ b * _ c 4 _ d * + 8 a b c d ,  

so that 16K 2 is a polynomial  in the side lengths in which the exponents of each 
term are either all even or all odd. 

If  in Brahmagupta ' s  formula we replace any single side length by its negative, 
we obtain the formula 

16K 2 = 2 a 2 b 2 + . . . + 2 c 2 d 2 _ a * _ b * _ c * _ d * _ 8 a b c d .  

It has a natural geometric interpretation, giving the area, in the sense described 
above, of a nonconvex quadrilateral inscribed in a circle. 

2. Areas of Cyclic Polygons in General 

In this section we study cyclic polygons of  an arbitrary number  of sides. The 
sequence of integers A1, A2, A3 . . . . .  l, 7, 38, 187, 874 . . . .  defined by 

A,,, = ~ (m - k = 2m + 1 - 2 TM 

k = O  

is important  in what  follows. Here is the strongest result which we are able to 
prove for cyclic polygons. 

Theorem 1. Given n a unique (up to sign) irreducible homogeneous (regarding the 
first argument as having degree 4 and the remaining arguments as having degree 2) 
polynomial f exists with integer coefficients such that whenever (a 1 . . . . .  a~) are the 
side lengths, of  a cyclic n-gon and K is its area, then 

f ( 1 6 K  2, a 2 . . . . .  a 2) = 0. (2.1) 

This polynomial is symmetric in the a 2. I f  n = 2m + 1, the degree of this polynomial 
in its first variable, 16K 2, is at least Am. I f  n = 2m + 2, the degree of this polynomial 
in 16K 2 is at least 2A m. 

Additional Conjectures. We believe that the stated degree bounds are really 
equalities and that the polynomial,  with the proper choice of  sign, is always a 
monic  polynomial  in its first argument. Furthermore,  we believe that  when 
n -- 2m + 2 is even, the polynomial  factors as a product  of two monic polynomials 
of degree Am, whose coefficients are polynomials in side lengths (but not  their 
squares). We are not able to prove these conjectures except in the cases that n < 6. 
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P r o o f  o f  Theorem 1. First we show that such polynomials exist. We may assume 
that the polygon has its vertices on a circle centered at the origin in the complex 
plane. Suppose that these vertices are in order v 1 . . . . .  v, and that the radius of the 
circle is R. Also let V,+l = vl and define the quotients q~ = vj+l/vj ,  j = 1, . . . ,  n. 
Then, letting aj be the distance from v~ to vj+ 1, we have 

a 2 = Ivj+x - vii 2 = R2(v~+l - vj)(1/Vj+l - 1/v i) = R=(2 - qj - q~-~). (2.2) 

The area of the triangle with vertices 0, vj, and 1)j+ I is given by 

�89 Im(~jvj+ 1) = (1/4i)R2(vj+ 1/vj -- v j /v j+ 1). 

Hence we have 

_ 16K 2 = R 4 ( v j v 2  _ v2/v 1 q_ ...)2 = R4(ql + . . .  + q. _ q ; l  . . . . .  q ;  1)2. (2.3) 

It follows that the quantities 16K2/a~. are n rational functions of the q/s. 
Now observe that the qj's satisfy the relation q l " " q ,  = 1 and are therefore 

algebraically dependent over the rational numbers. Hence the functions 16K2/a~, 
which are rational functions of the q/s, must themselves be algebraically dependent 
over the rationals. Thus a polynomial f such that (2.1) holds exists. (The 
polynomial whose existence we have established involves only fourth powers of 
the side lengths and so is a for t i o r i  of the correct form.) Now regard f as an 
element of the unique factorization domain of polynomials in 16K 2 and the a2's 
with integer coefficients and factor f into irreducible polynomials f = f l " " f ~  in 
this domain. The factors f j  will have the same homogeneity property as f.  We 
show that (2.1) holds for at least one of these irreducibles. If we substitute in the 
equation f = 0 the relations (2.2) and (2.3) expressing 16K 2 and the a] in terms 
of the v/s, we obtain a power of R times a Laurent polynomial in the v~'s. This 
Laurent polynomial vanishes identically. 

Because of the homogeneity of the irreducible factors fj, when we make the 
same substitution in the fSs we again obtain powers of R times certain Laurent 
polynomials in the vSs. However, the set of all Laurent polynomials is an integral 
domain. Hence we can deduce that the polynomial obtained by substituting in 

2 one of the irreducible factors, say f l ,  is zero. It  follows, regarding 16K 2 and a t as 
polynomials in the vls, that 

f l (16K 2, a2, . . . ,  a 2) = 0 (2.4) 

holds for all nonzero vl . . . . .  v,. In particular, when the v/s are on a circle centered 
at the origin, we can interpret the first argument as the area and the last n 
arguments as the squared lengths of the sides. Therefore f l  is an irreducible 
polynomial satisfying (2.1). 

Suppose that f l  and f2 are two irreducible polynomials with integer coefficients 
such that  (2.1) holds for convex cyclic n-gons. Then, taking the resultant with 
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respect to the first argument, 16K 2, we can eliminate 16K 2 from these equations 
obtaining an algebraic relation that held among the a2's of cyclic polygons. In 
particular, this relation must hold for the open set of all n-tuples of positive real 
numbers a 1 . . . . .  a, for which it is possible to construct a convex cyclic n-gon. It 
follows that the resultant is identically zero and therefore the polynomials have a 
common zero in their first variable. However, if irreducible polynomials share a 
common zero, they must have all their roots in common. It then easily follows 
that the polynomials are the same except for sign. Because the polynomial f is 
uniquely determined by the areas and side lengths of convex cyclic n-gons, and 
the areas of such n-gons are symmetric functions of the side lengths, it follows 
that the coefficients of f are symmetric polynomials in the side lengths. 

Finally we prove the lower bound on the degree. To do this it suffices to show 
that, for each n, there are sets of sides for which there are at least the given number 
of distinct areas. Here our argument is quite informal. 

Suppose that n = 2m + 1 is odd. It suffices to take the side lengths to be distinct 
but nearly equal. This having been done, imagine a circle of variable radius and 
try to inscribe a polygon with sides of the given lengths in the circle by picking 
an arbitrary starting point and laying out the edges, one at a time, with the given 
lengths. When the radius is too large, we will not reach the starting point when 
we have used up all the sides. As we decrease the radius there will come a time 
when we return exactly to our starting point. The resulting polygon will be nearly 
the regular polygon with n sides. If we continue to decrease the radius, we will 
overshoot the starting point starting to go around the circle again. When the 
radius has decreased enough, we will go around the circle exactly twice, creating 
a star-shaped polygon. We can continue this way finding radii requiring more 
trips around the circle yielding stars with sharper points. However, no edge can 
go as much as half way around the circle so that the maximum number of times 
we can go around is m. This is where our first m circles come from and the squared 
areas of the corresponding polygons will be generically distinct. 

There are other solutions. These arise as follows. We have so far assumed 
(implicitly) that, as we lay out all the sides around the circle, we are always 
proceeding in the same direction. However, this is not necessary. We can lay 
down one of the sides in the opposite direction. Then we get a solution which 
looks something like a (2m - 1)-gon because the backward edge almost coincides 
with the preceding and following edges. Here we have 2m + 1 choices for the 
backward edge and for each of these choices we can still go around the circle 
m -  1 times. In general each choice will require a different radius and yield a 
different area. 

the term ( m - 1 ) ( 2 m  + 1~ in the formula defining Am. Subsequent This explains 
\ / 1 

terms are explained by selecting more, up to m - 1, of the sides to go backward. 
This completes our proof for the case of n odd. 

Next suppose n = 2m + 2 is even. Here we take 2m + 1 of the sides to be nearly 
equal and the last side to be very small. Then we can construct A,~ solutions with 
the 2m + 1 sides in the same orientation as above and the very small side 
proceeding in the same direction as the majority. We can also construct other A,, 
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r=26. 385 

r=16. 512 

r=17.026 r=17.595 r=17. 991 

r=18.335 r=18. 651 

Fig. 1. The seven cyclic pentagons. 

solutions with the very small side proceeding in the opposite direction. This 
completes the (quite informal) proof. 

We denote by ct, the polynomial constructed in Theorem 1. [] 

Figure 1 illustrates the seven cyclic pentagons with side lengths 29, 30, 31, 32, 
and 33. 

3. Area of a Cyclic Pentagon 

In this section we give an explicit construction of the polynomial a 5 from 
Theorem 1. 

While it is not a logical necessity, we digress to describe how this polynomial 
was discovered. We suspected from the outset, by analogy with the case of triangles 
and cyclic quadrilaterals, that the polynomial would be monic with integer 
coefficients. We then also gained evidence for this conjecture by choosing penta- 
gons with nearly equal integer sides so that the seven distinct solutions, described 
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in the proof of Theorem 1, existed and, for each solution, we computed 16K 2 using 
high-precision arithmetic. We then formed the monic polynomial whose roots were 
the seven quantities so obtained and observed that, with sufficient precision, the 
coefficients of this polynomial were nearly integers, as predicted. 

An elaboration of the previous confirmation method also allows for computa- 
tion of the correct formula. We decided to express the coefficients of the powers 
of 16K 2 in terms of the elementary symmetric functions 

o" 1 = a 2 + " "  + a~, 

2 2 2 2 
6 2  = a l a 2  + " '"  + a4a5, 

of al 2 . . . . .  a~. Thus, taking into account the homogeneity properties of the poly- 
nomial f we were seeking, we expected f to have the form 

f = u 7 + (cla~ + c 2 0 2 ) u  6 ~- (c3014 q- '" ' )u  5 '~  ' ' ' ,  

where u = 16K 2 for brevity and c 1, c2, c3, . . ,  were certain integer constants to be 
determined. Since for a given pentagon we can compute this polynomial exactly 
(rounding the near integer coefficients to the nearest integer) and we can compute 
the a/s,  each such example gives us linear equations satisfied by the c/s, one 
equation for each power of u. A simple enumeration shows that only 70 unknown 
c/s are involved in the most complicated coeff• which is the constant term. 
Thus with 70 examples (and a little luck so that the resulting systems of equations 
are nonsingular) we can solve for the unknown coefficients. 

This is how we found the formula in the first place. An additional check on 
the correctness of our calculations, which were, after all, based on approximate 
arithmetic, was that the computed c/s were integers. More striking, however, was 
the observation that all the c/s were quite round numbers involving only small 
primes in their prime factorizations. This suggested that the polynomial possessed 
some additional structure. 

By examining the polynomial carefully we then observed, with the help of the 
computer program Mathemat ica ,  that it could indeed be written in a simpler form. 
Specifically, we found that the equation for u (still an abbreviation for 16K 2) could 
be written as 

a 5 = --t23t24- ut 3 + 16taat5 + 18ut3t4t  5 + 27u2t 2 = O, (3.~) 

where 

t2 : U - -  4 a  2 + a~ ,  

t 3 = 80" 3 + 0 " i t  2, 

t4 = - 6 4 a 4  + t~, 

t s = 128a5. 
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Note  that the formula yields a monic  polynomial  of  degree 7 for u whose 
coefficients are polynomials  in the squares of  the lengths of the sides. Having 
discovered the formula (3.1), we had abandoned  it not  understanding its signifi- 
cance. Some time later Bradley Brock pointed out  the extremely interesting fact 
that  the left-hand side of  (3.2) resembled the discriminant of a cubic. Indeed it is 
precisely 1/(4u 2) times the discriminant with respect to z of  the cubic polynomial  

z 3 + 2t3 z2 -- u t 4 z  + 2u2t5 . 

Why  this should be the case is still a mystery. However,  the observation leads 
to a relatively simple verification of  the correctness of the formula which could 
be carried out entirely by hand. 

Recall the qj's of  Section 2 and the relations 

a~ = R2(2 - -  q j  - -  q f  1) (3.2) 

and 

16K2 = - R 4 ( q l  + "'" + q5 - q ~ l  . . . . .  q 5 1 ) 2 .  (3.3) 

F r o m  (3.2) we can, in principle, express the elementary symmetric functions of  
the five a~ in terms of the elementary symmetric functions z a . . . . .  z s of the qfs. 
Here is one way to do it in practice. Note  that zs = 1. Let 

5 
f ( x )  = 1-[ (x  - -  qj)  = x 5 - -  z a x "  + "If2 X3 - -  ~3 X2 "}- ~ '4x - -  1 

j = l  

and 

O(g) = X 2 "1- ( y / R  2 - -  2)x + 1, 

where y is an indeterminate. Then f ( x )  = O. and g(x) = 0 have a c o m m o n  solution 
2 for some j. Thus if we express exactly when q~ + ( y / R  2 - 2)qj + 1 = 0 or  y = aj 

the resultant of f and O with respect to x in powers of  y, then the coefficient of  
yS-~ is ( -  1) i times the expression for 17~ in terms of  the z's. This way we find that 

0" 1 = R 2 ( 1 0  - -  "r I - -  Z4)  , 

172 = R+( 35 -- 8"q + z 2 + "c 3 -- 8'r4 + z(r4.), 

173 = R 6 ( 5 0  - -  20~x + 5T2 "3 L 5~3 - -  20x4 - zlza - z2z4 + 6~1~4), 

174 = Rs( 25 -- 15~a + 5~2 + 5za -- 15~4 + ztz2 + z2z3 + z3T4 - 4 z l z 3  

- 4 z 2 z 4  + 9 ~ 1 ~ 4 ) ,  

~ s  = - - R I ~  - z 2  + ~3 - -  T4) 2. 
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Also 

16K 2 = _ R4(zl - z4) 2. 

Next  we express the t's in terms of  the z's and we find that  

t2 = 4R4( - 1 0  + 3zl  - 72 - z3 + 3z4), 

t 3 = --4R6(3Zl --  T 2 + z 3 -- 3z4)(z 1 --  z4) , 

t4 = 16RS(9Zl - z2 + z3 --  9z4)(--zl  + z2 -- z3 + z4), 

t 5 = --128RI~ t - z  2 + z a - z 4 )  2. 

Note  that  each of  t3, t4, and t5 factor  as a p roduc t  of two l inear functions in the 
7's. This may  explain their  significance. I t  can now be easily verified that  

Z 3 -[- 2taz 2 -- u t 4 z  + 2uEt5 

= (Z --  16R6(zl --  z4)2)(z --  4R6(zl -- z 2 + 2" 3 - -  "~4)( '[1 - -  T 4 ) )  2. 

Since the cubic has a double  root ,  we may  conclude that  its d iscr iminant  is 0. 
Thus we have proved the formula  for the pentagon  area. 

4. Area of the Hexagon 

In this section we derive the po lynomia l  ot 6 giving the areas  of cyclic hexagons in 
terms of their  side lengths a l  . . . . .  a 6. We original ly found this formula  in much 
the same way as we did that  of the pentagon.  

However ,  we made  an addi t iona l  guess. Theorem 1 asserts the existence of a 
degree 14 po lynomia l  in 16K 2 whose coefficients are po lynomia ls  in the squared 
sides lengths. Because of the relat ively high degree it would  be difficult to carry  
out  the calculat ions  direct ly using the me thod  for the pentagon.  However,  by 
analogy with Brahmagup ta ' s  formula,  we expected that  the po lynomia l  o~ 6 would  
factor fl6fl~ where f16 and fl~ are  po lynomia ls  of  degree 7 in u = 16K 2 and in 
which the coefficients of the powers  of u are symmetr ic  polynomials ,  each with 
the p roper ty  that  the exponents  of  the a / s  in every term are ei ther all odd or  all 
even. Stated in terms of symmetr ic  functions each coefficient would  be a poly-  
nomial  with integer coefficients in the first five e lementary  symmetr ic  functions 
trl . . . . .  a s of  the a2's and  the function tr~ = a l " ' "  a6. 

To carry  out  the rest of  the p lan  we needed to know how to par t i t ion  the 14 
cyclic hexagons tha t  could  be cons t ruc ted  from a suitable set of  six side lengths 
into two 7-element subsets, one subset  whose areas  are the roots  of f16 and the 
other  whose roots  are  the areas  of  f lu  We shall see that  the following const ruct ion  
gives the correct  par t i t ion.  
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Let us assume that the vertices of  our  convex hexagon are complex numbers 
Vl . . . . .  v6 on a circle centered at the origin in the complex plane and that 
q j  = v j+ 1 /v j  are the vertex quotients. Observe that the quanti ty 

p = (1 - qlXl - q2 ) " ' ( 1  - -  q 6 )  

is always real. Indeed, since the qfs have absolute value one, 

p = (1 - q i - ' ) ' " ( 1  - q61) 

= q l  l ( q l  - -  1 ) ' ' '  q 6 1 ( q 6  -- 1) 

= ( q l ' "  q6)- lp = p. 

Thus hexagons fall into two categories according to whether p is positive or 
negative. In the construct ion of  Theorem 1 it is seen that precisely seven of the 
hexagons have positive values o f p  and that seven have negative values, the convex 
hexagon falling into the positive category. We guessed that this was the coirect 
part i t ion in order to compute  our  formula. 

We remark that there is a simple geometric interpretation of  the sign of  p. 
Starting with an arbitrary hexagon, let the vertices of the hexagon move contin- 
uously around the circle, in such a way that no three consecutive vertices ever 
coincide, until the hexagon becomes convex. At certain times in the process two 
consecutive vertices will cross. At these times the product  p changes sign. Thus p 
is positive exactly when the number  of crossings required is even so that it makes 
sense to call the sign of  p the c r o s s i n g  p a r i t y .  

Assuming all these guesses were correct, we used the same undetermined 
coefficients method as was used for the pentagon to determine the correct formula 
for f16 (which we took to be the factor corresponding to the hexagons with even 
crossing parity). The calculation is slightly more  complicated because now the 
mos t  complicated system of equations has 134 unknowns.  

Again, once the formula was produced,  it was apparent  that it possessed some 
additional structure much  as did the pentagon formula. Indeed, the formula was 
the same as (3.2) except that  we had to modify the definitions of  the t's. We found 
that  

f16 = - -  t32 t42 - -  u t  3 + 16tSts + 1 8 u t s t 4 t 5  + 27uEt~, 

where now 

t2 = u -- 40"2 + a~, 

t 3 = 8(73 -I- c r l t  2 - -  16try, 

t4 = t 2 - 6404 + 64010~, 

ts = 128as + 32t2tr~. 
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Aga in  it is no t  difficult,  o n c e  the  fo rmula  is found,  to verify it directly.  Let  

T 1 . . . . .  T 6 be  the e l emen ta ry  s y m m e t r i c  func t ions  o f  the qj's. We  h a v e  "~6 = 1. Also 

16K2 = - R 4 ( q l  + "'" + q6 - -  q ? l  . . . . .  q61)2 = _ R , * ( z  1 _ zs)2 

and  

a j2 = R2(2 _ qj - q i  1). 

W e  express  the  e l emen ta ry  s y m m e t r i c  funct ions  o f  the a~'s in t e rms  of  the z's, us ing 

the same  m e t h o d  as we used for  the  pen tagon .  Th is  yields 

0-1 = R2(12 - -r 1 - zs) , 

a2 = R 4 ( 5 4 -  10zl + z2 + *4 - 10zs + zlrs) ,  

as  = R6(112 --  35zl  + 8 T  2 - -  2za + 8z ,  - 35zs - zlz,~ - 't'2T s --{- 8 T I ' ~ 5 ) ,  

0.4 = R8( 105 - 50zl  + 21z2 --  12z3 + "'" + z l z 3  + . . . .  6 z l z *  + "'" + 20zlzs),  

0.5 = R l ~  36 --  26zl  + 2 0 Z 2  - -  18z3 + . . . .  z l z 2  . . . .  + 4 z l z 3  

+ . . . .  9 z l z  4 . . . .  + 16zlzs). 

W e  can  also express  ~ ;  in te rms  of  the z's. F o r  those  hexagons  for which  p > 0, 

we have  

0 . ~  = I v 1  - v21 Iv2 - v s l ' " l v 6  - v i i  

= I v l " " v 6 [  [Pl = R 6 l p l  = R 6 p  

= R6( 1 --  q 0 " " ( 1  --  q6) 

= R 6 ( 1 - z l + Z E - z a + Z 4 - z s + l ) -  

N e x t  we express  the  t 's  in t e rms  of  the  es .  W e  ob ta in  

t 2 = 4R4( - 18 + 4z 1 - z2 --  z ,  + 4zs), 

t s = - 4 R 6 ( 4 Z l  - z 2 + z4 - -  4 z s X z  I - z 5 )  , 

t4 = 16Ra(10zl  - z2 + z4 --  10zs)(2zt - z2 + z4 --  2zs), 

t s = --  128Rl~  --  z 2 + z4 - 2 z s )  2. 

Again  n o t e  tha t  each  o f  ta, t4, a n d  ts f ac to r  as a p r o d u c t  of  two  l inear  func t ions  

in the  z's. W e  also find tha t  

z a + 2taz  2 - -  u t 4 z  + 2u2ts 

= (Z --  16R6(zt -- zs)2)(z -- 4R6(2zt  - -  T 2 - [ -  "l~ 4 - -  2zs)(zl - zs)) 2. 
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Since the cubic in z has a double root, we have verified the formula for the hexagon. 
The polynomial fl~ for cyclic hexagons of odd crossing parity can be obtained 

from fl6 by replacing tr~ by its negative. We now see that ~6 =/~6/~. 
In principle the same method could be used for the polygons of more sides. 

We have in fact verified in a few examples that if we take seven nearly equal 
integer side lengths, then the 38 values of 16K 2 do indeed satisfy a monic 
polynomial with integer coefficients. However, it would be a considerable compu- 
tational problem to carry out the undetermined coefficients method since the 
largest system of equations would involve 143,307 undetermined coefficients. Even 
if we were able to compute the polynomial ~t 7 this way, it would obviously be a 
substantial problem to manipulate it into a more compact form. Thus it seems 
best to guess the compact form first should one exist. 

5. The Circumradius 

The circumradius of a cyclic polygon is also a symmetric function of the side 
lengths and it is possible to study it in a manner analogous to our treatment 
of the area. We have done this and derived the formulas for the circumradius 
for the case of the pentagon and hexagon. Here we have a somewhat simpler 
inductive method available. We can derive a formula for the n-gon by cutting 
it along a diagonal into a cyclic quadrilateral and an ( n -  2)-gon. Then we 
use the previously derived formulas for the circumradius of the ( n -  2)-gon 
and the cyclic quadrilateral. These formulas involve two unknowns, the circum- 
radius and the length of the chosen diagonal. Taking the resultant of these two 
formulas with respect to the diagonal, we eliminate the diagonal and construct a 
polynomial satisfied by the circumradius of the n-gon. This seems always to give 
a power of R times the appropriate minimum polynomial for R 2, but we are unable 
to prove this. Sillke I-2] has derived the formula for the cyclic pentagon by similar 
methods. 

Although the coefficients in the resulting formulas for both the pentagon and 
the hexagon again factor into small primes, we have been unable to put either 
formula into a sensible compact form. However, based on our experience we can 
give some conjectures about these formulas. Some facts relating to the degrees of 
the minimum polynomials can be proved just as for the area formula. 

We begin with the circumradius of the (2m + 1)-gon. 

Conjecture 1. Let m be a positive integer. Then a unique (up to sign) homogeneous 
polynomial P2m+ 1 of 2m + 2 variables with integer coefficients, of degree A ,  in its 

variable and of overall degree (2m+ 1 ) ( ~ ) ,  exists such that whenever a first 
\ . . - /  

polygon with 2m + 1 sides of lengths a I, a2 . . . . .  a2,.+ 1 is inscribed in a circle of 
radius R, then 

p2m+l(R 2, al, a 2 . . . . .  a2m+l ) = 0. 
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This polynomial is irreducible and symmetric in the aj' s and involves only even powers 
of them. The ambiguous sign can be chosen so that the coefficient of R zt~ is the 
product of 2 TM factors of the form 

.-[-al .q- a 2 . . . . - ~  a 2 m + l  , 

where the allowed sign patterns are those with more plus signs than minus signs and 
the term independent of R is 

/2,.+1 aj)(2m). 

(It may be easily proved that A m is odd exactly when m is a power of 2.) 

The situation is somewhat  different for polygons with an even number  of  sides. 
Again we distinguish two types according to the crossing parity as described in 
the last section. Here  are the conjectures for (2m + 2)-gons. 

Conjecture 2. Let m be a positive integer. Then a unique (up to sign) homogeneous 
polynomial P2m+ 2 o f  2m + 3 variables with integer coefficients, of degree Am in its 

/ ,.~ \ 

variable and overall degree ( 2 m +  l ) ( zm) ,  exists such that first whenever apolygon 
\ . . . /  

with 2m + 2 sides of lengths al,  a2 . . . . .  a2m+2 is inscribed in a circle of radius R 
and has even crossing number, then 

P2m+2(R 2, al ,  a2 . . . .  ., a2m+2 ) --- 0. 

This polynomial is symmetric in the af s, with each term consisting either entirely of 
even powers of the af  s or entirely of odd powers. The ambiguous sign can be chosen 
so that the coefficient of R 2A~ is the product of 22m factors of the form 

-t-a I + a 2 ..- .1- a2m+2 , 

where the allowed sign patterns have more plus signs than minus signs and the number 
of plus signs has the same parity as m, and the term independent o f  R is 

(--I)~"SHT ( j~saJ+ l--[ aJ ), 
, j e T  

where, in the first product, S and T run over all disjoint pairs of  (m + 1)-element 
subsets of{1 . . . . .  2m + 2} with 1 eS.  

In the cases m = 1 of Conjectures 1 and 2, the formulas  for the  circumradius 
are completely specified and correspond to well-known formulas for the circum- 
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radius of a triangle and a cyclic quadrilateral. We have also verified the correctness 
of our conjectures for pentagons and hexagons and obtained some evidence for 
their correctness in the case of heptagons. 

For  (2m + 2)-gons with odd crossing number, we can expect the formulas of 
Conjecture 2 to hold if we replace one of the sides of the polygon with its negative. 
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