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Abstract. We show that the number of topologically different orthographic views 
of a polyhedral terrain with n edges is O(n 5 +~), and that the number of topologically 
different perspective views of such a terrain is O(nS+0, for any e > 0. Both bounds 
are almost tight in the worst case. The proofs are simple consequences of the 
recent almost-tight bounds of [11] on the complexity of lower envelopes in higher 
dimensions. 

1. Introduction 

Let E be a polyhedral terrain with n edges in 3-space. That is, E is the graph of 
a continuous bivariate piecewise-linear function. An orthographic view of E in some 
direction co is defined as follows. Take a plane I I  at minus infinity orthogonal to 
co. For  each point q ~ H, consider the ray pq emanating from q in direction co, and 
let ~q be the first point, if any, along p~ at which it intersects E. We can partition 
17 into a collection of maximal open connected regions, with the property that, 
for each region f ,  all points q e f  are such that their "hitting points" Cq lie on the 

* Pankaj Agarwal has been supported by National Science Foundation Grant CCR-91-06514. 
Micha Sharir has been supported by National Science Foundation Grant CCR-91-22103, and by grants 
from the U.S.-Israeli Binational Science Foundation, the G.I.F.--the German Israeli Foundation for 
Scientific Research and Development--and the Fund for Basic Research administered by the Israeli 
Academy of Sciences. 



178 P.K. Agarwal and M. Sharir 

same face of Y. (or none of these hitting points exist). The orthographic view in 
direction to is the resulting planar map on I-I. 

Similarly, a perspective view of Z is defined as follows. Take a point v in 3-space 
(lying above Y.), consider the collection of rays emanating from v in all possible 
directions, and partition the unit sphere of directions into maximal connected 
regions, so that all rays emanating from v whose directions lie in such a region 
first hit the same face of E (or do not hit E at all). The resulting spherical map is 
the perspective view of E from v. 

If we vary the orthographic direction co continuously, the corresponding view 
also changes continuously. However, the combinatorial and topological structure 
of the view remains the same until we reach a "critical direction" at which the 
corresponding planar map undergoes some combinatorial change (where vertices, 
edges, or faces newly appear or disappear); the loci of critical directions are curves 
of directions at which there is a ray that either passes through three distinct edges 
of Y., or passes through a vertex of E and another edge of Z, before piercing 
through Z. These curves partition the sphere of directions into maximal connected 
regions, so that the topological structure of the orthographic view of Y remains 
the same for all directions within each region. This partition of the sphere of 
directions forms a planar graph. The dual of this graph is known as the aspect 
graph of X. That is, there is a vertex in the aspect graph for each topologically 
distinct view, and two vertices Vl, v2 are connected by an edge if the viewing 
direction can be varied continuously so as to pass from a view represented by vl 
to a view represented by v 2 without having any intermediate views; see [6] and 
[9"1 for a more formal definition of aspect graphs. An aspect graph for perspective 
views can be defined in an analogous manner. In this case it is the dual graph of 
a partitioning of 3-space, where the perspective views from all points in any single 
region are topologically equivalent. As a matter of fact, the aspect graph can be 
defined for any scene in 3-space. In this paper we study the size of the aspect graph 
(i.e., the number of topologically different views) of a polyhedral terrain. Aspect 
graphs have applications in computer vision, computer graphics, and object 
recognition [5], [6], [9]. 

The notion of aspect graphs was introduced by Koenderink and van Doorn 
[8], and also by Chakravarty and Freeman [3]. Plantinga and Dyer [9] proved 
that the maximum number of topologically different orthographic and perspective 
views of a convex polyhedron with n faces are | 2) and | respectively. For 
a nonconvex polyhedron, and for arbitrary polyhedral scenes, the bounds are O(/16) 
and O(n9), respectively [10]. Snoeyink [12] has shown that even if we restrict 
the objects to be axis-parallel, the bound on the maximum number of orthographic 
views remains | 

The number of topologically different views of a polyhedral terrain was first 
considered by Cole and Sharir [4]. They showed that if the viewpoint moves 
along a vertical line, the maximum number of topologically different perspective 
views is O(/I 2. 2"in}), where ~t(n) is the inverse Ackermann function. They also 
showed that the number of topologically different views along a vertical line can 
be as large as f/(n 2) in the worst case. Based on the result of Cole and Sharir, 
de Berg et al. [1-1 proved that the maximum number of orthographic views of a 
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polyhedral terrain with n faces is O(n s. 2"t"~), and the maximum number of 
perspective views is O(n 8" 2 "tn) log 2 n). However, their proof turned out to be 
erroneous. Recently Halperin and Sharir [7] gave an upper bound of 0 ( n 5 2 C ~ )  
on the number of orthographic views of a polyhedral terrain, based on their result 
on the complexity of the lower envelope of a set of surface patches in 3-space. 
Their proof does not extend to perspective views, and, moreover, it is somewhat 
complicated. 

In this paper we give a very simple and direct proof for an upper bound of 
O(nS+~), for any e > 0,1 on the maximum number of orthographic views. It uses 
the recent result of Sharir [1 1] on the complexity of the lower envelope of surface 
patches in higher dimensions. Following a similar approach, we prove that the 
maximum number of perspective views of a polyhedral terrain is O(nS+~). The 
best-known lower bounds for the maximum number of orthographic and perspec- 
tive views are ~(n2ct(n)) and f~(nS~t(n)), respectively [1], so our bounds are close to 
optimal. Our techniques also extend to more general terrains, where each face is 
a portion of an algebraic surface of some (small) fixed degree, e.g., each face is a 
portion of a sphere. 

2. The Number of Orthographic Views 

Theorem 1. The number of topologically different orthographic views of a poly- 
hedral terrain E with n edges is O(n~+~), for any e > O. 

Proof We consider the space of all spatial orientations, represented by points 
on the unit sphere S about the origin. Each spatial orientation 09 ~ S is para- 
metrized by its spherical coordinates (0, ~0), where 0 is the horizontal orientation 
of the xy-projection of 09, and tp is the azimuth of 09, that is, the angle between 
the positive z-axis and the ray from O to 09. We wish to partition S into maximal 
connected regions, so that the topological structure of the view of Z in all directions 
within each region remains the same. Let M(E) denote the resulting subdivision 
of S. It is easily checked that the topological structure of the view of E changes 
at a direction 09 if there is a ray p in direction co coming from minus infinity and 
satisfying one of the following two conditions: 

1. p passes through a vertex and an edge of E before penetrating into the open 
region lying below E (if at all). 

2. p passes through three edges of E before penetrating into the open region 
lying below Z (if at all). 

Therefore, for each direction 09 lying on an edge of M(E), there is a ray in direction 
to that satisfies one of these two conditions. Moreover, a vertex of M(E) corre- 
sponds to a direction 09 such that there are two parallel rays coming from minus 

1 Throughout this paper, e denotes a positive constant which can be chosen arbitrarily small with 
an appropriate choice of the constant of proportionality. 



180 P.K. Agarwal and M. Sharir 

infinity in direction co, each of which satisfies one of the above conditions. To 
bound the number of different topological views of E, it suffices to obtain a bound 
on the number of vertices in M(E). 

It is easily checked that there are only O(n s) pairs of parallel rays for which at 
least one of the rays satisfies the first condition (and the other ray satisfies either 
condition). Hence, it suffices to bound the number of pairs of parallel rays both 
satisfying the second condition, i.e., each of them passes through three edges of E 
before intersecting the open region lying below Y.. Let p be such a ray, and let c 
be the third edge of Y. intersected by p. Then the ray emanating from the 
intersection point of c and p in the direction opposite to that of p passes three 
edges of Y. and is disjoint from the open region below E. 

Suppose Pl and Pz are two such (reversed) rays, and suppose that pl passes 
through the edges al, bl, and c~ of Y. in this order, and that Pz passes through 
the edges a2, b2, and c 2 in this order (note that the corresponding orthographic 
view is seen in the direction (0 + 7r, rc - r opposite to the orientation (0, tp) of 
these rays). Let us consider the fixed pair a~, a 2 of edges of the terrain, and define 
the following collection ~a~a2 of trivariate partial functions. The three independent 
variables are (s 1, Sz, 0), and each such triple represents the vertical projection of a 
pair of parallel rays, as follows: s~ (resp. s2) parametrizes a point on a x (resp. on 
a2) that we denote by p(sl) (resp. p(sz) ). To be more precise s~ is the distance 
between the left endpoint of a 1 (resp. az) and p(&) (resp. p(s2) ). Finally, 0 is the 
common horizontal orientation of the two rays, one of which emanates from the 
point p(&) on a~ and the other emanates from the point p(sz) on az (the only 
variable degree of freedom available for these rays is their common azimuth tp). 

For each edge e of E we define a function F e e o~a,~2 so that Fe(s~, s2, O) is the 
smallest of the two azimuth angles ~01, ~02, for which two rays, p~, P2, exist at 
orientations (0, tpl) and (0, tp2 ), respectively, so that p~ (resp. P2) emanates from 
p(sl) (resp. p(s2)) and passes through e. If only one of these rays exists, F~(sl, s2, O) 
is equal to the azimuth of that ray, and if none of these rays exist, Fe(sl, s2, 0) is 
not defined. 

Let F denote the lower envelope of the collection ~ For  each triple (s~, s 2, 0) 
the following is easily seen to hold: let (0 = F(Sl, s2, O) (assuming that it is defined); 
then two parallel rays, with common orientation (0, ~0), exist emanating respec- 
tively from p(&)~ a 1 and from p(s2)e a2, so that both rays are disjoint from the 
region lying below Y. and at least one of them passes through another edge of E. 
(Some care must be exercised in handling the unbounded faces over which these 
rays pass, to ensure that they do not pierce through such a face. This can be 
enforced by adding extra functions to the collection ~ we leave it to the reader 
to work out the details.) Moreover, if (s~, s2, 0, tp) is a breakpoint of F, where four 
surfaces of o~,ao meet, then the two corresponding rays collectively pass through 
four edges of Y~ (in addition to a~ and a2). Conversely, any pair of rays with these 
properties appear as a breakpoint of F, so, in particular, each critical orthographic 
view which is a vertex of M(E) must give rise to such a breakpoint. 

Hence, by the results of [11] (using an appropriate parametrization which 
makes the functions of ~  2 algebraic of constant maximum degree), the number 
of such critical pairs of rays is O(n3+~). Multiplying this bound by the O(n 2) pairs 
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of edges a 1, a2, we obtain that the overall number of such critical pairs of rays, 
and thus also the number of topologically different orthographic views of E, is 
O(nS+~), for any e > 0. []  

Remark. (i) de Berg et al. [11 have a given a lower bound of ~(nSct(n)) for the 
number of topologically different orthographic views of a polyhedral terrain with 
n edges. Hence, the above upper bound is close to optimal. 

(ii) Theorem 1 can be extended to more general terrains. For  example, Theorem 
1 holds even if each face of E is a portion of a sphere (or of any constant-degree 
algebraic surface). In this case it suffices to bound the number of pairs of parallel 
rays, each of which is tangent to three faces of E and is disjoint from the open 
region lying below E. Following a similar approach it can be shown that the 
number of such pairs of parallel rays, and thus the number of topologically 
different orthographic views of such a terrain, is O(nS+~), for any e > 0. 

3. The Number of Perspective Views 

Theorem 2. The number of topologically different perspective views of a polyhedral 
terrain with n edges is O(n8+~), for any e > O. 

Proof The proof is very similar to that of Theorem 1. Specifically, the analysis 
of [1] and the proof of Theorem 1 imply that it suffices to bound the number of 
points (x, y, z) for which three segments emanating from (x, y, z) exist, each of 
which passes through three edges of E and is disjoint from the open region lying 
below Z. (Such a point (x, y, z) is an intersection between three surfaces of critical 
viewpoints in 3-space, where each surface is the locus of viewpoints at which some 
topological changes in the perspective view take place.) Suppose that Pl, P2, and 
P3 are these segments, and suppose that p~ passes through the edges ai, b~, and c~ 
of Z in this order when directed toward (x, y, z), for i = 1, 2, 3. Let us consider the 
fixed triple al, a2, a3 of edges of E, and define the following collection ~,a2a3 of 
5-variate partial functions. The five independent variables are (sl, s2, s3, x, y), and 
each such 5-tuple represents the vertical projection of a triple of concurrent 
segments, as follows: s~ parametfizes a point on al, for i = 1, 2, 3, that we denote 
by p(s~) (see Section 2 for a more precise definition of s 1, s2), and (x, y) is the vertical 
projection of the common endpoint of the three segments which connect this point 
to each of the three points p(s~), for i = 1, 2, 3. 

For each edge e of Y. we define a function F e ~ ~-a,~2a3 SO that Fe(sl, s2, sa, x, y) 
is the largest z coordinate of a point q = (x, y, z) with the property that at least 
one of the three segments connecting q to p(sl), p(s2), p(s3) passes through e (if 
none of these segments exists, F~(sl, s2, s3, x, y) is undefined). 

Let F denote the upper envelope of the collection ~-~,~2o3" For each 5-tuple 
(sl, s2, s 3, x, y) the following is easily seen to hold: let z = F(s~, s 2, s3, x, y) (assum- 
ing that it is defined); then the three segments connecting (x, y, z) to p(sl), p(s2), 
P(S3) are disjoint from the open region lying below E and at least one of them 
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touches another edge of E (again, we need to modify the collection of functions 
so as to handle properly the unbounded faces of E; we omit the straightforward 
details). Moreover, if (sl, s2, s3, x, y, z) is a breakpoint of F, where six surfaces of 
3r~1o2~ meet, then the three corresponding segments collectively pass through six 
edges of E (in addition to al, a 2, and a3). Conversely, any triple of segments with 
these properties corresponds to a breakpoint of F. 

Hence, by the results of [11], the number of such critical triples of segments is 
O(nS+~), where the constant of proportionality depends on ~. Multiplying this 
bound by the O(n 3) triples of edges a 1, a2, a3, we obtain that the overall number 
of such critical triples of segments, and thus also the number of topologically 
different perspective views of Y., is O(n 8 +~), for any e > 0. [] 

Remark. (i) de Berg et al. [1] have given a lower bound of f~(n%t(n)) for the 
number of topologically different perspective views of a terrain with n edges. Thus 
our bound is close to optimal in the worst case. 

(ii) Unfortunately, both for orthographic and for perspective views, our techni- 
que does not yield an efficient algorithm for computing the aspect graph of a 
polyhedral terrain, whose running time is close to the maximum size of that graph, 
because no such efficient algorithm is known for computing the lower envelope 
of surface patches in dimensions greater than three. 
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