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Abstract. Quadtrees constitute a classical data structure for storing and accessing 
collections of points in multidimensional space. It is proved that, in any dimension, 
the cost of a random search in a randomly grown quadtree has logarithmic mean 
and variance and is asymptotically distributed as a normal variable. The limit 
distribution property extends to quadtrees of all dimensions a result only known so 
far to hold for binary search trees. 

The analysis is based on a technique of singularity perturbation that appears to 
be of some generality. For quadtrees, this technique is applied to linear differential 
equations satisfied by intervening bivariate generating functions 

1. Introduction 

This work  concerns itself with an analysis in distribution of  the cost of retrieving 
data f rom a randomly  grown quadtree structure based on a combinat ion of 
complex asymptotic  and analytic probabilistic methods. 

Quadtrees are a well-known data structure for multidimensional retrieval 
problems discovered by Finkel and Bentley [9]. They are discussed in classical 
treatises on algorithms [18], [31] and examined in great detail in Samet's reference 
books  [29], [20]. Their analysis has made tangible progress over recent years 
[7], [10], [12], [20], [23], [27]. 

Given a list of  points ~ = (P1, P2 . . . .  , P,) in two-dimensional space, the 

* This work was partly supported by the ESPRIT Basic Research Action No. 7141 (ALCOM II). 
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standard quadtree process associates to it a tree defined by the rules: 

- - I f  ~' = ~ ,  the tree is the empty tree. Otherwise, n > 1, and the first point 
P~ of ~ is made the root of the tree. 

- - T h e  four root subtrees are made recursively from the four disjoint sublists 
of points 

~i~NW, ~NE' ~SW, ~SE, 

defined by restricting ~\{P1} to the four quadrants (NW, NE, SW, SE, 
respectively) determined by the root node P r  

This definition is readily generalized to an arbitrary dimension d, the correspond- 
ing trees then having the branching factor 2 a. 

The searching algorithm for a point Po in a quadtree constructed from a 
collection of data ~ starts with a comparison with the root; based on the outcome, 
it then recursively descends into one of the four subtrees. For  any given ~ and Po, 
this defines an access path whose length is characteristic of the search cost. 

Throughout this paper, we let d > 1 be the dimension of the data space, and 
we liberally assume that data are from the d-dimensional hypercube .~ = [0, 1] d. 
The probabilistic model considered takes all such data uniformly and inde- 
pendently from .~. Having built a quadtree from n - 1 points under this model 
we consider the cost of searching an nth item in it, the search cost being measured 
as always by the number of internal nodes traversed. This search cost D, 
(also called insertion depth) is then a random variable defined on the space 
.~"-1 x .~ ~ .~". The outcome of the search is unsuccessful with probability 1 so 
that we are analysing with D. a random unsuccessful search. Our main result is 
that D. converges in distribution to a Gaussian law when the size n of the structure 
becomes large. Figure 1 illustrates the clear occurrence of this phenomenon already 
for low values of n. 

More precisely, let p, and tr. denote the mean and the standard deviation of 
the random variable D.. We prove that, for all real ~, fl, 

( D"--t~" } 1 ffe-X,2/2dxx/2n (1) Pr ~ < - - < f l  ~ ( n ~ ) ,  
O" n 

where mean and standard deviation satisfy 

2 
/t. ,-~ ~ log n and tr, ,-~ log n. (2) 

Similar results hold for the cost C, of a random successful search where a random 
search is performed for one of the n records already present in the tree, the 
underlying probability space then being .~" x [1. .  n]. 

The type of analysis involved is perceptible when looking at the equation 
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Fig. 1. The histogram of the probability distribution of D, (for size n = 100 and dimension d = 2) 
plotted against a Gaussian density function of the same mean and variance. 

satisfied by a modified form O(u, z) of the bivariate probabi l i ty  generating function 
~ . ,k  Pr{D. = k}ukz ", which, for dimension d = 3, reads 

f]  dx f]  dY f]  cb(u,t) dt (3) ~(U, Z) ----- 1 + 23U X(1 -- X) y(1 -- y) 1--~t" 

The triple integral is a reflection of the combinator ices  of the growth process of  
three-dimensional  quadtrees.  

O u r  results (1), (2) characterize the profile of a search in a quadtree of  any 
dimension. The results already known are discussed in M a h m o u d ' s  book  [27] 
that  we adopt  as our  basic reference for analysis of  search trees. 

When  d = 1, the quadtree reduces to the binary search tree [22]. In that  case 

the distr ibution of D. involves in a simple way the Stirling "cycle"  numbers  [~  1 

defined by 

I~lu~ = u(u + l)"'(u + n - l), 
k = O  

(4) 



154 P. Flajolet and T. Lafforgue 

a fact known since the 1960s [15], [16], [26] and rediscovered by several authors. 
The distribution is Gaussian in the limit, in both the unsuccessful case [5] and 
the successful case [24-1. This property is itself closely related to Gon~arov's result 
of 1943 establishing the asymptotic normality of the Stirling cycle numbers. 

When d = 2, the mean/~, and the variance tr 2 have explicit forms [7], [10] that 
involve the harmonic numbers, 

1 
i and Hr, 2).- ~. k~. (5) Hn:= ~ ~ .-- 

k = l  k = l  

We push the analysis further and derive a closed form for the generating functions 
of D, and Cn using the hypergeometric equation known to play a crucial role in 
similar analyses [10], [20]. In this way the distribution of search costs becomes 
expressible as a complicated convolution of Stirling numbers and asymptotic 
normality results. 

When d > 3, the asymptotic form of the mean, see (2), was determined by 
Devroye and Laforest using probabilistic arguments [7] and independently by 
Flajolet et al. [10] using singularity analysis of solutions to linear ordinary 
differential equations. We establish here the asymptotic form (2) for the variance 
(a 2) which was previously unknown and which furnishes a quantitative refinement 
of the convergence-in-probability result of Devroye and Laforest. Furthermore 
- - and  this constitutes the main result of the paper--we obtain the asymptotic 
normality of the distribution of search cost (1) in all dimensions. Observe that 
already no closed forms are currently available (even for the mean) from the 
integral equation (3) for d = 3. 

2. Basic Equations 

The random tree problem described in the Introduction is readily recast as a purely 
analytic problem, as shown by Lemma 1 below. This section is devoted to the 
reduction, and the reader unfamiliar with (or uninterested by) search trees can 
take it as a starting point. In effect this lemma rephrases our problem as an instance 
of a general question which is of independent interest: "Estimate the coefficients 
of a bivariate series that satisfies a linear ordinary differential equation with 
polynomial coefficients." 

Two integral operators play an essential role here: 

~o dt If(z) = f(t) 1 t f [  dt Jf(z)  = f(t) t(1 -- t----~" 

(When applied to a bivariate function f(u,z), we always assume that the 
first variable u is an auxiliary parameter. See (3) for an example when 
d = 3.) 
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Lemma 1. The generating functions of the costs of a random search, successful and 
unsuccessful, in a quadtree of size n are given by 

IT.(u) := Z Pr{C. = k}u k 1 u , - n 2du -- 1 (~0.(U) -- 1), 

1 
~6.(U):= ZPr{Dn k}u k }~__-]  (q~.(u) - ~o._x(u)), 

k 

(6) 

where the bivariate generating function 

r z) = y~ ~o.(u)z" 
n 

of the polynomials qg.(u) is characterized by the integral equation 

qb(u, z) = 1 + 2dUJ ~- qO(U, Z). (7) 

Proof The central quantities here are the level polynomials q~.(u) that record the 
distribution of levels of external (empty) nodes in trees, and to which the 
distributions of C., D. are then attached. 

Consider arbitrary "regular" r-ary trees where each internal node has outdegree 
exactly r (for quadtrees, r = 2a). For such a tree T, we define the (external) level 
polynomial ~0(u; T) = ~e Un~e), where the sum extends to the external nodes of e 
and d(e) is the depth of e measured in the number of internal nodes from the root 
of T to e. The level polynomial of the empty tree is 1 and inductively 

~(u; T)=u ~ ~(u; ~), (8) 
j = l  

with Tj the root subtrees of T. 
The internal level polynomial is similarly if(u; T ) =  ~i  uati) where the sum 

extends now to the internal nodes i of T, depth being still measured in the number 
of internal nodes on the branch of i. Since an internal node at depth k connects 
to r nodes, either internal with depth k + 1 or external with depth k, a balance 
relation holds, 

1 
t~(u; T) = - (~(u; T) - u) + r T). (9) 

U 

Note that ~k(u; T)/I TI describes the probability distribution of the cost of searching 
a random internal node conditioned upon the fact that the shape of the tree is T. 
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Next turn to the quadtree growth process. A tree of size n gives rise to a 
designated root subtree (for instance the NW subtree when d = 2) havino size k 
with probability 

1 ~ 1 (10) 
7r"'k = n (I 1 + 1X12 + 1)'"(ld_ 1 + 1) 

where the summation is over all sequences (Ix, 12 . . . . .  la) , the condition ~ being 
n > 11 > 12 >_ ...  > l a_ 1 >- la --- k. These splitting probabilities are consequences of 
the quadtree growth process which they fully characterize. See Lemma 8 of [10] 
for a simple computation via Eulerian integrals. 

Now define q~,(u) to be the expectat ion of the polynomial ~o(u; T) when T is a 
randomly grown tree of size n according to the quadtree process. (We also call 
q~,(u) a level polynomial.) Then, from (8) and (10), we get the recurrence 

n - I  

~Oo(U ) = 1, q~,(u) = 2au ~ %kq~k(U). 
k=0 

Taking generating functions, this is equivalent to (7). 
The cost generating function V.(u) of a random successful search C, derives 

from r by translating relation (9) into expectations, which gives the first part 
of (6). For an unsuccessful search, by a classical argument [22, p. 427], D, measures 
the difference between the shapes of the tree at stages n and n - 1, so that the 
second part of (6) relative to 3,(u) follows. [] 

We note that [uk]q~,(U) is the expected number of external nodes at depth k in 
a randomly grown quadtree of n nodes. Except in the case of d = 1, it is not true 
that all external nodes get accessed with equal likelihood for randomly grown 
quadtrees. 

3. The  Binary  Search Tree  (d  = 1) 

When d = 1, the integral equation satisfied by *(u, z) is homogeneous of order 1, 
and thus solvable by quadratures: 

1 (2u).(2u + 1). (2u + n - 1) 
r  and ~o.(u) - (11) 

(1 - z) 2~ n! 

Fn7/ 
Thus, oomp=  wit,, wo soo t,,at which involves the 

L -  . - I /  

Stirling numbers. Proceeding in this vein, mean, variance, and distribution of D. 
are found directly from Lemma 1 and (11). 
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Theorem 1 (Hibbard, Lynch). The cost D~ of a random unsuccessful search in a 
binary search tree of size n - 1 has mean and variance given by 

2 2H~ 4H~ 2) + 2, O" n ~ #~ = 2(H, ,  - -  1), 

and probability distribution 

2 [nl 1 Pr{D~ = k} = ~.. k " 

Analogous results hold for C.. They are originally due to Hibbard for the mean 
and Lynch for the whole distribution. See [221 and [27]. 

4.  T h e  S t a n d a r d  Q u a d t r e e  ( d  = 2 )  

In the case of dimension d = 2, the analytic model of quadtrees can be solved 
explicitly in terms of hypergeometric functions. The corresponding easy back- 
ground in analysis may be found in [11, [191, and [331. 

T h e o r e m  2. The cost C. of a random successful search in a standard quadtree of  
size n - 1 has a generating function y.(u) given by 

1 ) (  )1 ~"(u2)=E{u2C"} n4u  2 1 - 1 +  ~ 2u 2 u - 1  2u l + n - j  . 
- -  j = o  \ J / \  J n - - j  

Equivalently, the distribution of Cn is expressible as a convolution of Stirling cycle 
numbers, 

Pr{C, = k} - 2Zk-2 [ 1--  ~ 1 ' " " 
n k j=o(fl)2(n--J) * L ,JL 2 l[/++l][nT']]''jL JJ 

where the sum ~ r  is to be taken over all triples (kl, k2, k3) such that 

(ag ~) kl + k z + k 3 - = 0  (rood2) and k l + k z + k a < 2 k - 2 .  

This also entails an explicit expression for the probability distribution of Dn 
since, from Lemma 1, 

Pr{D. = k} = n[Pr{C. = k + 1} - Pr{C._,  = k + 1}3. 
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Proof 

satisfies 
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From Lemma 1, the generating function of the level polynomials  

z 3 
q)(u, z) = 1 + 4uz + (4u z + 3u)z 2 + (22u + 52u 2 + 16u 3) ~ + " -  

f [ dx f f dt tl~u, z) = 1 + 22u x(1 - -  x) @(u, t) 1 ~  

It is thus the solution of  the linear differential equat ion of  order 2, 

z(1 - z)2y " + (1 - 2zX1 - z)y' - 4u = O. (12) 

This equat ion has singularities at the three points z = 0, 1, oo so that  it is natural  
to compare  it with the hypergeometric  type. 

In order  to determine the local behavior  at some point  Zo of  possible solutions 
to a linear equation like (12), we simply consider a form (z - Zo) ", then identify 
the possible values of  ~ by substituting into the equation and cancelling the 
dominan t  terms. This produces an indicial equation that  is necessarily satisfied by 
~t, and is here of degree 2. At z o = 0, where ~t 2 = 0, two fundamental  solutions are 
found in this way to grow like 1 and log z. At z o = 1, where ~2 = 22u, solutions 
are locally of the form (1 - z)-  and (1 - z) § 2~/,. At Zo = 0% solutions behave 
like 1 and 1/z. 

This suggests setting 

Y 
y -  

(1 - z )  ~ '  

where ct 2 = 22u, and  we choose the principal determination a = 2x/-u, when u is 
near 1. Then Y satisfies an equation where one of the solutions is O(1) as z ~ 1, a 
proper ty  shared by the s tandard hypergeometric equation. The transformed 
equat ion makes possible a precise simplification by a factor of  1 - z: 

z(1 - z)Y" + (1 -- z(2 -- 2ot))Y' - ~(~ - 1)Y = O. (13) 

The hypergeometric  equation is 

z(1 -- z)F" + (c -- (a + b + 1)z)F' - abF = O, (14) 

which, under  F(0) = 1, F'(0) = ab, adrrq~ts the hyperoeometric solution 

F = F[a, b; c; z] = 1 + - - - -  
a ' b  z a(a + 1)-b(b + 1) z 2 

+ - + - - - .  (15)  
c 1! c(c + 1) 2! 
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The two equations (13) and (14) are matched by the substitution 

a = - e ,  b =  1 - ~ ,  c =  1 with ~=2x/ /u .  

Thus the generating function of the level polynomials @(u, z) admits the explicit 
form 

I 
�9 (u 2, z) - (1 - z) 2" F [ - 2 u ,  1 - 2u; 1; z] 

=(v=~o( 2u - I ) z v ) ' Q = ~ o \ j / \  j X)z~) �9 (16) 

A convolution formula for ~on(u ) then derives and the relations of Lemma 1 provide 
for 6n(u). [] 

As an immediate corollary, we obtain the known values of the mean [7], [10] 
and of the variance [7] of a random search. 

Theorem 3 (Devroye-Laforest, Flajolet et al.). The mean and variance o f  a random 
search D n in a standard quadtree of  size n - 1 are given by 

1 2 13 5 4 
2 �89 +/_/(2) 

#n = Hn 6 3n' an = --n -- ~ + 4n 9n 2' 

Proof. Compute O@/Ou and 021~/OU 2, evaluate at u = 1, and expand. []  

In preparation for our subsequent discussion, we note that the generating 
function q~ admits the expansion at z = 1: 

(I)(u 2, Z) = 
F(4u) 

F(2u)F(1 + 2u) 
(1 - z)-2UF[--2u, 1 -- 2u; 1 - 4u; 1 - z] 

+ 
r ( - 4 u )  

F ( -  2u)F(1 - 2u) 
(1 - z)2UF[+2u, 1 + 2u; 1 + 4u; 1 - z]. (17) 

Such a form is available since the connection formulae for hypergeometrics are 
fully explicit due to the existence of integral representations. In what follows we 
see that expressions qualitatively similar to (17), although much less explicit, hold 
in higher dimensions. 

Asymptotic normality for Cn and D n would result from these developments 
using the main theorem of Flajolet and Soria [14]. A derivation is, however, not 
given here as it is subsumed by the more general treatment valid for all dimensions 
that we now expose. 
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5. The Singularity Perturbation Method 

The architecture of the proof of the main theorem asserting asymptotic normality 
of the distribution of search costs in all dimensions is transparent; implementation 
of it requires quite some care, though. We offer here a brief outline. 

The starting point is the integral equation (14) furnished by Lemma 1, which 
we recall: 

r z) = 1 + 2auJ a- 1Iris(u, z). (18) 

That equation is itself equivalent to a linear differential equation (see (12) for 
dimension d = 2) with coefficients that are polynomial in the main variable z and 
the parameter u. The order of the equation is equal to the dimension of the data 
space, d. The standard theory is more conveniently developed from differential 
systems rather than equations, and the associated system is also of dimension d. 
(Systems are notationally simpler because of the more transparent form afforded 
by matrix exponentials as well as the simpler expression of the variation-of- 
constant formulae [19].) 

The main idea consists in relating perturbations of the differential system 
corresponding to (18) which is singular at z = 1 when u is near 1 to the asymptotic 
properties of the coefficients of ~(u, z). 

The most common case for linear differential equations and systems is the one 
called regular singularity or singularity of the first kind. In such a case, a basis of 
solutions can be found that, in essence, are locally of the form 

(1  - z )  ~" 

The possible exponents ~ are determined by substituting into the equation and 
expressing cancellation of the dominant terms. They thus appear as roots of a 
polynomial called the indieial polynomial. 

In a parametrized case like (18), we thus expect solutions to involve linear 
combinations of terms of the form 

c(u) 
(1  - -  z )  ~(~)'  

(19) 

as z --. 1. In the case of (18), it is found that the possible exponents are algebraic 
functions that are roots of the indicial equation 

(a(U~d--2du=O. 

Forms belonging to the general type (19) were already encountered when d = 1, 
see (11), and when d = 2, see (17). Asymptotic normality of coefficients is known 
to hold for a closely related class of bivariate functions exhibiting a similar singular 
behavior [13]. 
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As z ~ 1, the dominant term in the expansion of tI~(u, z) is the one corresponding 
to the root 2u lid which has maximal real part. In particular when the parameter 

u is close to 1, this is the principal determination of 2dx/u. From the shape (19) of 
singular elements, we thus expect the singular form of �9 to be 

c(u) 
@(u, z)  ~ (1 - z )  2u'/~ ( z  -0  1), (20 )  

at least for u near 1. 
According to the usual principles of singularity analysis [ i1],  the dominant 

singular behavior of �9 provides the dominant asymptotic term in its coefficients 
r = [z"]~(u, z). Translating (20) to coefficients, we expect, as an approximation 
of q~.(u), 

~2U l/d- 1 

q~,(u) ,~ c(u) r(2ul/d). (21) 

Given the approximation (21), values of the polynomial ~0.(u) are asymptotically 
known at least for u in a neighborhood of 1. An inversion problem--the second 
one after the phase of singularity analysis ensuring the transition from (20) to 
(21)--is then to be solved. The approximation (21) permits estimating q~.(ei~ 
suitably normalized, when 0 is near 0. The Fourier transform of the distribution 
defined by the coefficients of ~o.(u) is found to tend to e -~ the characteristic 
function of the Gaussian distribution, 

lim e-  ~O,,./b. fn(ei~ _ e-  02/2, (22) 
.~ + ~o f.(1) 

for some suitably chosen an, b.. 
Since ~0.(u) has positive coefficients, the continuity theorem for characteristic 

functions (or equivalently Fourier transforms of measures) of analytic probability 
theory applies. This leads to the end result, namely the convergence in distribution 
to a normal distribution for the coefficients of q~.(u) which in turn carries to the 
distribution of D. as expressed by (1). 

The technical difficulty of the actual proof, compared with this rough outline, 
is due to the strict necessity of deriving singular expansions that are uniform with 
respect to u. This requires a detailed investigation of the way such expansions are 
"perturbed" when u lies near 1, hence the term singularity perturbation in our title. 

The necessary background on singularities of linear differential systems may 
be found in [61 1-19], and [32]. 

6. The Higher-Dimensional Quadtree (d _> 3) 

The main result to be established in this section is that the distribution of a ran- 
dom unsuccessful search in a d-dimensional quadtree is asymptotically normally 
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distributed, the proof following the outline of the previous section. We then prove 
an exponential tail result for the distribution. From there, the asymptotic forms 
of the mean and variance of the distributions follow. The same properties also 
hold for a random successful search, by a direct adaptation of the arguments. 

Theorem 4. The cost of a random unsucessful search in a randomly grown quadtree 
converges in distribution to a normal variable, i.e., for all real ~, fl, 

Pr ~ < b ~ -  < fl ~ ~ e -x~/2 dx (n ~ ~) ,  (23) 

where the centering constants are 

2 
a , , = ~ l o g n  and b . =  logn. (24) 

The proof of Theorem 4 starts with general analytic conditions for normality 
(Lemma 2) followed by a detailed analysis of the differential equation expressing 
the physics of quadtrees (Lemma 3). The analytic lemma, Lemma 2, is closely 
related to bivariate schemas considered by Flajolet and Soria [13], [14], and 
recently extended by Gag and Richmond [17]. 

Lemma 2. Let F(u, z) = ~..k fn,k ukZn be a bivariate function with positive coeffi- 
cients. Assume that: 

C1. F(u, z) is analytic in ~/ x C\[1,  + oo[ with V some neighborhood of 1. 
C2. In the intersection of  a neighborhood of( l ,  1) and V x C\[1,  + oo[, 

1 
F(u, z) - ( 1 - - ) z  " ~ ( ~ -  (c(u) + rl(U, z)), 

where 
(i) ct(u) is analytic at u = 1 and or(l) > 0." 

(ii) c(u) is analytic at u = 1 with c(1) ~ 0. 
(iii) q(u, z) = o(1) as z ~ 1 uniformly in u. 

Then the coefficients f,.k are asymptotically normal with centering constants 

a n = 0t'(1) log n and b~ = (0((1) + ~"(1)) log n. 

In other words, for all real fl, 

i~J.Sa.+pb.~_~ f.,kf.,k ~--~nl f ~ go e -x2/2 dx. (25) 
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Proof (Sketch; see [13], [14], and [17] for details.) Integration along a Hankel 
contour according to the principles of singularity analysis [11] yields the approx- 
imation valid in a neighborhood of (1, 1), 

n~(U) - 1 
f,(u) - (c(u) + o.(1)), (26) 

r(.(u)) 

where ou(1) indicates uniformity with respect to u in a neighborhood of 1, as n --* oo. 
In other words, we have transferred termwise a uniform expansion of F(u, z) onto 
its coefficient. This is permissible because of the constructive character of error 
terms afforded by the singularity analysis method [11]. 

With the stated values of a. and b., a direct computation from (26) shows that, 
for all fixed 0, 

f (piO/bn) 
l i m e  -m~ " = e -0 : /2 ,  (27) 

,-~ + ~ L(1) 

the proof requiring the continuity of c(u) at 1, the condition c(1)r  0 and the 
uniformity of the error term o,(1) in the expansion of f,(u). 

Thus, the characteristic function of the distribution {f,,k} (varying k) tends to 
that of a standard normal variable as n--, oo. By the continuity theorem for 
characteristic functions (see Section 26 of [4] or [25]), this implies pointwise 
convergence of the corrresponding distribution functions, which is what (25) 
precisely expresses. 

Note finally that the one-sided relation of (25) with S~_~ trivially entails a 
two-sided version S~ as stated in Theorem 4. This concludes the proof of 
Lemma 2. [] 

The next lemma constitutes the core of the argument of the proof of Theorem 
4. It establishes that the bivariate series tI) satisfies the conditions of Lemma 2 
with ct(u) = 2u TM. 

L e m m a  3. In any dimension d > 1, the 9eneratin# function ~(u, z) of the level 
polynomials of quadtrees (defined by (7)) and the 9eneratin9 function of quadtree 
search costs 

A(u, z) - ~ 6.(u)z" = ~ P r { D .  = k}ukz" 
n k,?l 

both satisfy the conditions of Lemma 2 ensurin9 asymptotic normality. 

Proof 1. Positivity. From the combinatorics of the problem, we find 

1 + (2 d - 2)z 
�9 (1, z) - (1 -- z) 2 (28) 



164 P. Flajolet and T. Lafforguc 

or  q~,(1) = 1 + (2 d - 1)n. Given the positivity of  coefficients, the function �9 is thus 
a priori analytic in [z[ < 1, ]u[ < 1. 

2. The differential system. The integral equat ion (7) satisfied by �9 gives rise to a 
differential equat ion of order  d, 

I - x j x - n O ( u ,  z) = 2nuO(u, z). 

By s tandard  reduct ion techniques, that  
system�9 In  effect, the vector  (O(u, z), IO(u, 

d 1 
dz Y(u, z) = 

equat ion t ransforms into a differential 
z) . . . . .  j d -2 iO(u  ' z)) is a solution to 

3. Analyticity. Under  the form 

I0 0 0 "" 0 

2 0 0 "" 0 

0 2/z 0 "" 0 0 
: : : ".. : : 

0 0 0 ...  2/z 0 
0 0 0 "" 0 2/z 

(29), it 

0 2u/z ~ 
0 0 

0 
: Y(u, z). 

0 
0 

(29) 

is recognized that  the system has two 
regular singularities at the f ixed  points z = 0 and z = 1; here "f ixed" means  
"nonmovab le . "  (A more  general discussion of fixed versus movable  singularities 
is given in the last section of the paper.) The general setting of the prob lem as we 
saw in step 1 guarantees  that  �9 is analytic at z = 0, so that  this point  needs no 
further attention�9 

The fundamenta l  theorem of regular per turba t ion  guarantees that  the solution 
�9 remains analytic in bo th  the pa rame te r  u and  the main  variable z as long as 
the dependency on parameters  is analytic and singularities corresponding to the 
main  variable are avo ided )  The dependency on u is entire, so that  O(u, z) is indeed 
an analytic function of the two complex  variables (u, z) for (u, z) E C x C\ [1 ,  + 0o[. 

4. Approximate Euler system at z = 1. Singling out the singular par t  at z = 1, 
the differential system (29) writes 

with 

d ( M(u) 
z )  = ) dz \1  - z + E(u, z) /Y (u ,  z) 

M(u) = 

where E(u, z) is analytic on C 

t0 0 0 - 0 0 2 u \  

2 0 0  ""  0 0 
0 2 0 ""  0 0 

. . . .  

0 0 0  .." 2 0  
0 0 0  ..- 0 2  

• (c \ {o}) .  

(30) 

(31) 

i From now on, wc globally refer to Section 24 of Wasow's book [32] or Sections 7 and 8 in 
Chapter I of the book by Coddington and Levinson [6]. 
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A first-order approx imat ion  of (30) is 

d M(u) 
--  r(u, z), dz Y(u, z) - 1 - z 

which constitutes a system of the Euler type that  admits explicit solutions. The 
characteristic polynomial  of M(u) is ad _ 2nu, SO that  the eigenvalues of M(u) are 
simply the numbers  

2j(u) = 2(u)od where 2(u) = 2u 1/a and co = e 2i~/a (32) 

for j = 0 . . . . .  d - 1. N o  problem with branch determinations arises as long as u 
stays in a ne ighborhood of 1 that  avoids 0. 

In particular,  M(1) has d distinct eigenvalues and is therefore diagonalizable, 
this proper ty  remaining true as long as u = 0 is avoided. For  instance, M(u) is 
diagonalizable in the open ball B(1, 1) of center 1 and radius 1. Fur thermore ,  M(u) 
is analytic at  u = 1. It  results from a general observat ion of Sibuya that  the 
diagonalizat ion of an analytic matr ix  is itself an analytic process. Thus,  see Section 
25 of Wasow's  book  [32], an analytic matrix Q(u), invertible over  B(1, 1), exists 
such that  

M(u) = Q(u)- 1D(u)Q(u) with D(u) = Diag0.o(U) . . . . .  2a-  l(U)). (33) 

5. Approximate singularity analysis at z = 1. We return to the full differential 
system (29) and  set V(u, z) = Q(u)- 1 Y(u, z) (with Y our  part icular  solution vector  
involving ~). The  goal is to build up a solution to the full system f rom the solution 
to the Euler system. The part icular  solution vector V(u, z) is, by construction, 
analytic on B(1, 1) x C\ [1 ,  -t-oo[. Thus, functions aj(u) analytic on B(1, 1) exist 
such that  

d - I  
r z) = ~ aj(u)Vj(u, z). (34) 

j=0 

Fur thermore ,  V(u, z) satisfies the t ransformed differential system 

d vIu, z) (D(u) ) - -  = + F(u ,  z) V(u,  z), (35) 
dz k.1 - z 

where F(u, z) is analytic on B(1, 1) x C\{0}. 
Fo r  the simplified form of  the system (35) in which F(z, u) is set to 0 (this 

is now, by construct ion,  a d iagonal  Euler system), a vector  of  solutions is 
given by 

c,(u) 
V*(u, z) = (1 -- z) xj(u)" (36) 
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Near z = 1, each I V*(u, z) l behaves like 

O(I 1 - z l -  ~(~,~u))). 

The dominant singular behavior is thus ( 1 -  z) -~(") since 2(u) (=2o(U)) is the 
determination with the largest real part when u is near 1. 

At this stage, our problem is reduced to showing that the presence of the 
correction term F(u, z) in (35) does not radically affect the solutions so that the 
are approximated by the V~', themselves satisfying (36). 

6. Sinoularity analysis at z = 1, odd dimension. We proceed to prove that the 
exact solutions (36) of the approximate (diagonal) Euler system do represent 
asymptotically the exact solutions of the full system. In the univariate case this is 
a well-known fact in the theory of regular singularities, though complications arise 
in certain confluence situations--when two 2j are congruent modulo 1--which 
may induce logarithmic terms [6], [19], [32]. 

For lower dimensions (d = 1, 2), a direct computation from (11) and (17) 
confirms that Vj ~ V* and permits us to establish the statement of the lemma 
directly. 

For an arbitrary odd-valued d, the eigenvalues 2j(u) are distinct and no two of 
them are congruent modulo 1, since their imaginary parts are all distinct for 
u e B(1, 1). From the general theorem of regular singularity, a fundamental solution 
to the main system (29) of the form 

P(u, z)(1 -- z) -~ 

with P analytic in z, when z e B(1, 1), for each fixed choice of u e B(1, 1), exists. The 
global dependency of P with respect to u, especially analyticity, is however to be 
ascertained. 

The general theorem of regular singularity relies on recurrence relations that 
the differential equation induces for the coefficients of the P matrix, and analyticity 
then readily follows from direct majorizations. In effect, the proof of Theorem 4.1, 
p. 119, of 16] adapts to our parametrized problem and P(u, z) turns out to be 
analytic in both variables u and z, for (u, z) in a neighborhood of (1, 1). To see 
it, set 

P(u, z)= ~ e.(u)z". 
n = O  

First, by the recurrence translating the differential equation, the P.(u) are each 
analytic for u ~ B(1, 1). Next, from the Cauchy inequalities applied to F(u, z) and 
from the recurrence, a uniform upper bound of the form 

[Pn(u)[ <: C - (n  + 1) 2 
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follows for u ~ B(1, 1), with C some positive constant. As a result, 

d - 1  

�9 (u, z) = ~ bj(u, zX1 - z) -~jtu), (37) 
j=O 

where the bj(u, z) are analytic in B(1, 1) x B(1, 1). 
Equation (37) constitutes the main analytic stage of the proof. It shows hat 

satisfies the conditions of Lemma 2, for odd values of d. 

7. Singularity analysis at z = 1, even dimension. For an arbitrary even-valued d, 
the eigenvalues ).~(u) are all distinct, for u e B(1, 1). However, some of them become 
congruent modulo 1, when u = 1. This is always the case for the pair { -  2, + 2}, 
and it may happen for other roots, in the hexagonal configuration corresponding 
to d = 6 for instance. 

At u = 1, at most two distinct eigenvalues may be congruent modulo 1 
(examine the imaginary parts). Thus, from the general theory of linear differential 
systems, . 

d 1 1 d ,, 1 
tl~(1, z )=  ~, b,(z) + log ~ bj(z) (38) 

j :o  (1 - z) xj") ~ j=o (1 - z) ajr 

where the bj(z) and/~j(z) are analytic at 1 (some possibly equal to 0). In particular, 
the special solution (28) is of this form with all the bj(z) = 0 and with the b~(z) = 0 
fo r j  # 0. 

In contrast, for u close enough to 1 but u # 1, a simple computation shows 
that the 2j(u) are all distinct modulo i, so that 

d - t  1 
tI)(u, z )=  ~ bj(u, z) (39) 

i = o  (1 - z) ~j~u~' 

where (for each u separately) the bj(u, z) are analytic in z. We let V denote a 
sufficiently small neighborhood of 1 in which the 2j(u) remain distinct modulo 1, 
except possibly at u = 1 itself. 

Comparison of (38) and (39) precludes a matching of the two expansions at 
u = 1, and bj(u, z) cannot depend analytically on u at u = 1 whenever logarithmic 
terms occur. A solution is obtained by using an idea due to Frobenius, and 
changing the base functions in which solutions are to be expressed. Instead of the 
base functions underlying (38) that are of the form 

1 1 1 
( l - z )  ~ ' ( 1 - z )  ~ l ~  
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we introduce 

I ~ _ l f l l i l  l z ) ,  _1 ] (1 z) p if ~# /3 ,  

e " P ( z ) = ~ ( l l z )  , l o g l - ~ z l  if ~=13. 
(40) 

The base function e~,p(z) is now analytic in ~, fl �9 C and z �9 C\[1,  + oo[. 
Let us group the 2j into equivalence classes according to the values of the 2j(1) 

modulo 1. Let J denote the collection of the equivalence classes that comprise two 
eigenvalues. For instance, when d = 4, the 2j(u) are in order 2u ~/4, 2iu 1/4, - 2 u  t/4, 

- 2iu 1/4, the equivalence classes of the 2j(1) modulo 1 are {2, - 2}, {2i}, and { - 2i}, 
and J contains one equivalence class, namely, {2o, 22} corresponding to {2, -2} .  
Each class of J is thus associated to two eigenvalues 2kC 0 and 2to j) = 2ktj) + re(j), 
where re(j) is a nonnegative integer. 

The classical argument of Frobenius (see Section 4.8 of [6]) leads to the 
existence of an expansion replacing (39), 

z) = Z c, u, z) + Z d, u, 
j=o k,1 - z]  j~s 

(41) 

An adaptation of the treatment of [6, pp. 120-121] to the parametrized case shows 
that we may take the cj(u, z) and dj(u, z) to be analytic in V x B(1, 1). Details are 
relegated to an appendix. 

The expansion (41) of �9 now has the uniform behavior encompassing both 
cases, u # 1 and u = 1, sought. It satisfies the conditions of Lemma 2. In particular, 
the c(u) of that lemma is continuous since the terms involving the e's only 
contribute negligibly, as 

1 
1 . z [m~x~'O' ~a) ) ~"P(z)= ~ 1 7 6  ll -- zl I1-- ( z ~  1). 

8. Conclusion. The bivariate generating function of search costs is readily com- 
puted from Lemma 1, and it equals 

l m z  

2au - 1 @(u, z). 

Thus from (37)--for odd dimensions--and (41)--for even dimensions--the bivari- 
ate generating function ~(u, z) and its variant A(u, z) satisfy the conditions of 
Lemma 2, with ~(u) = 2u 1/~ for * and with a(u) = 21/4 - 1 for A that is related to 

by (6) of Lemma 1. This completes the proof of Lemma 3. []  
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Theorem 4 is now established by a direct combination of Lemmas 2 and 3. 

Note. Some of the intricacies of the proof arose from the confluence of eigen- 
values modulo 1 in the case when d is even. Confluences of order higher than 2 
could also be coped with using the base functions 

1 1 E 1  i 1 
......... = r j ~ x  kI~I~j(~j--~k) ( l - - z )  "j ( l - - z )  "~ " 

The next theorem provides uniform exponential tails for the probability of large 
deviations of D, which improves on the convergence-in-probability result of [7]. 

T h e o r e m  5. Two positive constants C and ~ < 1 exist such that, for  all n and k, 

pr,f O.-a. } > k < C'~r k. 
~1 b. [ 

Proof  (Sketch, see [14] and [17] for details.) The proof is a simple adaptation 
of the argument giving the characteristic function, with u now taken in a real 
neighborhood of 1. 

From the conditions of the Lemma 2, and by the same singularity analysis 
argument as (26) and (27), a fixed real neighborhood of 1 exists such that, for 0 
in that neighborhood, 

lim e -~ f"(e~ - e ~ 
. .  + ~ L(1) 

In other words, the Laplace transform of l'~. = ( D . -  a.)/b, converges to the 
Laplace transform of a normal variable. The uniformity conditions of Lemma 2 
further ensure that 

e -oa./b. f.(e~ 

L(1) 

stays uniformly bounded for 0 in some interval [ - 0 1 ,  02] containing 0. 
It is well known (see [4], and [14] for the uniform version) that existence of 

Laplace transforms in an interval surrounding 0 implies exponential tails. The 
statement of Theorem 5 simply expresses this fact. []  

The next theorem gives the asymptotic form of the mean and variance of a 
search. It is obtained here as a by-product of the limit distribution property and 
its centering constants (Theorem 4) complemented by effective tail estimates 
(Theorem 5). An analytic derivation along the lines of [10] should also be feasible. 
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Theorem 6. The mean #.  and standard deviation a.  o f  a random search in a random 
quadtree o f  size n - 1 in some arbitrary dimension d >_ 1 satisfy asymptotically 

2 
/a. ,-, ~ log n and a, ~ log n. (42) 

The mean value estimate was already obtained by Flajolet et al. using analytic 
methods, and independently by Devroye and Laforest using a probabilistic 
geometric argument. 

Proof. It need not be true in every generality that the centering constants a., b. 
be equal, or even asymptotically equal, to the mean p. and standard deviation tr. 
of the distribution of index n. In other words, convergence in distribution (weak 
convergence) is not sufficient to ensure convergence of moments, the latter being 
affordable here by the uniform exponential tail estimates of Theorem 5. 

Let X.  denote the normalized variable (D. - a.)/b.. We need to show that X. 
has mean o(1) and variance 1 + o(1). The expectation of X. is 

E{X.} = --F.(x)  dx + (1 - F.(x)) dx, 
oD 

(43) 

where F.  is the distribution function of X..  The function F.(x) converges pointwise 
to Fo~(x), the distribution function of a standard Gaussian variable that satisfies 
E{x } -- o. 

By Theorem 5, F.(x) has uniform exponential tails: 

O < F.(x) < Co-*  ( x < 0 )  and 0 < I - F . ( x ) < C ~  x (x < O). 

As S~ C~Xdx and S~ ~176 C~t-Xdx both converge, Lebesgue's dominated con- 
vergence theorem applies. Thus, 

lim E { X . }  = E { X ~ }  = 0. 
n ~ + O 0  

In other words, we have (#. - a.)/b. = o(1), so that #. = a. + o(b.). 
The proof that a. = b. + o(b.) results from a similar consideration of the 

variance of X.,  starting from 

E{X 2} = - 2 x F . ( x )  dx  + 2x(1 - F.(x)) dx. 
oO 

[]  

From this last theorem, the centering constants a., b. of the limit distribution 
(Theorem 4) may be replaced by the mean and standard deviation #., tr., as was 
expressed in (1). 
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Tab le  1. The  values of  P r{D.  > k} aga in s t  values of  k, for  n = 100 a n d  for  s t a n d a r d  quad t rees ,  d = 2. 

k 10 20 30 40 50 60 70 80 90 
P r { D , > k }  2"10 -3 2 ' 1 0  - t4  3"10 -33 2"10 -54 3 ' 10  -s~ 3 ' 1 0  -11~ 4 ' 1 0  -141 3"10 -t76 4"10 -215 

Also, it results from an observation of Gao and Richmond [17] that a local 
limit theorem holds, with a direct convergence of the probabilities Pr{D, = k} to 
the Gaussian density. This what the histogram of Figure 1 actually depicts. 

Table 1 displays a sample of the probability distribution of D, determined 
exactly using computer algebra, in the case of dimension d = 2 and n = 100. The 
low figures confirm that probabilities of large deviations soon become exceedingly 
small. 

7. Conclusion 

The method of singularity perturbation developed here is of a generality that 
transcends the particular situation of quadtrees. Retaining the essentials of the 
argument, we obtain in effect a result valid for large classes of differential equations. 

Theorem 7. Let f.(u) be a sequence of polynomials with positive coefficients 
satisfyin 9 the following conditions. 

C1. [Fixed regular singularity] The #eneratin9 function F(u, z )= ~,,f.(u)z" 
satisfies a linear differential equation of the form 

OfF al(u,z) O'-IF a,(u,z) 
ao(u,z) O z ~ + ( l _ z )  Oz "-1 + ' " + ( i - z )  ~ F = O '  

where the aj(u, z) are polynomials and ao(u, z) v~ 0 for I zP < 1, l ul < 1. 
C2. [Nonconfluence] The indicial equation 

ao(1, 1)ct(~ - 1)'-.(ct + r - 1) + .-" + at(l, 1) = 0 

has a root (r > 0 which is simple and such that all other roots ot ~ tr satisfy 

C3. [Dominant growth] f,(1) ~ C" b ' -  ~ for some C > O. 

Then the coefficients of the polynomial f,(u) are asymptotically normal. 

The conditions of Theorem 7 may seem outrageous. However, the spirit of the 
theorem is simple. If a bivariate generating function satisfies a linear differential 
equation with analytic coefficients, then a normal approximation derives from the 
existence of a fixed regular singularity (condition C1) provided there is no 
confluence of dominant singular solutions (condition C2) and the generating 
function exhibits the dominant growth regime (conditions C3). These conditions 
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can be relaxed in various ways and, already, a particular case of confluence of 
roots modulo 1 had to be coped with in the case of even dimensions. The e 
functions have a fundamental role in such developments. 

Some supplementary conditions are certainly necessary in order to ensure 
asymptotic normality. For  instance, the generating function 

z ) 
~_ U k Z n 

( 1  - z ) ( 1  - uz) n = l  , , k = o  

corresponds to a uniform distribution while there is confluence of singularities at 
z = 1 and z = 1/u as u ~ 1, so that condition C1 is already violated. 

Suitably general analytic schemas like 

e(u) 
(1 -- z/p(u)) ~ 

are otherwise known to lead to normal laws, see [14] and [17] generalizing an 
early work of Bender [2]. Such limit laws are thus likely to occur also in many 
cases where a movable singularity is encountered. This happens for node types and 
levels in varieties of increasing trees, in the context of a nonlinear differential 
equation [3]. Mahmoud and Pittel also derived normality results for the size of 
search trees with higher branching factors by considering a nonlinear equation of 
a different type, see [28] and Chapter 3 of [27]. 

In a related area, Drmota has introduced in [8] an interesting class of bivariate 
algebraic functions related to tree enumerations and independent sets that conduce 
to asymptotic normality. Jacquet and R6gnier have obtained asymptotic normality 
for the size of digital "tries" from a nonlinear difference equation [21], [27] treated 
via Mellin transforms. 

As a final word, we should thus expect many ordinary differential equations 
and functional equations arising from bivariate generating functions of combina- 
torics or the analysis of algorithms to lead to normal laws. General theorems in 
this area are certainly much desired. 

Appendix 

We briefly elaborate here on the main step of the proof of Lemma 3 in the case 
of an even dimension d, specializing the discussion to d = 4. Our aim is to justify 
(41). 

A standard approach to regular singularity, in the case where confluence of 
eigenvalues modulo 1 occur, consists in reducing the system so that such confluent 
eigenvalues become multiple roots to which the general treatment (based on 
Jordan normal forms) applies. 

The algebraic reduction lemma on p. 120 of [6] makes it possible to shift a 
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designated eigenvalue by 1. In the case of d = 4, where 2o(1 ) - 22(1 ) = 4, repeated 
application of the lemma yields a fundamental system of solutions of the form 

t 1 ...... 

F?I ~)  expLl 23(u) : 
: ;~o(U) 

�9 "" b(u) 
) j �9 1 

6 'log ~ , 

22(U ) + 4 

(44) 

where P(u, z) is analytic on V x B(1, 1) and b(u) is an analytic function for u ~ V. 
In a block decomposition the product 

0 "~. expF(2o(,) 0 4)  log ~ _  z]  (45) 
(10 ( l - - z ) * /  Lkb(u)  22(u)+ 

appears�9 
Now for a general triangular matrix, a simple computation shows that 

e at 0 t 
( b  x O )  = e a2 _ e a' 

exp P2 b e a~ 
#2 -- #1 

with the convention 

eU2 _ e #, 
- -  e a l ,  

#2 - - /q  

whenever #~ = #2. Thus, 

expL  0 ,og  
. . . . .  b(u) 22(u) + 4 

._/ ~1/1~,., zj 0 ) ) 
= / 1 X2(u) " 

\ b(u)~2(")+4'aa')(z) (]- '-~- z 
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From there, by elementary properties of e, the matrix product of (45) transforms 
into 

\~-z--z} { 1 ~2(,, " 

The general solution (44) thus admits the form 

r z) = ci(u, z) + d(u, z)ex2(,).ao(u)-,. 
i=0 

The function b(u) lacing analytic for u e V, the end result (41), specialized to d = 4, 
follows. 

The approach extends to the general case of any even dimension d, leading to 

q,(u, z) = cj(u, z) + Y~ dj(u, z)~,(u).  ~,.(.,-,nO), 
j=O jeJ  

with the cj(u, z) and dJu, z) analytic on V x B(1, 1) as was claimed in step 7 of the 
proof of Lemma 3. 
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