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Abstract. We show that the total number of faces bounding any one cell in an 
arrangement of n ( d -  1)-simplices in R d is O(n d-1 log n), thus almost settling a 
conjecture of Pach and Sharir. We present several applications of this result, mainly 
to translational motion planning in polyhedral environments. We then extend our 
analysis to derive other results on complexity in arrangements of simplices. For  
example, we show that in such an arrangement the total number of vertices incident 
to the same cell on more than one "side" is O(n d-I log n). We also show that the 
number of repetitions of a "k-flap," formed by intersecting d - k given simplices, 
along the boundary of the same cell, summed over all cells and all k-flaps, is 
O(n d- 1 log2 n). We use this quantity, which we call the excess of the arrangement, to 
derive bounds on the complexity of m distinct cells of such an arrangement. 

1. Introduction 

A set T o f  n (d - 1)-simplices in •a d e c o m p o s e s  R a i n t o  o p e n  cells of  d i m e n s i o n  

d (also cal led d-faces) a n d  in to  re la t ive ly  o p e n  faces  of  d i m e n s i o n  k, 0 < k < d. 
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These cells and faces define the structure known as the arrangement ~r of T; 
see [AS] for details concerning such arrangements in three dimensions. In this 
paper we prove that the maximum possible number of faces on the boundary of 
any single cell in d ( T )  is O(n d- 1 log n). This is the first nontrivial upper bound 
for a general dimension (a trivial bound is O(nd), which is an upper bound on the 
total number of faces of ~r it comes within a logarithmic factor of the 
best-known lower bound of f~(n a- lo~(n)) [PS], where 0~(n) is the inverse Ackermann 
function. In addition, in the special case d = 3 it improves considerably the 
previous upper bound of O(n v/3) established in [AS] and [AA]. 1 

Our result has important applications to motion planning of mechanical 
systems subject to piecewise-linear "collision-constraints." An example of such a 
situation is a system of any number of polyhedral bodies translating independently 
in a polyhedral environment, avoiding the obstacles and each other. By well- 
known techniques (see [SS1]) the state of such a system can be mapped to a point 
of the "configuration space," in which each dimension corresponds to a distinct 
degree of freedom of the system. The set of collision-free system placements is 
bounded by "constraint surfaces," each representing placements where contact is 
being made between some specific system feature and a specific obstacle feature, 
or between two specific system features. In the case of translating polyhedra, the 
constraints on the system's behavior are Boolean combinations of linear equalities 
and inequalities; thus regions of the configuration space corresponding to colli- 
sion-free states are separated from the remaining points by piecewise-linear 
surfaces. If the surfaces corresponding to all the constraints on the system, each 
properly triangulated, are considered, an arrangement of (d - 1)-simplices in the 
d-dimensional configuration space, d being the number of degrees of freedom of 
the system, are obtained; collision-free configurations thus constitute some of the 
ceils in this arrangement, and all configurations reachable from a given initial state 
occupy a single cell. Thus our main theorem gives upper bounds on the descrip- 
tional complexity of the set of all configurations of a linearly constrained mech- 
anical system (such as our translating polyhedra), which are reachable from a fixed 
configuration. Moreover, we provide an efficient randomized algorithm that 
computes such a cell, when the system has three degrees of freedom, given the 
constraint surfaces and the initial configuration. This leads to a near-quadratic 
randomized algorithm for planning translational collision-free motion of a rigid 
polyhedral object in a polyhedral environment. Again, this improves considerably 
the previous O(n 7/3+~) time bound of Aronov and Sharir [AS]. 

Motion planning was our main motivation for studying this problem. The main 
challenge lying further ahead in this direction is to extend our result to the general 
case of motion planning, in which we have a collection of n constraint surfaces or 
surface patches of bounded algebraic degree in d-dimensional space (d once again 
being the number of degrees of freedom of the moving system), and we wish to 
prove that the combinatorial complexity of a single cell in the arrangement of 
these surfaces is no more than roughly O(n d- 1). This would be a significant result, 

1 In this paper we regard d as a constant; thus the constants of proportionality in our bounds 
depend, usually exponentially, on d. 
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especially for systems with a small number of degrees of freedom, the first 
interesting case being d = 3; the case d = 2 has been satisfactorily resolved in 
[GSS]. Settling this conjecture for such systems would provide a significantly 
better upper bound on the combinatorial complexity of the portion of the 
configuration space that needs to be computed, and is the first step toward 
obtaining improved algorithms for motion planning. This paper studies the 
simplest case of this general problem. Some extensions of our analysis to other 
instances of motion planning with three degrees of freedom have recently been 
obtained by Halperin [HI] ,  [H2]. 

In fact, the above conjecture can be formulated for an arbitrary collection of 
n well-behaved surfaces or surface patches in d-space (including, but not limited 
to, the case of bounded-degree algebraic surfaces); it states that the combinatorial 
complexity of one cell in the arrangement of such surfaces is no more than roughly 
O(n a- 1), perhaps off by a factor that involves the inverse Ackermann's function 
~(n). In the general case this appears to be a very hard problem. It extends a 
related conjecture that asserts that the combinatorial complexity of the lower 
envelope of such a collection of surfaces is also at most roughly O(n d- 1). The latter 
conjecture is also largely open, for d > 3. In the case of simplices, though, it was 
shown by Pach and Sharir [PSI that the maximum possible complexity of their 
lower envelope is tg(n a- l~(n)). 

We now state our results in more detail and outline the structure of the paper. 
Let T be a collection of n (d - 1)-simplices in ~a, and let p be a point of ~a not 
on any simplex of T. We are interested in estimating the complexity c(p, T) (i.e., 
total number of faces of all dimensions on the boundary) of the cell Cp(T) of d ( T )  
containing the point p. Let c(T) = maxp c(p, T), with the maximum taken over all 
points p not lying on any simplex of T (i.e., over all cells of ~r and define 
ca(n) = max{c (T) : lT I  = n}. We aim to derive a sharp bound for ca(n ). Since the 
complexity of the entire arrangement is O(na), we clearly have ca(n) = O(n a) as well. 
The first improvement was obtained for c3(n ) by Pach and Sharir [PSI, who 
showed a slightly subcubic bound for this quantity. Their estimate was later 
improved to c3(n ) = O(n 7/3) [-AS], [AA]. A lower bound of ~(n a- let(n)) on ca(n ) is 
mentioned in [PS], and is conjectured in [PSI and [AS] to be tight. In this paper 
we almost settle this conjecture, by proving the following main theorem: 

Theorem 1.1. The number of  faces of  all dimensions bounding a single cell in an 
arrangement of  n (d - 1)-simplices in ~a is O(n a- 1 log n). 

The proof proceeds in two stages. In Section 2 we derive a slightly weaker 
bound which is larger than the one stated above by a polylogarithmic factor. Then, 
in Section 3, we apply a more-refined analysis, which makes use of the results of 
Section 2, to prove the above theorem. An interesting feature of the argument is 
its close connection to the recent recurrence-based proof techniques of I-ESS], 
JAMS], and lAPS] that were introduced to analyze the complexity of zones and 
other structures in arrangements of hyperplanes. However, our proofs add some 
novel features to this approach, which we hope will find additional applications 
as well. For example, by applying a version of the argument used to prove our 
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main theorem, we show that the complexity of the zone of any algebraic surface 
of constant degree, or of any convex surface, in an arrangement of simplices as 
above is also O(n a- 1 log n). 

In Sections 4 and 5 we extend our analysis to obtain sharp bounds for certain 
complexity measures of the entire arrangement of simplices. Some of these results 
require additional notation, so in this introduction we omit details concerning 
them and refer the reader to Section 4. One of the main results established in 
Section 5 is that if we sum, over all cells C of the arrangement and over all 
k-dimensional sets f formed by intersecting d - k of the given simplices (we call 
these sets "k-flaps"), the number of times f appears on the boundary of C, not 
counting the first such incidence, we obtain a total "excess" that is at most 
O(n a- 1 log2 n). In the plane (for arrangements of segments) we obtain a better 
bound of O(n log n). Intuitively, this indicates that the large complexity (O(na)) of 
the entire arrangement is "caused" either by having " too many" distinct cells, or 
by having cells whose boundaries meet " too many" distinct k-flaps formed by the 
simplices. In addition to the intrinsic interest of a new complexity measure of this 
kind, we demonstrate its usefulness by applying it in Section 6 to derive a nontrivial 
bound on the complexity ofm distinct cells in an arrangement ofn (d - 1)-simplices 
in d-space. The bound that we obtain is O(n a- ~ log 2 n + ml/2n a/2 log 1/2 n), and is 
probably not tight, although it compares somewhat favorably with similar bounds 
for arrangements of hyperplanes, obtained in [AMS]. Section 7 concludes with 
some applications of our main result, including an efficient randomized algorithm 
for computing a single cell in an arrangement of triangles in 3-space and its 
aforementioned application to translational motion planning, and with a discus- 
sion of possible extensions and some open problems. 

2. Geometric Preliminaries and an Initial Weaker Bound 

We begin our analysis with some definitions and notation. Let T be a collection 
of n (d - 1)-simpfices in R a. We view each (d - 1)-simplex as the disjoint union of 
its relative interior and relatively open faces of its boundary, whose dimensions 
range between 0 and d -  2; here the interior of a simplex is regarded as a 
(d - 1)-face of the simplex. These faces are not necessarily faces of the arrangement 
~r general they will be split into subfaces by the other simplices of T. In 
what follows we assume that the simplices are in 9eneral position, meaning that, 
for any k = 2 . . . . .  d, the intersection of any collection of k relatively open simplex 
faces of dimension i~,.. . ,  ik, respectively, is either empty or has dimension exactly 
d - ~_,~= ~ (d - i~). In particular, putting il = i 2  = " ' "  = ik = d - 1, any k simplices 
intersect, if at all, in a polytope of dimension exactly d - k (as already mentioned, 
we refer to such an intersection polytope as a (d - k)-flap), and no d + 1 simplices 
have a point in common. This assumption does not affect the quantity c(p, T) that 
we wish to bound, since it attains its maximum value when the simplices are indeed 
in general position. An argument that proves this in three dimensions is given in 
[AS]; it can be easily generalized to arbitrary dimension. 
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We say that two faces of the arrangement are incident to each other if one is 
contained in the closure of the other. 

We distinguish two types of faces in the ar rangement- -an  outer face is contained 
in the relative boundary of some simplex of T, while an inner k-face, for k - - 0 ,  
1 . . . .  , d - 1, lies in the intersection of exactly d - k simplex interiors and avoids 
simplex boundaries. Note that only k-faces with k < d - 2 can be outer. It is easy 
to verify that the total number of outer faces is O(n a- 1). Consider, for example, 
the case of outer vertices. Since an outer vertex is contained in the boundary of 
at least one simplex, it is a vertex of the intersection of at most d - 1 simplices, 
an observation that easily yields the claimed bound. Thus it suffices to consider 
only inner faces. 

For technical reasons, we distinguish between different sides of an inner face. 
For example, the arrangement consisting of one simplex has a single (d - 1)-face 
with two "sides." More formally, let f be an inner k-face (0 _< k < d) contained in 
the relative interiors of d - k simplices. The hyperplanes spanning these simplices 
subdivide space into 2 d-k open regions. A side of f is simply a pair (f, R) where 
R is one of these regions. If f is a full-dimensional cell, we say that f has only 
one side, namely (f, ~d). Notice that, since we are dealing with inner faces only, 
a cell has exactly one side, a (d - 1)-face (facet) has two sides, a (d - 2)-face has 
four sides, and so on. A side (f, R) is called a k-border of a cell C if k = d and 
f = C, or i f f  is an inner k-face on the boundary of C and some open neighborhood 
of f in R w f is contained in C w f.  Intuitively, this means that f is on the 
boundary of C and C touches f on the side of R. We define the (inner-face) 
complexity of a cell in d ( T )  to be the total number of its k-borders, for all k. As 
already noted, since this quantity omits outer faces, it is less than the count of all 
faces (or, rather, borders) bounding C by at most  O(n d-  1). Thus we count inner 
faces f on the boundary of C with multiplicity--once for every side of f that lies 
in C locally near f .  For example, consider two segments in the ptane, crossing 
each other at an interior point q. Their arrangement has a single cell, and its 
complexity counts q four times, and each of the four subsegments incident to q is 
counted twice. 

For 0 < k _< i < d, we define a (k, /)-border of a cell C to be a pair ((f, R), (g, Q)) 
of borders of C of dimension k and i, respectively, with f c 0 and R c Q. Note 
that ence f ,  g, and R are specified, the side Q is uniquely defined. A (k, d)-border 
is a pair ((f, R, (C, ~a)), where (f, R) is a k-border of C. Intuitively, a (k, /)-border 
is a pair of oriented inner faces of C, with the first face incident to the second, so 
that their orientations agree. For  instance, in the arrangement formed in the 
plane by the two coordinate axes, the northeast side of the origin together 
with the upper side of the positive x-axis forms a (0, 1)-border of the northeast 
quadrant. 

We now extend the notion of popularity, introduced in lAPS], to the context 
studied here. Fixing the cell C, we call an inner k-face f of C popular if all 2 a - k  

sides of f are k-borders of C. For  instance, a popular (in fact, the only popular) 
cell is C, and a popular facet is one that touches C on both sides. A (k, /)-border 
((f, R), (g, Q)) of C is popular ifg is a popular/-face. Let Ztkl)(p; T) denote the number 
of popular (k, /)-borders of the cell Cp = Cp(T) containing a specified point p, not 



124 B. Aronov and M. Sharir 

lying on any simplex. Notice that the problem of bounding the complexity of Cp 
reduces to bounding the quantities ztkd)(p; T), for all 0 < k _< d, as they refer to the 
number of borders of various dimensions bounding Cp. We put ZtkO(n)= 
max Ztk0(p; T), with the maximum taken over all collections of n (d - 1)-simplices 
in R d and over all choices of point p not on any simplex. The main result of this 
section, which is slightly weaker than Theorem 1.1, is: 

Theorem 2.1. Z~ki)(n) = O(n a- 1 log/-1 n), for  0 < k < i < d. 

Proof  Let T be a collection of simplices as above, and let p be a point not 
on any simplex. We use the following grand scheme for obtaining the desired 
bounds for ~(ki)(p; T), for all 0 < k < i <  d. We first show, in Lemma 2.4, that 
~!i)(p; T) = O(na-l), for all 0 < i < d, and that ztaa)(p; T) = 1. We then observe that, 
for any i, we trivially have zt~)(p; T) < 2~~ T), since any face has at most twice as 
many vertices as edges. Next we derive a recurrence for z~0(p; T), 'which involves 
~ -  1)(p; T) and thus, by the above observation, ~ -  1)(p; T). Solving this recurrence 
inductively on i, we obtain the desired bounds for k = 0, 1 and for all i. For  k > 1, 
we "charge" a popular (k, /)-border ((f, R), (0, Q)) to one of the edges e of f ,  
regarded as the (1,/)-border ((e, R'), (9, Q)), for an appropriate side R'; clearly, this 
is a popular (1,/)-border. By the assumption of general position, such a (1,/)-border 

cannot be charged by more than (k, /)-borders, which implies that 

~i)(p; T ) =  O(z~~ T)). This gives us the desired bounds for the quantities 
z~O(p; T), for all 0 _< k _< i _< d, thus implying the assertion of the theorem. 

We therefore begin the proof by providing a bound on r!0(p; T), for all 
0 _< i < d. We first need a technical result that extends a theorem of Aronov and 
Sharir [AS] to arbitrary dimensions. 

Theorem 2.2 (Chopping Theorem). Let T be a collection of  n (d - 1)-simplices in 
•d. Let cg be any collection of  m cells in the arrangement o f  these simplices. Then a 
decomposition of the cells of  cg into m + O(n d- 1) convex polyhedra exists, i.e., a 
collection o f  m + O(n a- l )  open pairwise disjoint convex polyhedra, each fully 
contained in some cell of  q~, so that their closures cover (the union of) ~. 

Proof  Clearly, we can ignore the convex cells of c4. We subdivide all nonconvex 
cells in ~r = ~r into convex subcells, in a manner similar to that in the proof 
of the Slicing Theorem of [AS], and show that this process does not increase the 
number of cells by more than O(n a- 1). 

The construction proceeds as follows. We assume, without loss of generality, 
that no simplex is parallel to the xa axis. Intuitively, the only nonconvexities 
present in cells of ~r are caused by relative boundaries of the simplices protruding 
into a cell. We erect vertical "walls," each fully contained in the interior of a cell, 
extending from each such boundary, thereby eliminating all nonconvex features. 
Let a be one of the given simplices, and let al be one of the d (d - 2)-simplices 
bounding ~; throughout the proof  we refer to such a ( d -  2)-simplex as a 
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"simplex-facet" of a. Construct the hyperplane h 1 passing through al  and parallel 
to the xd axis (we refer to hi as the vertical hyperplane spanned by trl) and 
consider the (d - 1)-dimensional arrangement d~ obtained by intersecting d with 
h~; note that a 1 itself is a simplex in all. We take all the cells of d 1 whose boundary 
meets al  in a (d - 2)-face (these cells constitute the so-called zone of trx in ~r 
and add them to the arrangement d .  We refer to these cells ((d - 1)-faces) as the 
walls erected from a 1. Intuitively, we have drawn a vertical hyperplane hi through 
trl, and have added to d all the cells of the cross-sectional arrangement d ~ hx 
that touch a 1. 

We now repeat this process in an incremental fashion, for each of the d - 1 
remaining simplex-facets aj bounding a and for each simplex-facet bounding the 
remaining simplices in T. Whenever we process such a simpleX-facet, the walls 
erected from it become part of d.  Thus when we process a simplex-facet tr', the 
vertical hyperplane that it spans has to be intersected with the original arrange- 
ment d as well as with all the vertical walls erected from previously processed 
simplex-facets. Note that the resulting decomposition will depend on the order in 
which simplex-facets are being processed, so it is not unique. It is easy to check 
that the introduction of the walls erected from a simplex-facet a '  eliminates a '  as 
a source of local nonconvexity and does not create any further points of local 
nonconvexity. It follows that the end result is a decomposition of the cells of d 
into open pairwise disjoint convex polyhedra. (A simpler decomposition scheme 
could be achieved by adding the vertical hyperplanes passing through each of the 
(d - 2)-dimensional facets of the given simplices, and by using them to decompose 
the nonconvex cells of o~; however, this might result in the formation of too many 
subcells.) 

How many subcells have we created? More precisely, how many more subcells 
are there, compared with the original cell count in q(? Recall that a wall is a 
(d - 1)-face, so its addition to the arrangement increases the cell count by at most 
one--ei ther it splits the cell in which it is contained into two subcells, or it does 
not affect the number of cells at all, if it cuts the cell without splitting it in two; 
in the latter case the wall alters the topology of the cell. In any case, it suffices to 
show that the number of walls created during our construction is O(d-1). This 
will be established by arguing that no simplex-facet a '  has more than O(d-2) walls 
erected from it. 

The claim is immediate for the first simplex-facet, 0" 1. A wall erected from 
tr~ is a full-dimensional cell in the arrangement d 1 = d c~ h~ whose boundary 
meets tr I in a (d - 2)-face. Thus the number of walls is at most twice the number 
of full-dimensional cells in the ( d -  2)-dimensional arrangement d~ c~ al  = 
~r c~ al.  Since this arrangement is formed by a collection of at most n polytopes, 
{a c~ a l :  a �9 T}, each of small constant complexity, it has O(d -2) faces altogether, 
which implies our assertion for a~. 

The situation is more complicated for walls constructed later in the process, as 
the ( d -  1)-dimensional cross-sectional arrangements, in which new walls are 
constructed, consist of not only (cross sections of) original simplices but also of 
previously constructed walls. We treat this case in the following indirect manner. 

Suppose we are currently processing a simplex-facet a '  of some simplex a �9 T. 
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Let h' be the vertical hyperplane passing through tr', and consider the arrangement 
~r formed in h' by its intersections with all the simplices of T and with the vertical 
hyperplanes spanned by all the simplex-facets bounding the simplices of T. Clearly, 
d '  is a refinement of the intersection of h' and the current version ~r of ~.  It is 
easy to see that the number of faces of d '  touching tr' in a (d - 2)-dimensional 
set is at least as large as the number of such faces in the coarser arrangement 
~r c~ h'. Moreover, as argued above, the former quantity is bounded by twice the 
number of full-dimensional cells in the (d - 2)-dimensional arrangement d '  n ~ ' .  
Since this arrangement is formed by at most n polytopes of complexity 0(1) and 
by dn additional hyperplanes, the number of its cells is clearly O(n a- 2). 

This completes the proof  of the Chopping Theorem. [] 

Corol lary  2.3. In an arran#ement of  n (d - 1)-simplices in R ~, any single cell can 
be decomposed into O(n d- 1) convex polyhedra. The same claim also holds for the 
collection of  all nonconvex cells, all cells met by an arbitrary hyperplane, all cells 
met by an arbitrary convex surface, or all cells met by an arbitrary alyebraic surface 
of  bounded degree. 2 

Proof. Immediate once it is noted that the number of cells in all cell collections 
listed above is O(n d- 1). In the case of cells met by an algebraic surface, this can 
be deduced by first considering the arrangement of the n hyperplanes spanning 
simplices of T, applying there the simple cell-counting argument given in [APS], 
and observing that each cell of ~r is a union of some cells of this arrangement. 

R e m a r k .  The Chopping Theorem is not a generalization of the three-dimensional 
Slicing Theorem of Aronov and Sharir [AS]; it is rather an extension of one of 
its corollaries. The Slicing Theorem proper bounds the increase in the complexity 
(i.e., total number of faces of all dimensions) of the collection of subceUs resulting 
from the decomposition of the cells into convex polyhedra, constructed as above. 
This increase, in the three-dimensional case, is O(n2~(n)). It seems reasonable to 
conjecture that, in d dimensions, this increase, as effected by our construction, is 
O(nd-lot(n)). Proving this, however, seems to require considerably more careful 
analysis. 

Lemma 2.4. z!~ T) = O(n d- 1), for  i = O, 1 . . . . .  d - 1, and z~d)(p; T) = 1. 

Proof. First, observe that, since Cp is the only popular cell and has only one side, 
ztda)(p; T) = 1. Now let i = 0, 1, . . . ,  d - 1. Recall that z~0(p; T) is simply the number 
of popular/-borders of Cp, i.e., 2 d- ~ times the number of inner/-faces all of whose 
2 d-~ sides occur on the boundary of C r To prove our claim, we associate each 
such face with a vertex of Cp and argue that: 

(1) No vertex is charged more than a constant number of times. 
(2) The number of charged vertices is O(n d- 1). 

2 Clearly, in the last case the constants will also depend on the degree of the surface. 
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We set up the correspondence as follows: Rotate the arrangement in such a 
fashion that every inner/-face has a unique lowest vertex, where the height of a 
vertex is its x a coordinate. Let f be an inner popular/-face and let v I be its lowest 
vertex. We claim that v I is either a locally lowest vertex of Cp (meaning that there 
is a side R of v I so that R lies fully above v s and (v I,  R) is a border of Cp) or an 
outer vertex of Cp. Indeed, if vy lies in the interior of d simplices, the hyperplanes 
spanning them partition space into 2 a orthants, and exactly one of these orthants, 
call it Q, has v I as its lowest point. The intersection of f with a sufficiently small 
neighborhood of v I is equal to the intersection of that neighborhood with d - i 
of these hyperplanes and with the upper half-spaces bounded by the remaining i 
hyperplanes. Since f is popular, all 2 a-i of its sides touch Cp, and it is clear that 
Q must be contained in one of these sides. Hence Q, locally near f ,  lies in Cp, and 
v I is indeed a locally lowest vertex of Cp. 

We have assigned each popular/-face to its lowest vertex. The above argument 

impliesthat n o v e r t e x i s c h a r g e d b y m o r e t h a n ( d i )  populari-faces, sincewe 

assume general position. 
As already noted, the number of outer vertices in the entire arrangement is 

O(n a- 1). Thus it remains to show that the number of locally lowest inner vertices 
of Cp is also O(n a- 1). The Chopping Theorem implies that Cp can be decomposed 
into a collection of O(n a- 1) disjoint open convex polyhedra, the union of whose 
closures covers Cp. Then a locally lowest vertex of Cp is necessarily a lowest vertex 
of one of these polyhedra. Applying an appropriate rotation as necessary, we can 
assume that each of these convex polyhedra has at most one lowest vertex. Hence 
the number of locally lowest vertices of Cp is also O(n a- 1), which completes the 
proof of the lemma. []  

Remarks. (1) As will be seen shortly, the proof of Theorem 2.1 uses the preceding 
lemma only in the special case i = 1. 

(2) The proof of Lemma 2.4 also applies, if, instead of a single cell Cp, 
we consider the collection of all cells crossed by some simplex, hyperplane, convex 
surface, or bounded-degree algebraic surface, provided we modify the notion of 
popularity by defining a k-face to be popular if all of its 2 a-k sides lie in cells of 
the given collection. See rAPS] for details. 

We next proceed by induction on i and derive a recurrence for z~i)(p; T), for 
i = 2 . . . . .  d, using an approach similar to that used in I-ESS], JAMS], and lAPS]. 
Fix a simplex tre T and consider a popular (1,/)-border ((fo, R), (#o, Q)) of Cp(T) 
with f o r  a. When we remove tr, the face go becomes part of a possibly larger 
inner/-face g, which is clearly also popular. Moreover, fo (resp. (fo, R)) is a part 
of some inner edge f (resp. 1-border) of g. Thus ((f, R), (g, Q)) is necessarily a 
popular (1,/)-border of Cp(T\{tr}). 

So let ((f, R), (g, Q)) be a popular (1,/)-border of Cp(T\{tr}), and consider what 
happens to it when tr is reinserted into the arrangement. Let (#, Qz), l = 1 . . . . .  2 d- ~, 
be the sides of # in ~r ((#, Q) is one of these sides). The following cases 
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may  occur: 

a n g = ~ .  In this case g m a y  or m a y  not occur on the boundary  of Cp(T), 
but  ((f, R), (g, Q)) contr ibutes  at mos t  one popula r  (1, /)-border to z~i)(p; T), 
namely  itself. 

a n # ~ ~ and a c~ f = ~ .  In t roduct ion  of a splits g into one or more  pieces, 
more  than one of which m a y  contain f on its boundary.  It  follows that  only 
one componen t  g+ of g\a has the proper ty  that  ((f, R), (g+, Q)) is a (1, i)- 
border  of  some cell in ~ .  Thus ((f, R), (g, Q)) can contr ibute  at most  one 
popu la r  (1, /)-border to Cp(T), namely  ((f, R), (9+, Q)). 

a c~ # 4:~3 and er n f ~ ~ .  Let h § h -  denote  the two open half-spaces 
bounded  by the hyperp lane  spanned by o. Since f is an edge not  contained 
in a, a splits f into two subedges, f + = f n h§ f -  = f n h - .  As above let 
g+ (resp. g - )  be the unique componen t  of 9\a (i.e., subface of 9 in d )  which 
is incident to f +  (resp. f - )  on the correct side o f f ;  it may  be that  g+ = g - .  
Let g* be the unique subface of g n a which is incident to f n a and is 
contained in the closure of  R near  it. Consider  the two (1,/)-borders 
( ( f  +, R), (g +, Q)) and ( ( f - ,  R), (9- ,  Q)). We are only interested in cases where 
bo th  of them become popu la r  borders  in Cp(T), for only then will our  count  
go up. Let Qz + = Ql ~ h+, Q f  = Q l n  h - ,  for l =  1 . . . . .  2 d-i. Thus  we are 
interested in situations where Cp meets all 2 a + l - i  or thants  Qt +, QF locally 
near  9. Notice that  all these or thants  are incident to g*, an (i - 1)-face in d .  
Hence  g* is a popu la r  (i - 1)-face of  Cp and  ( ( f  ~ a, R ~ h+), (9", Q ~ h+)) 
and ( ( f  n 0, R c~ h-) ,  (g*, Q n h-))  are popu la r  (0, i - 1)-borders of Cp(T). 

To sum up, the number  of  popu la r  (1,/)-borders in C~,(T) which are not 
contained in a is bounded  by 

z~i)(p; T\{cr}) + �89 

where Po is the number  of  popu la r  (0, i - 1)-borders ((f ' ,  R'), (9', Q')) with 9' c o. 
A factor of  �89 appears  because the increase of 1 in ~ )  is charged to two popula r  
(0, i - 1)-borders. If  we sum these bounds  over  all simplices a ~ T and observe that  
every popu la r  (1, /)-border in Cp(T) is counted exactly n - d + 1 times (it is not  
counted if and only if a is one of the d - 1 simplices contahqing the 1-face of the 
border), we obtain 

(n -- d + 1)z(~)(p; T) < ~ z(zi)(p; T \{a} )  + 
a ~ T  

d + l - i  
zg-'(p; T), 

where the factor (d + 1 - i) comes  f rom the fact that  a popu la r  (0, i - 1)-border 
is charged at  mos t  d + 1 -  i times, once for each simplex a containing its 
( i -  1)-face. 

Passing to the m a x i m u m  quantit ies z~~ we thus obtain  

~ ' ( . )  = o(n ~-')  
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and 

n d + l - i  
z]i)(n) < z]i)(n - 1) + z] i -  1)(n), i = 2 . . . . .  d, 

n - d +  l n - d + 1  

where we have used an earlier observation that z~)(n) _< 2z]i)(n), for 1 < i < d. 
We first transform these equations into simpler ones, by assuming that n > d 

and substituting 

n )q,~'~(n). 
z~i)(n) = d -  1 

This yields the following relations, as is easily verified: 

~O~l)(n) = 0(1) (1) 

and 

~ ( n )  <_ q,~J(n - 1) + 
d + l - i  

n - d + l  
~,tai- 1)(n), i = 2 . . . . .  d. (2) 

We claim that, for i =  1, 2, . . . ,  d, ~~  O(log~-I n), with the constant of 
proportionality depending on i and d. This easily follows from (1) and (2) by 
induction on i. By definition of ~, this yields z~i)(n)= O(n a - i  logl-X n). The 
argument given in the beginning of the proof of the theorem implies that the same 
asymptotic bound applies to Z~ki)(n) for all 0 < k < i, thereby completing the proof 
of Theorem 2.1. [] 

Theorem 2.1 already implies that the overall complexity of a single cell is 
O(n a-  1 1ogd-1 n). This bound is further improved in the next section. 

3. The Improved Bound 

Using a more refined analysis, we next improve the bound derived in the preceding 
section to O(n d-x logn). The first step toward this goal is to show that the 
quantities Ttki)(n), for k < i, are proportional to z~)(n). More precisely, we have 

Proposition 3.1. For i > 2 and k = 0 . . . . .  i, we have T~ki)(p; T) = O(z~)(p; T)  + n d- 1). 

Proo f  By the analysis of Section 2, it suffices to show that z~i)(p; T ) =  
O(zt~ ) (p; T) + n d-  1). For this, let ((e, R), (f, Q)) be a popular (1,/)-border in Cp(T). 
The edge e is contained in the intersection of d - 1 simplices of T. By definition 
of popularity, a 3-border (b, W) exists such that ((e, R), (b, W)) is a (1, 3)-border of 
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Cp(T), and ((b, W), (f, Q)) is a popular (3,/)-border of that cell. The number of ways 

ofchoosing b is ( d -  1) 2 ; we assign ((e, R), (f, Q)) to ((b, W), (f, Q)), for an arbitrary 

choice of b. 
Now fix the popular (3,/)-border ((b, W), (f, Q)). Observe that b is a connected 

polyhedron in 3-space, constituting a single cell in an arrangement of O(n) 
2-simplices (i.e., triangles), obtained by intersecting each simplex of T with the 
3-flap containing b, and then decomposing each intersection into O(1) triangles. 
The analysis of Aronov and Sharir [AS, Appendix A] implies that the number 
E(b) of 1-borders and the number F(b) of 2-borders of b satisfy the relationship 

E(b) < c(F(b) + g(b) + 1), 

where c is an appropriate absolute constant and 9(b)> 0 is the genus of b. 
Moreover, Aronov and Sharir show that ~b g(b) = O(n2), where the sum is taken 
over all 3-faces b contained in the same 3-flap. 3 

Now the total number of popular (1,/)-borders is clearly bounded by 

OI((b,W~I,Q)) E(b) 1' 

where the sum is taken over all popular (3,/)-borders ((b, W), (f, Q)) of Cp(T). We 
thus obtain 

z~)(P; T) = OI b ~ (F(b) + o(b) + l)]. 
L_(( , W),  ( f  , Q)) 

However, ~ F(b) = O(zt~)(p; 73), because the left-hand side is proportional to the 
number of triples of the form (tp, b, f), where ~p is a 2-border bounding a 3-face b 
which bounds a popular/-face f of Cp(T). We can charge each such triple to the 
appropriate (2,/)-border involving ~p and f,  which is being counted in the 
right-hand side, and each such border gets charged only a constant number of 
times, through a constant number of intermediary 3-faces b. Also, 

n )=O(nd_l)" 9(b) = O(n2) �9 d -  3 

Hence 

r T) = O(z~)(p; T) + n d-I + z~)(p; T)) 

= O(r T) + n ~-'), 

3 The bound on E(b) is essentially a consequence of Euler's formula. The bound on ~ g(b) is 
obtained by incrementally adding the simplices of T one by one, and by keeping track of the changes 
in the overall genus of their union; see [AS] for more details. 
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because z~)(p; T) = O(r~)(p; T)), by a straightforward charging argument similar 
to that given in the preceding section. This completes the proof of the 
proposition. [] 

Remark. The preceding proof is similar to (albeit somewhat more involved than) 
a step in the new proof  of the zone theorem in arrangements of hyperplanes, as 
given in [ESS]. 

Our next step is to produce a recurrence relating z~) to r~- l )  in a manner 
analogous to that of Section 2. We require the following technical result. It extends 
similar observations proved in lEGS1] and [HKS],  and we believe it to be of 
independent interest. 

Lemma 3.2. Consider a face f i n  an arrangement d of segments in R 2. Add a new 
segment s, to form a new arrangement d ' .  In d ' ,  f is decomposed into one or more 
faces. Let ~ be a subset of them. Then 1~1, the number of faces in ~,, is at most 
1 + p + r, where p is the number of  edges of d '  contained in s and havin9 faces of  

on both sides of them, and r is the number of reflex corners o f f  that do not occur 
on the boundary of any face of ~.~ 

Proof. The splitting of f into subfaces is caused by the presence of the edges of 
s n int(f). The case where s avoids f altogether is trivial, so we can assume that 
each subface touches s. These edges can be classified into four categories: 

(i) Extreme edges of s that meet ~f at just one point. 
(ii) Edges that are incident on both sides to subfaces in J~ 

(iii) Edges that are incident on both sides to subfaces not in 
(iv) Edges that are incident on one side to a subface in ~ and on the other 

side to a subface not in o~. 

We ignore edges of type (i), since they do not affect the number of subfaces. 
The number of edges of type (ii) is p, by definition. If we erase all these edges, the 
number of subfaces in ~ will decrease by at most p, so it suffices to show that 
this number, after the erasures, is at most  1 + r. We also erase all edges of type 
(iii) and merge, for each such edge, the two non-~- subfaces incident to it; note 
that it is possible for a type-(iii) edge to have the same original subface on both 
sides. 

We are now left with a partition of f into a collection of subfaces, some of 
which are "surviving" (i.e., made of subfaces in ~-) while the others are "non- 
surviving" (made of subfaces not in ~ ) ;  moreover, no two surviving subfaces (resp. 
no two nonsurviving subfaces) are adjacent along a remaining edge of s n int(f). 

Let G be the bipartite connectivity 9raph, whose nodes are the surviving and 
nonsurviving subfaces of f ,  and each of whose arcs connects a surviving subface 
and a nonsurviving subface adjacent along a type-(iv) edge of s n int(f). Notice 
that this definition allows for multiple arcs between two nodes. Since f is a 
connected face, it is clear that G is also connected. 
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Claim. Let  g be a nonsurviving subface o f f  with degree deg(g) in G. Then its 
boundary tgg contains at least deg(g) - 1 reflex vertices. 

Assume the claim to be true. If  there are v surviving subfaces and t nonsurviving 
subfaces, then the total number  r of reflex vertices in nonsurviving subfaces satisfies 
the inequality 

.L 
r>_ ~ d e g ( g j ) - t = E - t ,  

j = l  

where g, . . . . .  gt are the nonsurviving subfaces, and E is the number  of arcs of  G. 
Since G is connected, we have E >_ v + t - 1, which implies that r > v - 1, which, 
as noted above, completes the p roof  of the lemma. 

It therefore suffices to prove the above claim. Let g be a nonsurviving subface. 
Let ? be a connected componen t  of t3g that  touches s, and assume first that  7 is 
the external boundary  of  g. Orient 7 so that  as we traverse it g lies to our  right. 
Let e, . . . . .  ek be all the edges of  type (iv) contained in 7 n s n int(f)  and separating 
g from a surviving face, numbered in the order  of their occurrence along 7. The 
total angle through which we turn as 7 is fully traversed is - 2 n .  Pick a point  z i 
in the interior of  ei, for i = 1 . . . . .  k, and consider the k arcs into which these points 
parti t ion 7. We denote by 7j the port ion of  7 f rom zj to zj+ 1, f o r j  = 1 . . . . .  k, where 
we take Zk+l = Zl. Let nej be the total turning angle of  7i as we traverse it from 
zj  to zj+ 1. Observe that the quantities ej are all integers, and ~ j  ej = - 2 .  

It is easy to establish the following properties: 

1. If  ej >_ 0, then 7j contains at least ej + 1 reflex vertices. Indeed, since we 
cannot  turn  by more  than + n at any single vertex, 7j must  have at least ej 
reflex vertices to reach a total turning angle of nej. Moreover,  since the first 
turn along 7j must be a negative (i.e., clockwise) turn, it must  be compensated 
by at least one addit ional positive turn. Thus 7j must  contain at least ej + 1 
reflex vertices. 

2. If  e i = - 1 ,  then 71 also contains at least one reflex vertex. Indeed, suppose 
to the contrary  that  there is such an arc 71 with no reflex vertex. Then 7j 
starts at z i along e i and ends at zi+ ~ along ei+ ,, where e i and ej+ ~ are 
collinear and oppositely oriented. Since 71 has only right turns, it has the 
shape of  a spiral, and it is easily checked that the turning angle of  such a 
spiral must  be negative and with absolute value at least 3n, a contradiction. 
(See Fig. 1 for an illustration.) 

We now have all the tools needed to complete the proof  of  the claim. Denote  
by Z (resp. P, N, N1, and  N*) the set of  arcs ~i with ej = 0 (resp. ej > 0, /~j < 0, 
ej = - 1 ,  and e i < -2 ) .  

By the properties noted above, the number  o f  reflex corners along 7 is at least 

IZl + [N,I + ~ (ej + I) = [ZI + IN~[ + IPI + ~ % 
?jcP ?leP 
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C3+1 ej 

Fig. 1. The proof of property 2 in Lemma 3.2 

Since ~]~ ej = - 2 ,  we have 

e j = l N l l +  ~ l e j l - 2 _ > 2 1 N * l + l z V l l - 2 .  
?jeP yjEN* 

Hence the number of reflex corners along Y is at least 

IZ I+IN~I+IP[+  ~ ~ j ~ I Z I + I N ~ I + I P I +  21N*I+IN, I - -2  
yjeP 

= IZl + IPl + 21NI - 2 

= k + [ N [ - 2 > _ k -  1, 

since there must be at least one arc with ej < 0. 
If V is an internal component of dO, the analysis proceeds in much the same 

way, except that the total turning angle along 7 is 2zr, instead of -2~ .  This is even 
more favorable, because the preceding calculations then imply that the number of 
reflex corners along Y is at least k~ + 2, where k v is the number of type-(iv) edges 
ej that lie on y. Summing these inequalities over all components of 09, the claim 
follows, and this completes the proof of the lemma. [] 

We can finally turn to the derivation of the desired recurrence. Let d >_ 3, and 
fix i > 2. In the preceding section we obtained a recurrence for z~ i) in terms of 
T(i-1) by removing a simplex a from T, adding it back, estimating the increase in 
the number of popular (1,/)-borders not contained in a, in the cell under 
consideration, and finally averaging this increase over all choices of a. For 
technical reasons, we use a modified strategy here: first, we consider (2,/)-borders 
instead of (1,/)-borders; next, instead of analyzing the insertion of a single simplex, 
we start with very few simplices, just enough to define a (2,/)-border. We then fix 
the order in which all the other simplices are to be inserted, one by one, estimate 
the increase in the number of popular (2,/)-borders contained in the initial set of 
simplices, as caused by the insertion of all other simplices, and finally average this 
increase over all choices of initial sets and insertion sequences. To this end, we 
define 

(p~kO(p; T) - ZtkO(P; T) 

( )  n 

d - k  
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This function generalizes the function ~, defined in the proof of Theorem 2.1. As 
in the preceding section, we also denote by tptk0(n) the maximum value of ~pCk0(p; T) 
over all choices of points p and sets T of n (d - 1)-simplices in d-space. 

The number of k-flaps in ~ (T) ,  including empty ones, is exactly d - k ' so 

that q~}0(p; T) can be interpreted as the average contribution to z~ ~ by a k-flap, 
counting empty flaps as well. We now construct a recurrence for ~o~ ~. For  each 
permutation ~ of the simplices in T let )~(g) denote the number of popular 
(2,/)-borders of Cp(T) whose 2-face is contained in the 2-flap formed by the first 
d - 2 simplices of ~. The average value of Z(~) over all choices of ~ is q~(p; T), 
by definition. Thus our approach is to estimate this average value. When we 
consider only the first d - 2 simplices of re, which define the relevant 2-flap F, the 
number of relevant popular (2,/)-borders is constant, so it suflices to analyze only 
the increase in this number as the remaining simplices are added. 

Let us first consider a single step, say the last one, in this incremental 
process. Thus let f _~ F be the 2-face of some appropriate popular (2,/)-border 
((f, R), (g, Q)) in ~(T\{tr}),  and consider what happens to this border when a is 
inserted into the arrangement. (Note that, once f and R are fixed, there is only a 
constant number of choices for g and Q.) Let F* denote the plane containing F, 
and let ~r = ~r ca F* be the arrangement restricted to F*; note that f is 
a face of ~r We are interested in the number of popular (2,/)-borders of the form 
((f', R), (g', Q)) in the cell under consideration in ~r with f '  c f .  Consider the 
collection ~ of all such faces f ' ,  for a given choice of f ,  g, R, and Q. By the 
previous lemma, the increase in the contribution of f to z~ ), namely [~1 - 1, is 
bounded by the number of times two faces of ~- are adjacent across a segment 
of tr ca F*, plus the number of reflex corners of f that do not appear on the 
boundary of any f ' e  ~.. Repeating this argument for all 2-faces f ~ F, we 
conclude that the increase of F's contribution to zt~ ~, after inserting a single simplex 
a, is bounded by q + r, where: 

�9 r is the reflex-corner count: it is the number of triples (v, R, g), where R is a 
side of F, v is a reflex corner of a face f _ F in ~r and g is an/-face of 
~r incident to f ,  such that g is not popular in ~r but, when a is removed, 
g becomes (a portion of) a popular face. 

�9 q is the face-pair count: it is the number of triples (e, R, g), where R is a side 
of F, g is a popular/-face of zg(T\{a}), e is an edge contained in F ca tr and 
incident on both sides to 2-faces f ' ,  f "  ~_ F, so that/-faces g', g" _ g in ~ ( T )  
and a side Q of g exist such that ((f', R), (g', Q)) and ((f", R), (g", Q)) are both 
popular (2,/)-borders in ~r 

Suppose we start the insertion process with the d -  2 simplices t~ 1 . . . . .  od_ 2 
defining F and insert all other simplices one by one, say in the order a d_ ~ through 
tT.. Then the total sum of the r-counts is bounded by 2 d -  2 (the total number of 

sidesofF) t imes(dd-__2i)(thenumberofwaystochoosethei-faceg)timesthe 

total number of reflex comers on all faces of F ca ~,  which is clearly O(n). This 
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follows from the fact that, for a fixed side R and/-face O, a reflex corner can be 
charged only at the step where 9 is first created (g has to be nonpopular but a 
portion of a face that was popular just before the step). Notice that this bound is 
independent of the choice of F and of the order of insertion of the simplices. Thus 
the same argument holds for the average change to reflex corners made in 
accounting for the increase in X(r0, where the average is taken over all permutations 
rc of tr 1, . . . ,  tr,. 

Fix d - 2 < j < n, and consider the step of inserting trj into d({a~ . . . . .  try_ 1)). 
Let (e, R, g) be one of the triples that contribute to the q-count portion of the 
increase in z(~ ). Note that e is contained in tr~ c~ F* and bounds on (i - 1)-border 
(an appropriate portion ofg n a j) that lies between two popular/-borders in ~r 
hence e and this (i - 1)-border form a popular (1, i - 1)-border, contained in try. 
We average the number of such (1, i - 1)-borders over all permutations with the 
same set J of the first j simplices. If we further fix the set D of first d - 2 simplices 
and the j th  simplex, then F = N D and a = trj are fixed, so exactly the same 
(1, i - 1)-borders arise in the j th step of all these permutations. If we now vary try, 
the last of the j simplices, stepping through every simplex of J\D in turn, each 
popular (1, i - 1)-border of ~ ( J )  whose 1-border lies in F will be charged for at 
most a constant number of simplices. If we repeat the same process over all choices 
of a (d - 2)-element subset D of J, every popular (1, i - 1)-border of d ( J )  arises 
in this process. However, there is a multiplicative factor here, as the charging 
scheme only depends on the choice of D c J and of a~ e J\D and not on the order 
in which the members of D and of J \(D w {a j}) appear in n. Hence the total charge, 
summed over all possible permutations of the simplices of J, is at most (d - 2)! 
(j - d + 1)!" ((d + 1 - i)/2)zti-~)(p; J) (the factor (d + 1 - 0/2 arises for the same 
reason as in the preceding section). The average charge over all permutations fixing 
the set J would then be 

( d - 2 ) ! ( j - d + l ) !  d + l - i  
_ _  z ~ - l ) ( p ; j )  

j~ 2 

<_(d-2)!(j-d+ 1)! d +  1 - i  z~- 1)(j). 
j~ 2 

As the latter quantity is independent of J, the average charge over all permutations 
of the n, rather than just the first j, simplices is also at most 

( d - 2 ) ! ( j - d +  1)! d + l - i  

j~ 2 
_ _  ~ ( , - , ) ( j ) .  

To summarize, the average "q-increase" at the jth step is bounded by 

O( (d-2)!(j-j! d + 1)! T(~_ 1)(j)) = OL~d ~ ) )  . / /z(~i- l )( j )  ~ 
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If we now sum these increases over all j, add the average reflex-corner count, and 
recall that the contribution of the first d - 2 simplices to Z(n) is a constant, we 
conclude that the average number of popular (2,/)-borders whose 2-faces are 
contained in the 2-flap defined by the first d - 2 simplices in the permutation is 

Consider the case i = 3 first. From Theorem 2.1, z]2~(n) = O(n a- 1 log n). We 
thus obtain 

= O(n+ j~=, log j )  

= O(n log n). 

For  i > 3, using the definition of ~o and Proposition 3.1, we rewrite (3) as 

--o(.+ 
j = l j - d  + 2J 

(4) 

By inductive hypothesis, q~-l)(j)=O(jlogj).  Substituting into (4) yields 
q~)(n) = O(n log n), or z~(n) = O(n d- 1 log n), as claimed. This completes the proof 
of our main theorem. [] 

Before continuing, let us reflect for a moment on the differences between the 
analysis techniques in the proofs of this section and the preceding one. Roughly 
speaking, the analysis in Section 2 is a static one--we look at a fixed arrangement, 
remove a simplex, add it back, estimate the increase in complexity caused by the 
re-insertion of the simplex, and average these increments over all simplices. The 
analysis given here is, in contrast, an incremental one--we start with a small set 
of simplices, fix the order in which the remaining simplices are to be inserted, one 
by one, and estimate the increase in the initial complexity produced during the 
entire insertion process. Such a process fares well with a charging scheme where 
each unit of the increase is charged to a unique feature of the arrangement being 
constructed, so that, after having incrementally constructed the entire arrange- 
ment, it can be concluded that the increase in the complexity under analysis does 
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not exceed the overall number of charged features in the complete arrangement. 
This approach is known as a "combination-lemma" approach, and has been 
successfully applied to many combinatorial problems concerning arrangements; 
see [AS], ['EGS1], lEGS2], and [GSS]. 

The reflex-corner count r is a measure of this type--insertion of a new simplex 
increases the number of reflex corner charges made by a 2-face f by the number 
of reflex corners that were on the boundary of f and incident to popular/-faces 
before the insertion, but are no longer incident to such faces after the insertion. 
Hence, if we insert simplices one by one until the entire arrangement is constructed, 
each reflex corner in the arrangement is charged only a constant number of times, 
so the total contribution of reflex corners to the increase in ~)  over all faces f 
and sides R is proportional to the number of such corners in the entire arrange- 
ment, which is O(n d- 1). Notice that this analysis is independent of the order of 
insertion of simplices. 

In contrast, the q-count (refer to the definition in the proof) is difficult to bound 
in this manner, because, in a single insertion step of some simplex a, the charge 
covers only a portion of z~i- 1), namely, only those popular (1, i - 1)-borders that 
lie in tr get charged. When we sum these charges over the entire incremental 
construction process, for a fixed order of inserting simplices, those portions do 
not add up to anything meaningful. Intuitively, the difficulty is that the quantity 
rti- 1~ is evanescent--it strongly depends on the current subarrangement and does 
not seem to relate well to its value at the end of the process. 

The idea that has enabled us to estimate these quantities in a meaningful fashion 
is to average the increases over all possible insertion orders, and to rearrange the 
averaging in such a way that it will consist of subaverages, in each of which the 
entire quantity T~ i-1) of some subarrangement will be charged. This averaging 
process does not affect the r-count, because it is a worst-case count and applies 
to any insertion order. We thus obtain a mixed charging scheme that can handle 
both static and incremental charges. We expect that this technique will find 
additional applications in other contexts. 

Corollary 3.3. The number of  faces of  all dimensions boundin9 the zone of  a 
(d - 1)-simplex tr (or a hyperplane) in an arrangement of  n (d - 1)-simplices in R d 
(that is, the collection o f  all cells crossed by tr) is O(n d- 1 log n). 

Proof All the cells in such a zone can be made into a single cell by cutting each 
of the given simplices into two subsets by the hyperplane containing ~, leaving a 
tiny gap between the two pieces, and decomposing each piece, if necessary, into 
a constant number of simplices. The claim is now immediate from Theorem 1.1. 
This argument is similar to that made in [EGP § for two-dimensional arrange- 
ments of curves. []  

Remarks. (1) The constants of proportionality in the analysis given above are 
probably much too large, because each step of induction on i multiplies the 
previous bound by a fairly large constant. It would be interesting to refine the 
analysis so as to reduce the constants. 
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(2) The case i = 3 was treated separately, because Proposition 3.1 does not 
apply in this case. Thus our bound follows from the bound z~2J(n) = O(n d- 1 log n) 
of Theorem 2.1; this was the only use of it in our proof. In particular, to improve 
Theorem 1.1, it suffices to improve the bound on z~2)(n). For  example, showing 
that z~2)(n) = O(n d- let(n)) would close the gap between the upper and lower bounds 
in Theorem 1.1. The simplest instance of this challenging problem is for d = 3; 
namely, the problem is to bound the number  of edges bounding popular faces in 
a single cell in an arrangement of n triangles in 3-space. 

(3) In our argument we used a single point, p, to mark the popular cell. Suppose 
that, instead, we fix an algebraic surface a of small constant degree, or a convex 
surface tr (the boundary of an arbitrary convex set), and consider the collection 
of all cells constituting the zone of tr in M(T). Extend the definition of popularity, 
so that all these cells are now popular. A face would be popular if all of its sides 
border popular  cells, in other words, if all the incident cells are zone cells. The 
definition is naturally extended to (k, /)-borders, etc. As noted in Section 2, 
Corollary 2.3 and Lemma 2.4, which provide the "boots t rapping" of our argument, 
apply to the zone of an algebraic or convex surface as well. An examination of 
Sections 2 and 3 shows that the entire argument goes through unchanged. A crucial 
property that makes the analysis work is that popularity can never be regained, 
in the sense that inroducing new simplices can never change an unpopular feature 
into a popular one. Put in a different way, if a face g is popular  and we remove 
a simplex not containing g, g becomes (a portion of) a popular face in the reduced 
arrangement, and this holds for both the case of a single cell and the case of a 
zone, as is easily checked. This facilitates the derivation of the same recurrence 
relationship as above, and thus yields the following theorem (see also lAPS] for 
a more detailed analysis that uses a popularity-based argument for estimating the 
zone complexity of an algebraic or convex surface in the simpler case of an 
arrangement of hyperplanes): 

Theorem 3.4. The number of faces of all dimensions bounding the zone of an 
algebraic surface in an arrangement of n (d - 1)-simplices in •d is O(n d- 1 log n), 
where the constant of proportionality depends on d and the degree of the surface. 
The same statement holds when the algebraic surface is replaced by any convex 
surface, i.e., the boundary of an arbitrary convex set; with the constant of proportion- 
ality depending only on d. 

4. Popularity Extended... 

We next extend the definition of popularity and obtain an interesting variant of 
Theorem 1.1. Instead of concentrating on a single cell (or the zone of some surface), 
we consider the entire arrangement. For  k < d, we define an inner k-face to be 
popular if every cell of ~r contains an even number of the 2 d-k sides of the face 
on its boundary. As an illustration, an edge e in an arrangement of triangles in 
3-space is popular  if two (not necessarily distinct) cells CI, C2 of ~ ' (T)  exist so 
that, as we turn around e, the four sides of e lie in C1, C1, C 2, and C2, respectively, 
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or in C1, C2, C1, and C2, respectively. This extended definition of popularity is 
quite natural for facets (a facet is popular if both of its sides lie in the same cell 
of d(T)) ,  but becomes somewhat less natural as the dimension of the face 
decreases. Note that this is indeed a generalization of the "old" notion of 
popularity, as long as k < d. Also observe that if a k-face f is popular, for k < d, 
then all cells incident to f are nonconvex. 

Define popular borders in terms of popular faces, as before. Let ~k~)(T) be the 
number of popular (k, /)-borders in ~r and ~ki)(n)= maxlwl= . ~i)(T). Interest- 
ingly, the analysis of Sections 2 and 3 can be adapted, with relatively few 
modifications, to yield a similar bound on ~k ~), as long as i < d. We briefly sketch 
the new analysis, focusing on the modifications that have to be made. 

Consider first the "bootstrapping" Lemma 2.4. Its proof is easily modified to 
handle the new kind of popularity. All we need to do is to observe, as in Corollary 
2.3, that the union of all nonconvex cells can be decomposed into O(n a-  1) convex 
polyhedra with pairwise disjoint interiors, and that the charge each popular face 
makes in the proof is to a vertex which is locally lowest in some nonconvex cell, 
and is thus the lowest vertex of one of these convex polyhedra. 

Consider next the recurrence derived in Section 2, and recall that we only need 
it to establish a bound on s Thus let ((f, R), (9, Q)) be a popular (1, 2)-border 
in d (T) ,  in the extended sense, and let tr be a simplex of T not containing 9. It 
is easily checked that, when tr is removed, f and 9 may grow larger, say to edge 
f '  and 2-face 9', respectively, but f '  and 9' still form a popular (1, 2)-border in 
d(T\{a}) .  Indeed, removal of tr may cause some of the cells on which g borders 
to merge together, but clearly each of these new cells still contains an even number 
of sides of g'. We can therefore apply the analysis of Section 2, observing that, if 
tr splits f into two subedges so that, together with an appropriate side and an 
appropriate piece of g, each of them forms a popular (1, 2)-border in the full 
arrangement, then the point f n a and an appropriate edge of g n tr adjacent to 
it form a popular (0, 1)-border, as follows from the new definition of popularity. 
Thus the analysis of Section 2 goes through, and we can conclude that 
~12)(n) = O(n a- 1 log n). 

The analysis of Section 3 also applies to the new kind of popularity. Proposition 
3.1 applies essentially to any collection of faces of dimension 3 and their borders. 
The main analysis accounts for the increase in the number of popular (2,/)-borders 
that occurs when a simplex a is inserted into the arrangement. As argued in 
Section 3, such an increase can occur only when tr splits a currently popular 
(2,/)-border into several pieces, and then we can charge this increase either to 
edges of tr n f that bound popular features on both sides (with respect to some 
side R of f ) ,  or to reflex vertices in subfaces of f which "disappear," in the sense 
that they no longer bound popular/-faces (again, with respect to some side R). In 
the extended context, both types of charges are still appropriate. The first type of 
charge will be to popular (1, i - 1)-borders, as follows from the new definition of 
popularity. The second type of charge will be to reflex vertices in subfaces of f 
that no longer bound popular/-faces (on certain sides of f) ,  and, clearly, no such 
vertex will be charged more than once for each side of f during the incremental 
process. 
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We leave it to the reader  to fill in the missing details and to verify that  the 
analysis indeed carries over  in its entirety to the new kind of populari ty.  In 
summary ,  we obtain:  

Theorem 4.1. The total number, ~(ki)(n), of k-borders bounding popular i-borders in 
an arrangement of n (d - 1)-simplices in R a, in the extended sense of popularity just 
defined, is O(n d- 1 log n), for all 0 < k < i < d. 

Why is this an interesting result? First, put t ing i - - d -  1 and letting k 
vary in the above  bound,  we see that  the total  complexi ty (i.e., the total  number  
of faces of all dimensions) of  all popula r  facets in the entire a r rangement  is only 
O(n d- 1 log n), while the total  complexi ty of  the a r rangement  is O(n d) and the 
total complexi ty  of all nonconvex cells is in the worst  case at least fl(n d§ 1/3) (this 
is an easy generalization of a result of Aronov  and Sharir [ A S ] ) - - a  significant gap. 
Thus, in a very strong sense, most  of the complexi ty  of the a r rangement  comes 
from " u n p o p u l a r "  facets. Another  reason for investigating ~ is that  it arises in the 
analysis of the "excess"  in ar rangements  of  simplices, as presented in the following 
section. To  facilitate this analysis, we first derive an interesting consequence of 
Theorem 4.1. 

Let  f be an inner k-face of d ( T ) ,  for k < d. We call f semipopular if at  least 
two of its sides bound the same cell of ~r In what  follows we focus on the case 
k = 0, i.e., we consider only semipopular  vertices. At the end of the analysis we 
comment  on the easy extension of these results to arbi t rary  values of k. 

Let v be a semipopular  (inner) vertex in ~r and suppose it is the intersection 
of d simplices trl . . . . .  tr d. Fo r  each al, the hyperplane  spanning it par t i t ions space 
into two half-spaces, and we regard one of them as the positive side of a I and the 
other as the negative side. Let R, R'  be two distinct sides of v contained in a 
c o m m o n  cell C. We can represent  R and R'  by two respective sign sequences 
(~1' 62 . . . . .  t~d) and (6'1, 6~ . . . . .  ~) ,  where ~i, c5'i e { + 1, - 1} for i = 1 . . . . .  d, so that  
~i = + 1 (resp. - 1) if R lies on the positive (resp. negative) side of tr i, and similarly 
for 6'i and  R'. L e t j  = j(v, R, R') be the number  of  indices i for which 6i = 6'i. Clearly, 
0 < j(v, R, R') < d - 1. Let  a semipopular triple (v, R, R') consist of a semipopular  
vertex v and two of its sides, R, R', such tha t  (v, R) and (v, R') border  the same 
cell. O u r  goal is to bound  the number  of semipopu la r  triples for which j(v, R, R') 
is equal  to some fixed value j, for j = 0 . . . . .  d - 1. Let us denote  the number  of 
such triples by ~j(T), and  its m a x i m u m  value over  all collections T of n simplices 
by (j(n). Notice that  the total  numbe r  of  semipopular  triples provides an immediate  
upper  bound on  the n u m b e r  of  semipopular  vertices, since each semipopular  triple 
(v, R, R') is a witness of  v being a semipopular  vertex. 

First  observe that (d-  l(n) = O(n a- 1 log n). Indeed, let (v, R, R') be a semipopular  
triple with j(v, R, R') = d - 1, and let tr be the (unique) simplex containing v so 
that R and R'  lie on different sides of  a. It  is easily verified that  a facet f on tr 
exists which has  v as a vertex and R, R' as its two sides (or, more  precisely, as 
subsets of its two respective sides Q, Q'). Since (v, R) and (v, R') bound  the same 
cell, it follows tha t  f is popu la r  in the extended sense and  that, say, ((v, R), (f,  Q)) 
is a popu la r  (0, d -  1)-border. Hence  ~a-l(n) is p ropor t iona l  to ~(0d-1)(n)= 
O(n d- 1 log n). 
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Suppose next that j < d -  1. Let (v, R, R') be a semipopular triple with 
j(v, R, R ' )=] ,  let ~1 . . . . .  tr d be the simplices meeting at v, and let (61, 62 . . . . .  6j) 
and (6'~, 6~ . . . . .  61) be the two sign sequences representing R and R', respectively, 
as above. Without loss of generality, suppose that 6 d ~ 6~. If we remove tr d from 
T, the remaining simplices a 1 . . . .  , trd- 1 intersect in a 1-flap which contains an edge 
g that contains v as an interior point. Since j(v, R, R') < d - 2, g has two sides, S 
and S', that lie in the same cell of ~r these sides can be represented by 
the respective truncated sign sequences (61, 62 . . . . .  6a- 1) and (6'1, 6~ . . . . .  6~_ 1), in 
complete analogy with the representation of the original sides R, R'. Clearly, these 
sequences agree in j places. 

Thus our goal is to bound the number of quadruples (g, S, S', a) in d ( T ) ,  such 
that: 

(Tx) g is an edge of ~r 
(T/) S and S' are two sides ofg that lie in the same cell of this subarrangement. 
(T3) The two sign sequences that represent S and S' have j indices at which 

they agree. 
(T4) ~r intersects 9 at an interior point of both a and g. 

Note that such a quadruple can arise from two different semipopular triples, one 
in which 6 a = + 1 and 6~ = - 1  and one in which 6d = --1 and 6~ = + 1. Hence 
the number of semipopular triples under consideration is at most twice the number 
of such quadruples. 

Lemma 4.2. The number of quadruples satisfying (T1)-(T4) is O(n d- 1 + (i+ a(n/2)). 

Proof. We apply an argument adapted from Clarkson and Shor [CS]. Note that 
a quadruple (g, S, S', tr) is defined in terms of at most d + 2 simplices, d - 1 of 
which define the 1-flap containing g, at most two define the endpoints of g (by 
their intersection with that 1-flap, unless the respective endpoint is an outer vertex), 
and the (d + 2)nd simplex is tr. Draw a random sample R of r = n/2 simplices of T, 
and consider the number of triples (g, S, S') such that: 

(R1) g is an edge of si(R), contained in the intersection ofd - 1 simplices of R. 
(R2) S, S' are two sides of g, represented by a pair of sign sequences 

(61 . . . . .  6d-1), (6'1 . . . . .  6'd-1), as above, such that both sides lie in the same 
cell of ~r 

(R3) The number of indices i for which 6 i = 6'i is j. 

We can charge each such triple to a triple (v, Q, Q'), where v is one of the endpoints 
of g, which we assume for now to be an inner vertex formed by the intersection 
of the 1-flap containing g with some simplex a * e  R, and Q, Q' are the two sides 
of v obtained by intersecting the half-space containing g and bounded by the 
hyperplane spanning tr*, with S and S', respectively. Clearly, Q and Q' lie in the 
same cell of ~r and their corresponding sign sequences agree in j + 1 compo- 
nents-- j  of which are "inherited" from the sequences of S and S', and the (j + 1)st 
one corresponds to a* and signifies the fact that Q and Q' lie on the same side of 
~*. Clearly, no triple (v, Q, Q') is charged more than a constant number of times, 
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which implies that the number of triples (0, S, S') as above is bounded by (j+ 1(n/2), 
by definition. If v is an outer vertex, we simply charge (g, S, S') to v. Since there 
are only O(r a- 1) outer vertices in off(R), it follows that the number of triples (g, S, S') 
charged to outer vertices is also O(r a- 1) = O(n ~- 1). 

Next consider the probability that a quadruple (g, S, S', a) in off(T), satisfying 
properties (TI)--(T,), will give rise to the corresponding triple (g, S, S') in off(R), so 
that the triple satisfies properties (R1)-(R3). We claim that for this to happen it is 
necessary and sufficient that the at most d + 1 simplices defining g are chosen in 
R and that a is not chosen in R. This condition is clearly necessary. It is sufficient 
because the two sides S, S' lie in the same cell of off(T\{a}), and so they clearly 
do the same in the smaller arrangement off(R). If we denote by t the number of 
simplices determining (g, S, S', a) (where d < t < d + 2), then the probability for 
this condition to occur is easily seen to be 

_> C, 
r - - t + l  r 

for some constant c > 0 depending on d (see also [CS]). Hence the expected 
number z of triples (O, S, S') in off(R) satisfying (R1)--(Ra) and induced by the 
quadruples (g, S, S', a) satisfying (T1)--(T,) is at least c~, where r is the number of 
such quadruples. Hence, c~ < z < O(n d- 1) + (j+ 1(n/2), so ~ = O(n d- 1 + (j+ 1(n/2)), 
as asserted. []  

The preceding lemma yields the chain of inequalities 

for some constant a depending on d, which implies: 

Theorem 4.3. The total number ((T) of  semipopular triples (v, R, R') in an arrange- 
ment of  n (d - 1)-simplices in d-space is O(n d- 1 log n). Thus the number of  semi- 
popular vertices is O(n d- 1 log n). 

Theorem 4.3 can be extended to yield a similar bound on the number of k-faces 
that have at least two sides lying in a common cell of off(T), for any 2 <_ k < d. 
Let f be such a semipopular k-face, and let v be any vertex of f .  If v is an outer 
vertex, we charge f to v and observe that only O(n d- 1) such charges will be made. 
If v is an inner vertex, then it is clearly also semipopular, as witnessed by its two 
sides that are contained in the respective two sides of  f that lie in a c o m m o n  cell. 
Hence we have: 
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Theorem 4.4. The total complexity of  semipopular faces of all dimensions in an 
arrangement of n (d - 1)-simplices in d-space is O(n d- 1 log n). 

5 . . . .  Leading to Excesses 

In this section we introduce the not ion of the excess of an ar rangement  ~r of a 
set T of n (d - 1)-simplices in R d, d > 2, in general position. Fix 0 < k < d - 1, 
and let f be a k-flap formed by the intersection of the relative interiors of some 
d - k simplices of T. If some cell C in d ( T )  has a k-border  of the form ( f ' ,  R), 
where f '  _~ f and R is any one of the 2 d-k sides of f ,  we put  p(f, C) -- 1 and say 
that f is present on the bounda ry  of C; otherwise put p(f,  C) = 0. In either case 
we define x(f,  C) to be the number  of k-borders ( f ' ,  R) of C, with f '  ___ f.  The 
excess e(f, C) of C relative to f is defined as x(f, c) - p(f, c). The k-excess of a cell 
C is ek(C) = Y'.Ie(f, C), where the sum extends over all k-flaps f ,  and the k-excess 
of the entire a r rangement  is ek(T) = ~ c  ek(C). 

First, notice that, by definition, ek(Cp(T)) < c(p, T), for any point  p not on a 
simplex of T. Therefore, ek(C ) = O(n a- 1 log n), for any cell C and any k. Moreover ,  

ek(C) i s s m a l l e r t h a n t h e n u m b e r o f k - b o r d e r s o f C b y a t m o s t ( d n k ) a n d ,  as is  

easily seen, families of n simplices exist in which, say, el(C) = f~(n d- l~(n)) for some 
cell C in their arrangement .  This more  or less settles the question of the worst-case 
excess of  a single cell in an arrangement .  A more  challenging problem, though, is 
to bound  the overall  excess of the entire arrangement.  Let  e~d)(n) = m a x r  ek(T), 
where the m a x i m u m  is taken over all collections T of n (d - 1)-simplices in general 
position in d-space. The case k = 0 is easy, because the excess of a vertex is nonzero 
if and only if the vertex is semipopular .  Hence e~od)(n) = O(n n- 1 log n). We next 
show: 

Lemma 5.1. For d > 3, e~d)(n) = O(n a- 1 log2 n). For d = 2, e~2)(n) = O(n log n). 

Proof Fix any a ~ T, and consider the 1-flap f formed by some d - 1 simplices 
of T\{tr}. Suppose tr is inserted back into the ar rangement .  The increase in the 
contr ibution of f to el(T) can be bounded  as follows: Fix some cell C of d ( T k { a } )  
which is bounded  by at least one 1-border (O, R), with 9 -~ f .  When a is re-inserted, 
C may  be split into several subcells in ~r Let 9 ~- f be an edge that  is present  
on the boundary  of C (in ~ ( T \ { a } ) ) ,  and let t > 1 be the number  of  sides R such 
that (O, R) is a 1-border of  C. It is easily verified that  if a c~ 9 = ~ ,  then O does 
not contr ibute  anything to the increase in 1-excess. If a c~ 9 ~ ~ ,  then each of the 
t former 1-borders (9, R) is now split into two subborders  (0 +, R), (9- ,  R), yielding 
a total of  2t subborders,  each bounding some subcell of C. Let q be the number  
of subcells into which C has  been split in d ( T )  and which are still bordered by 
pieces of  9. It  is easily checked that  the increase in the 1-excess generated by f 
within C, created when tr is re-inserted, is at most  (2t - q) - (t - 1) = t - q + 1, 
so we are only interested in eases where t > q, for only then does the 1-excess go 
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up. Note  that the vertex g* = a n f has 2t sides that it "inherits" from the borders 
(g § R), (g-,  R) as above, and that these sides lie in at most q distinct subcells of 
C. It follows that we can generate at least 2t - q distinct semipopular triples of 
the form (g*, Q, Q'), where Q and Q' are two sides of g* that lie in the same subcell 
of C. Since 2t - q _> t - q + 1, it follows that we can charge these semipopular 
triples for the increase in 1-excess under consideration. Moreover, when we repeat 
this argument over all simplices a (and all corresponding cells C), it is easily seen 
that no semipopular triple gets charged more than d times, once for every simplex 
containing its vertex. Hence, as in the proof  of Theorem 2.1, we obtain the 
following recurrence for e~: 

(n -- d + 1)el(T ) < E e1(T\{a}) + d~(T) 
a ~ T  

= ~, e , ( r \{a})  + O(?l d-1 log n). 
( r~T  

Applying the same analysis to this recurrence, we obtain e(~d)(n) = O(rl d- 1 log2 n). 
In the plane the analysis gives the improved bound e~E)(n) - O(n log n), because in 
this case ((T) = O(z~ol)(T)) = O(n). 

Remark. In the plane we thus have et12)(n) = O(n log n) and fl(n~(n)). We con- 
jecture that in fact e~2)(n) = | More generally, we would like to know if the 
1-excess of the entire arrangement can be asymptotically larger than the 1-excess 
of a single cell. The same question applies to k-excesses, which we consider next: 

Theorem 5.2. For d > 3 and 1 < k < d - 1, e(ka)(n) = O(n d- 1 log2 n). 

Proof We prove the claim by induction on k. The base case k = 1 has just been 
established. Suppose then that  k > 2 and that the claim is true for k - 1. As above, 
fix any tr ~ T, and consider a k-flap f formed by some d -- k simplices of T\{a}. 
Suppose a is inserted back into the arrangement. The increase in the contribution 
of f to ek(T) can be bounded as follows: Fix a cell C in ~r and suppose 
that there are m k-borders (g, R) on the boundary of C, where g _ f and R is a 
side of f .  Then the "old"  k-excess that f induces in C is m - 1. When tr is added 
back, C is split into several subcells, say C 1 . . . . .  Cq. Similarly, any k-border (g, R) 
on the boundary of C, with g _ f and R a side of f,  may  be split into several 
subborders, which may appear  on the boundaries of any new subcell Cj. Let aj 
denote the number of k-borders of this kind on the boundary of C j, for j  = 1 . . . . .  q, 
and put a = ~ =  1 aj. Then the "new" k-excess that f induces in all subcells of C 
is ~ =  l(a i - 1) = a - q. (We ignore here subcells for which aj = 0, since these 
subcells do not involve f at all; thus, in what follows, q denotes the number of 
subcells of C on whose boundaries f is actually present.) Let f *  be the (k - 1)-flap 
f n a. Observe that, for a fixed side R, the increase in the number of k-borders 
(g, R) as above is controlled by the number  of times the boundary OC of C is "cut"  
by f* .  More precisely, if tgC c~ f *  contains t R (k - 1)-faces which split k-borders 
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(9, R) as above (for the fixed side R), then the number  of  relevant k-borders will 
have increased by at most  tR. Hence a < m + ~R tg, so the new k-excess in 
question is at most  m + t -- q, where t = ~ g  tR. 

If t - q < -- 1, then the new excess is not  larger than the old excess, so there 
is no increase in excess to account  for. So suppose that  t - q > 0. The resulting 
increase in k-excess is thus t -  q + 1 > 1, and we need to find some way of 
charging for this increase. Notice that, since q > 1, we also have in this case t > 1, 
which implies t - q + 1 < 2t - q. 

With each side R of f for which tR > 0, we can associate 2tR (k - 1)-borders 
of the form (h, R'), where h is a (k - 1)-face on f *  which has split a k-border (g, R) 
as above, and R' is one of the two sides into which R is split by a. Thus we get 
a total of 2t (k - 1)-borders along f * ,  each bounding one of the q subcells Cj of 
C. Hence their total contribution to the (k - 1)-excess in the full arrangement  is 
at least 2t - q. In other words, we can charge the increase in k-excess within the 
cell C, as caused by the re-insertion of  a, to the (k - 1)-excess within the subcells 
into which C is split; more  precisely--to that port ion of this ( k -  1)-excess 
generated by (k - 1)-borders that lie on a. Hence, summing over all cells C and 
simplices a, we obtain the recurrence 

(n - d + k)~k(T) <_ ~ ~k(T\{a}) + (d - k + 1)ek-~(T) 
a c T  

= ~, ek(W\{a}) + O(n a-1 log 2 n), 
a E T  

by induction hypothesis. Since we want  to solve this recurrence only for k > 2, its 
solution is easily seen to be e~a)(n) = O(n ~- x log2 n). This completes the p roof  of 
the theorem. [ ]  

The not ion of excess provides a new measure for the complexity of  an 
arrangement. The bound given above shows, informally, that  the ~(n d) worst-case 
complexity of the entire arrangement  cannot be accounted for by the repetition 
of k-flaps along the boundary  of the same cell. This large complexity is thus due 
either to the number  of cells being large, or to the number  of distinct k-flaps on 
each cell boundary  being large. Note  that the extreme case, where all simplices 
are actually hyperplanes, gives the largest overall complexity of the arrangement  
and the lowest overall excess (namely 0). 

We have included the above analysis of excess in this paper for three main 
reasons: 

(a) The intrinsic interest in this new measure of complexity in arrangements,  
as well as its connection with the related complexity of  popular  and 
semipopular  features. 

(b) The fact that  the analysis of excess is similar in spirit to the analysis of  the 
complexity of  a single cell. 

(c) The usefulness of this notion in the analysis of other  complexity problems 
in simplex arrangements,  such as the complexity of multiple cells, which we 
discuss next. 
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6. Complexity of Multiple Cells in Arrangements of Simplices 

We now apply the results concerning excesses to derive a nontrivial bound on the 
complexity of m distinct cells in an arrangement of n (d - 1)-simplices in d-space. 
Specifically, we show: 

Theorem 6.1. The total number of  (d - 1)-borders on the boundaries of  m distinct 
cells in an arrangement of n (d - 1)-simplices in d-space is 

O(n d -  1 log2  n + m l / 2 n  d/2 log 1/2 n). 

Proof. Let T be the given collection of simplices, and let the m given cells be 
C~ . . . . .  Cm. For  cell C in d (T ) ,  denote the number of (d - 1)-borders on the 
boundary 8C of C by ~(C), and the number of different simplices appearing on 
t3C by/~(C). By definition of excess, we have 

~(Ci) <_ e d_ I(T) + ~ ,u(Ci) = O(nd-' log 2 n) + ~ #(Ci). 
i=1 i=1 i=1 

Claim. ~c/z(C) 2 = O( nd log n), where the sum extends over all cells C of d (T ) .  

Indeed, the sum is proportional to ~ c  N(C), where we sum over all cells C, and 
where N(C) is the number of pairs (a, a') of simplices both appearing on dC. 
Rearranging this sum, we obtain ~ c  N(C) = ~ K(a), where now we sum over all 
simplices tr, and where K(a) is the number of pairs (C, a') of cells C and simplices 
tr' such that a appears on 8C and tr' also appears on that boundary. Let Z ,  denote 
the collection of all these cells C; these are precisely the cells in the zone of tr in 
~r Clearly, 

K(,r) _< y~ ~,(C)< Y~ ~(C). 
C~Z~ CeZ~ 

In other words, K(a) is bounded by the complexity of the zone of a, measured in 
terms of the number of (d - 1)-borders bounding cells in the zone. By Corollary 
3.3, this complexity is O(n d- 1 log n) and, summing over all simplices a, we obtain: 

#(C) 2 = O(n d log n), 
C 

as claimed. 
Now we apply the Cauchy-Schwarz inequality to obtain 

p.(Ci) < m 1/2 //(Ci) 2 <_ m 1/2 j,t(C) 2 = O(ml / 2n  d/2 l o g  1/2 n), 

i=1 i 

and this clearly completes the proof of the theorem. [] 
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Remarks. (1) Aronov et al. [AMS] show that, in an arrangement of n hyperplanes 
in R d, the number of faces of all dimensions bounding m distinct cells is O(ml/2n d/2 
iogt/d/2/-1)/2 n). They also provide a lower bound on the maximum possible face 
count in m distinct cells, which is close to the upper bound, and for many values 
of m and n is ~2(ml/Ena/2). Theorem 6.1 compares favorably with their upper bound 
(except, of course, that we are only counting facets). Their lower bound counts 
lower-dimensional faces, and so does not seem to say anyth ingabout  the tightness 
of our result. 

(2) An obvious open problem is thus to extend the preceding analysis to obtain 
similar bounds on the total number of faces of all dimensions bounding m distinct 
cells in an arrangement of n simplices in Ea. What is missing is an extension of 
the "sum-of-squares" claim (as given in [AMS] for the case of hyperplanes), which 
will include faces of lower dimension as well. Unfortunately, a straightforward 
extension of p(C) to include the number of different k-flaps, for all 0 < k < d, 
occurring on t3C, does not yield a satisfactory bound for simplex arrangements-- i t  
is easy to construct an arrangement in which there is a cell C with #(C) (in the 
extended sense) equal to D(n a- 1), SO EC ~/-/(C) 2 = ~'~(n2d-2) in the worst case, which 
is much too large for the purposes of our argument. 

7. Other Applications and Discussion 

Our estimate of the complexity of a single cell in an arrangement of n (d - l)- 
simplices in d-space has several applications. One such application, already 
mentioned in the Introduction, is to the problem of translational motion planning 
in three dimensions. Specifically, let B be a rigid polyhedral body free to translate 
in three-dimensional space bounded by a collection of polyhedral obstacles. Given 
an initial free placement 0 of B, we wish to compute the space of all free placements 
of B reachable from 0 by a collision-free translational motion. Suppose the 
obstacles are bounded by a total of n faces and B is bounded by k faces. For  
simplicity, assume that the surfaces of B and of the obstacles are triangulated. We 
compute the Minkowski difference of the obstacles and B. The boundary of this 
difference is formed by O(kn) possibly intersecting triangles and parallelograms, 
each being the Minkowski difference of an /-face of some obstacle and of a 
(2 - / ) - f ace  of B, for i = 0, 1, 2. The space of free placements of B reachable from 
0 corresponds to the cell containing the point representing 0 in the arrangement 
of these O(kn) triangles and parallelograms. We thus conclude: 

Corollary 7.1. The combinatorial complexity of the space of free placements of a 
polyhedron B with k faces, translating amidst a collection of polyhedral obstacles 
bounded by a total of n faces, which can be reached from a fixed placement of B by 
a collision-free motion, is O((kn) 2 log(kn)). 

Clearly, we can extend this result to more complex instances of motion 
planning, involving more than three degrees of freedom, as long as all the 
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collision-constraint surfaces (each representing placements of the system in which 
contact is being made between some feature of the moving system and some 
obstacle feature, or between two system features) are formed by appropriate 
simplices. For example, this happens in the case of a nonrigid polyhedral body B 
having any number of prismatic joints and free to translate amidst polyhedral 
obstacles in 3-space as above, or to any collection of such independently moving 
bodies. In any of these cases the above results imply that the combinatorial 
complexity of the portion of free configuration space, reachable from a given initial 
system configuration, is no more than O(n a- ~ log n), where d is the number of 
degrees of freedom of the system and n is the number of simplices in a triangulation 
of the constraint surfaces. 

Next consider the problem of efficiently computing one cell in an arrangement 
of triangles in 3-space: 

Corollary 7.2. Given 6 > 0, a set of n triangles in 3-space, and a point not on any 
of them, the cell containing this point in the arrangement formed by the trianyles can 
be computed in randomized expected time O(n 2 +~), where the constant of proportion- 
ality depends on 6. 

Proof. Aronov and Sharir [AS'] present such a randomized algorithm with 
expected running time O(c3(n)n~). The claim now follows from Theorem 1.1. [] 

Corollary 7.3. Motion planning for a polyhedron translatin9 amidst polyhedral 
obstacles in 3-space, as formulated above, can be performed in randomized expected 
time O((kn)2+a), for any 6 > O. 

Remarks. (1) A simplar algorithm would follow for the case of n simplices in 
d-dimensional space, with an expected running time close to O(n d- 1), provided a 
generalization of the Slicing Theorem of [AS] to higher dimension can be 
obtained; see the discussion following the proof of the Chopping Theorem, and 
the technical details of the algorithm of [AS]. There is no such generalization 
known at present. 

(2) The algorithm in [AS] is based on random sampling. It would be interesting 
to obtain an efficient randomized algorithm which would add the triangles (or 
simplices) one by one in random order and maintain and update the cell containing 
the marking point p as it goes. Even more challenging is the problem of designing 
an efficient and simple deterministic algorithm for this problem. 

We next consider possible extensions of our result and related open problems. 
The first open problem is to tighten the remaining small gap between our upper 
bound of O(n d- 1 log n) for cd(n), and the lower bound of f~(n d- l~(n)) established 
in I-PSI. We conjecture, as in previous papers, that cd(n) = | d- l~(n)). A greater 
challenge is to settle the analogous conjecture for the total excess e~kd~(n) in 
arrangements of simplices, which is open even in the plane. Another open problem 
is to obtain sharp upper bounds for the total complexity of m distinct cells in such 
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an arrangement, extending the notion of complexity to include faces of all 
dimensions bounding those cells. 

Throughout this paper we have assumed that the input simplices are in general 
position. As we have already remarked, this assumption does not affect the 
asymptotic upper bounds on the number of faces bounding a single cell, or multiple 
cells, in an arrangement of simplices, as this complexity is maximized when the 
simplices are in general position. Other combinatorial quantities that were con- 
sidered in this paper are much more sensitive to degeneracies. For example, the 
definition of a popular vertex has to be changed to account for the possibility of 
having more than 2 ~ "sides." Should all of these sides be required to lie in a given 
cell if a vertex is to be considered popular? Besides notational problems that would 
arise if degenerate configurations are allowed, there will be significant difficulties 
in carrying out some of the inductive proofs which crucially depend on the fact 
that a k-flap is contained in exactly d - k simplices. In fact, some of the bounds 
derived in this paper are blatantly false in degenerate configurations, notably 
Theorem 4.3, which counts semipopular triples: Consider the arrangement in 
which all n simplices pass through a single vertex v and are otherwise in general 
position. The number of "sides" of v will be O(n ~-1) and the number of 
semipopular triples O(n 2d- 2), which is much larger than the upper bound claimed 
by the theorem. In fact, we pose the following challenging open question: What 
are the appropriate generalizations of the combinatorial complexity measures 
introduced in this paper so that the bounds proven for arrangements in general 
position continue to hold when this assumption is removed? 

Finally, a natural generalization of the problem studied above is to bound the 
complexity of a single cell in an arrangement of n surfaces or surface patches, 
assuming the surfaces are all algebraic of low degree and that their boundaries 
are algebraic curves or surfaces of low degree as well. It is conjectured that the 
complexity of such a cell is close to O(n d- 1), perhaps off by a factor that depends 
on the inverse Ackermann function ct(n). This problem, even in the special case 
d = 3, appears to be substantially more difficult than the case of triangles. Even 
the problem of bounding the complexity of the lower envelope of such surface 
patches in three dimensions appears to be very difficult, and near-quadratic bounds 
are known only in a few special cases (including that of triangles); see [PS] and 
[SS2]. Solving this problem would yield improved bounds on the general motion- 
planning problem with nonlinear constraints, similar to what has been noted 
above. We mention a recent result of Halperin [H1], which obtains a near- 
quadratic bound for single cell complexity in three-dimensional arrangements of 
surfaces that arise in certain motion-planning problems with three degrees of 
freedom. These results are further extended in I-H2], and some of these extensions 
apply the techniques developed in this paper. 
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