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Abstract. The hexagonal circle-packing rigidity constants s. are known to satisfy 
s .  = O(1/n). In this paper it is shown that 

3 2 1  2 2  lira ns. = 2 3x/~F (~)/3F (~) = 4.45165 . . . .  
n~c~ 

Introduction 

The hexagonal circle-packing rigidity constants s, were defined in [RS] as follows. 
Consider all circle packings in the plane which have the combinatorics of n 
generations of the regular hexagonal circle packing. Given such a configuration, 
choose any circle y of generation 1 and let p be the ratio of its radius to the radius 
of the circle of generation 0. The supremum of 11 - P l over all possible choices 
for y and all such n generation hexagonal circle-packing configurations is denoted 
by s.. 

The sequence s. contains valuable information. The convergence s. --, 0 is a key 
ingredient for establishing the relationship between circle packings and r 
mappings--that the correspondence between two circle packings with the same 
combinatorics is close to conformal if the radii are small [RS]. The convergence 
sn - ,  0 also answers purely geometric open questions about circle packings [BFP]. 

The order of convergence s . - ,  0 was found in [HI where it is shown that 
s.  = O(1/n) (see also [Ahl]  and [Ah2]). One consequence of this estimate is that 
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in the convergence of circle packings to conformal mappings, the ratio of the radii 
of corresponding circles converges to the modulus of the derivative of the limiting 
conformal map. This estimate also gives information on the rate of convergence 
of circle packings to conformal mappings [HI, [R], [DHR]. 

In this paper we show that 

lim ns. = 27~/~r2(l)/3r'(~) = 4.45165 . . . .  
/ I - 4 0 0  

The outline of the proof is as follows. Let P be a regular hexagon centered at the 
origin and having sides of unit length. Let H.  be the regular hexagonal circle 
packing of P by circles of radius 1/2n. A circle packing Hi which is combinatorially 
equivalent to H.  and which has its generation 0 circle normalized to be 
{Iwl = 1/2n} is viewed as the image of H .  under a mapping g.. We show that {g.} 
is a normal family and that each limit function ~p is a normalized conformal 
mapping of P. The limit of ns. is shown to be the supremum of I r for all such 
limit functions ~p. Explicit circle packings H'~ are constructed so that the corre- 
sponding limit function ~p is the Koebe function but with domain transferred 
conformally from the unit disk to P. The classical Bieberbach inequality is 
then used to show that this limit function yields the desired supremum 
q~"(O) = 4/R = 4.45165 . . . .  where R is the conformal radius of P. 

Preliminary Results 

Throughout this paper H.  § 1 (with n > 2) denotes n + 1 generations of the regular 
hexagonal circle packing in the complex plane C, normalized so that the circles 
have radii 1/2n, the generation 0 circle is centered at 0 e C, and 1/2n e C is the 
point of tangency between the generation 0 circle and a circle of generation 1. 
Note that 1 e C is the center of a circle of generation n. 

Similarly, Hi+ 1 denotes any circle-packing configuration which is combinatori- 
ally equivalent to H.  + 1 and which is normalized so that 

(a) the generation 0 circle has radius 1/2n, 
(b) the generation 0 circle is centered at 0 e C, and" 
(c) the point 1/2n e C is a point of tangency between the generation 0 circle 

and one of the generation 1 circles. 

The circles of H'. § 1 will not, in general, have equal radii, and we explicitly allow 
the case that a circle (=  disk) of generation n + 1 is a half-plane. 

Given H.+ 1 and an Hi+ 1 configuration, let P.  (resp. Pi) be the polygon whose 
boundary consists of line segments joining the centers of pairs of tangent circles 
of generation n in H.+~ (resp. in the Hi+t  configuration). Note that P = P.  is a 
regular hexagon of side length one. 

We make use of several results from [DHR].  For  convenience we restate them 
in Lemma A below in the form in which they will be needed. Parts (i)--(iii) are 
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from Lemmas  1.2 and 1.3, par t  (iv) is f rom L e m m a  1.4 of  [ D H R ] ,  and par t  (v) is 
f rom L e m m a  1.8 of [ D H R ] .  In [ D H R ]  the possibility that  a circle in H'.§ of 
generation n + 1 is a half-plane was not  explicitly considered. However,  the more  
general si tuation is merely a limiting case and so the results of [ D H R ]  apply. 

Lemma A. Given H.+ 1 and an H'.+ I configuration, there is a K-quasi-conformal 
homeomorphism g.: P ~ P'. with the following properties: 

(i) g.(O) = O, K is independent of  n, and the subset o f  P where g. fails to be 
conformal has area < C/n for  some absolute constant C, 

(ii) g. maps circles o f  generation < n - 1 onto corresponding circles o f  the H'.+ 1 
configuration, and arcs o f  circles o f  generation n onto the corresponding arcs 
in H'.+ 1. 

(iii) I f  ~ is the closed region bounded by three mutually tangent circles o f  
generation < n - 1 in H.+ 1 (i.e., an interstice), then the restriction of  g. to 

is a Mfbius  transformation which is uniquely determined by the three 
tangency points on the boundary and their corresponding tanoency points in 
the H'.+ 1 configuration. 

(iv) There is a constant C such that, for  all n >_ 2 and all z with [z] < 1/2n, 

19.(z) - zl < C/n 2. 

(v) There are constants C and 6 > 0 such that if M is the restriction of  g. to 
one o f  the six interstices adjacent to the center circle of  H .  + 1, then, for all 
n > 2 and all z with [zl <_ 6, 

Ig.(z) - M(z)l _ Clzl 3 + C/n z. 

The hexagonal  packing constants  s. are related to the derivative of the M/bbius 
t ransformat ion M defined in L e m m a  A(v). M maps  the generat ion 0 circle of H .§  1 
onto the generat ion 0 circle of the H'.+ 1 configuration. It  also maps  the six 
generation 1 circles of H . +  1 onto six circles tangent to the generation 0 circle in 
the H'.+ t configurat ion (two of these six circles will coincide with generation 1 
circles in the H~+ 1 configuration). Consider  the radii r of  the largest and smallest 
images under  M of the six generation 1 circles of H .  § 1- Then 

s. < sup{l l  - 2nr]}, (1) 

where the sup remum is taken over  all choices of  M for all H'. + 1 configurations. 
These extremal  radii r under M can be estimated in terms of IM(0)I. The  

calculation is simplified if we consider the conjugate t ransformat ion T ( w ) =  
2nM(w/2n) which leaves I wl -< 1 invariant.  If  M has the form 

M(z) = e~'(z - fl)/(4n2~z - 1), (2) 
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then T has the form 

T(w) = el'(w -- ot)/(5w -- 1) 
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(~=2nfl).  (3) 

We may assume [~1 < ~- Set 71 = {lwl = 1}, 72 - {Iwl = 3}, and y~ = T(y2). Then 
T(71) = 71. The largest and smallest circles which are mutually tangent to 71 and 
y[ have radii (1 -I~1)/1 + 31~1) and (1 + I~l)/1 - 31~1). Thus 

I1 - 2nrl < 41=1 + [terms of higher order inl•l]. (3.1) 

By (v) of Lemma A, we have I~ffl = O(1/n2). Therefore 

I~1 = O(1/n) (4) 

and we obtain 

s. < sup{4l~l} + O(1/n2). (5) 

Note that the result of [H],  that s. = O(1/n), is a consequence of (4) and (5). 
From (2) and (3) we obtain 

IM'(0)[ --- 1 -I~12, IM"(0)I = 4nl~l(1 - I~la). (6) 

Formulas (5) and (6) give ns. < sup{lM'(0)l } + O(1/n). 

Lemma B. The hexagonal packing constants s~ satisfy 

ns, < sup{IM"(0)l} + O(1/n), 

where the supremum is taken over all MSbius transformations M corresponding to 
generation 1 interstices of  H'. + 1 configurations. 

Let us denote the interstice of H.+I  which has vertices {1/2n, ei~/3/2n, 
(1 + ei~/3)/2n)} by t'l.+ ~, and the generation 1 circle of H'+ t which passes through 
1/2n by c~+ 1. Suppose we have a sequence M. of Miibius transformations such 
as M above, and such that M. corresponds to the generation 1 interstice L'I. + 1. 
Assume further that M'(0)--. 1 and M"(0 )~  C > 0. It then follows that n:e. = 
(C/4) + o(1) and so arg ~. --. 0. In this case the argument which established (3.1) 
can be sharpened by observing that 71 and 7~ are furthest apart in the direction 
of ~, and therefore 

ni l  - 2 n  radius(c'+ 1)t = C + O(1/n). 

This proves 
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L e m m a  C. I f  the Mfbius  transformation M.  corresponds to the generation 1 
interstice ~ .  + 1 of H.  + 1 and if M'.(O) ~ 1 and M'~(O) --, C > O, then 

ns, > C + O(1/n). 

Schlict Functions 

Let {y,: n > 2} be a sequence of the quasi-conformal  mappings  in L e m m a  A, and 
let M ,  be a M6bius  t ransformat ion  which is the restriction of g. to a generation 
1 interstice. 

We first show that  the mappings  On are equicontinuous on the unit hexagon 
P. It  is clear that  they are equicontinuous on the punctured unit hexagon P - {0} 
since they omi t  0 and ~ [LV, Theorem II.5.1]. To  show that  they are equicontin- 
uous at 0 we use the fact that  s, = O(1/n). Two adjacent circles of generat ion _< m 
in H'.+ 1 have radii whose ratio is < 1 + sk where k = n - m. Since the generation 
0 circle of  H'.+ 1 has radius 1/2n, every point w in a circle of generation < m in 
H'.+ satisfies 1 

Iwl ~ (1/2nX1 + (1 + sk) + " "  + (1 + Sk)" ) 

= ((1 + Sk) "+1 -- 1)~2riSk 

< O(k/nXexp(O((m + 1)/k)) - 1). 

Thus if Iz] < d < �89 then 10.(z)l can be est imated from above  by the modulus  of  
points w in circles of H'.+ 1 of  generation < m = [2dn]. In the above inequality for 
Iwl. (m + l)/k < 2d/(1 - d) and kin < 1; thus 10.(z)l --, 0 uniformly in n as d ---, 0. 

By the equicontinuity,  any  subsequence of g. contains a subsequence which 
converges uniformly on compac ta  of P. By (i) of L e m m a  A, the limit mapp ing  is 
conformal  or  else constant.  Let {g.,} be a convergent  subsequence and denote the 
limit mapp ing  by ~0. Clearly, ~0(0) = 0. We find that  I~o'(0) 1 -- 1 (see L e m m a  C) and 
therefore q7 is nonconstant .  

F r o m  (2) and the fact that  IPl = O(1/n2), it follows that  the second and third 
derivatives of  M., are uniformly bounded  in a ne ighborhood  of the origin. Thus 
there are constants  C, 6 > 0 such that, for all I zJ < 6, 

[M.,(z) - [M.,(0) + M'~,(0)z + (M~,(O)/2)z2]] < C [z 13. (7) 

Combine inequality (7) with par t  (v) of L e m m a  A, use the fact that  ]ill = [M.(0)[ = 
O(1/n 2) f rom (4), and obtain 

I g.,(z) - [M'.,(0)z + (M",(O)/2)z2]l 

< Ig.,(z) - M.,(z)l + IM.,(z) - [M. , (0)  + M'.,(0)z + (M~,(O)/2)z2][ + IM~,(0)I 

< Clzl 3 + C/n 2 + Clzl 3 + O(1/n 2) 

< Clzl 3 + C/n 2. (8) 
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We also have Itp(z) - [tp'(0)z + (~0"(0)/2)z2] I < Clzl 3 for Izl < ~. Together  with (8) 
this gives 

I[g,,(z) - tp(z)] + [tp'(0) - M~,,(0)]z + [tp"(0) - M'~,(O)]z:/21 < CIz[ 3 + C/n 2. (9) 

If we fix 0 < Izl < ~ and let n~ ~ m we conclude from (9) that M',,(0) converges to 
tp'(0) and M:,(0) converges to tp"(0). (This result is closely related to the convergence 
of the first and second derivatives of  circle-packing approximat ions  to the Riemann 
mapping [DHR-I. We do not  appeal directly to that  result for the present case, 
however, since the contexts differ s l ightly--mappings from a variable bounded 
region to the disk in one case, and mappings from a fixed hexagon to variable 
regions which are not  necessarily bounded in the other case). By (6), I M',,(O)I 
converges to 1. Therefore I~p'(0)l = 1 and we have 

Lemma D. Let {g.:n >_ 2} be a sequence of  the mappings in Lemma A. 
Any subsequence contains a subsequence {g.,} which converges uniformly on 
compacta of  P to a conformal mapping (p which satisfies qg(0) = 0, 1~o'(0)1 = 1, and 
tp"(0) = lim M~,(0). 

Let h be the conformal  mapping of the unit disk D onto  P with h(0) = 0 and 
h'(0) > 0; the quanti ty R - h'(O) is called the conformal radius of P. The value of 
R is (see p. 196 of [N-] or p. 411 of [He])  

R = 3 3v/4r(~)/r2(~) = 0.89854 . . . .  (10) 

If tp is a conformal mapping of P satisfying tp(0)= 0, I cp'(0)l : 1, then 
f (z)  = tp(h(z))/(Rtp'(O)) = z + az z2 + ... is a normalized schlict function on D. 
Bieberbach's inequality l a21 < 2 holds with equality only for rotations of  the 
Koebe  function (e.g., Theorem 1.5 of [P]). 

Since h: D ~ P is an odd function, h"(O) = 0. Hence f"(0)  = Rq~"(O)fip'(O). The 
Bieberbach inequality yields 

[tp"(0)l < 4/R. (11) 

Apply Lemma D to subsequences where [M;~,(0)I has moctulus approaching its 
supremum. Lemma B and inequality (11) then imply 

Lemma E. lim sup{nsn} < 4/R. 

In the next section we prove the following lemma by constructing circle-packing 
approximat ions  to the Koebe  function. 

Lemma F. For each n > 2 there is an H'.+ I configuration (to be denoted K'n+ l) 
such that the maps {gn} (to be denoted k~) associated to these configurations by 
Lemma A converge uniformly on compact subsets to the conformal mapping cp (to 
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be denoted k) of the unit hexagon P onto the complex plane minus the slit 
{ -  go <_ x < -R /4}  with q~(0) = 0, q~'(0) = 1, and tp"(0) = 4/R. 

If we apply Lemmas C and D to the configurations K'.+ 1 of Lemma F we 
conclude that lim inf{ns.} > 4/R. We therefore have 

Theorem. The hexagonal packing constants {s.} satisfy 

lim ns. = 4/R = 2,~/2Fz(~)/3F(~). 

The Koebe  P a c k i n g s  

For the proof of Lemma F we construct a family of circle packings which are 
discrete analogs of the Koebe function. Let HL. consist of those points of the 
hexagonal lattice 

{(a/n) + (b/n)ei"/3: a, b e 7/} 

which are contained in the closed unit hexagon P. HL. determines a triangulation 
of P by equilateral triangles. The vertices of the triangulation are the lattice points 
of HL.. We modify this triangulation to obtain a decomposition of the entire 
2-sphere. 

For each vertex v on the boundary of HL, other than the two vertices at _+ 1 e C, 
add an edge joining v to its complex conjugate ~. The resulting complex yields a 
decomposition of the 2-sphere into triangles and quadrilaterals (Fig. 1). By the 
theorem of Koebe-Andreev-Thurston (for a statement see Andreev's theorem in 
[RS]; we have since learned of the earlier proof in I-K]) there are circle packings 
of the 2-sphere with combinatorics determined by this decomposition. We wish 
to single out those circle packings which respect the symmetry v - ,  ~ of HL.. To 
that end we add a vertex to the interior of each quadrilateral, connect it to all 
four vertices of the quadrilateral, and thereby obtain a triangulation of the 
2-sphere. The circle packings which realize this triangulation are related to each 
other by M6bius transformations. We ignore the circles that correspond to the 
added vertices and call the resulting circle packings allowable. Figure 2 shows an 
allowable realization for n = 2 (the circle of generation is labeled 0; the six circles 
of generation 1 are labeled 1.1, 1.2, . . . ,  1.6; the remaining twelve circles of 
generation 2 are labeled 2.1, 2.2 . . . . .  2.12). 

For a fixed n, the allowable circle-packing realizations are related to each other 
by linear fractional transformations. We now select a particular realization as 
follows. We require that the circle (disk) that corresponds to the vertex of HL. at 
1 e C should be a right half-plane, the circle that corresponds to the vertex of HL. 
at - 1  e C should have its diameter on the real axis with left-hand endpoint at 
- �88 and the circle which corresponds to the vertex of H.  at 0 should be centered 
at the origin (we show later that its diameter is O(1/n)). This particular allowable 
circle packing is denoted of'.. Figures 3(a)-(c) show )~r 2 at various scales. 
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Fig. 1. The decomposition for n = 2. 
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2.9 - 2.1o 
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Fig. 2. Allowable realizations for n = 2. 
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2.2 

2.2 

1.1 2.1 1.1 

(a) (b) 

1.2 

2.4 i 1.3 

2.10 1 1.5 

1.6 

(c) 

Fig. 3. 3r at various scales. 
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:r 1 fails to be an H'.+ 1 circle-packing configuration only because the radius 
r. of the generation 0 circle may be unequal to 1/2n. Let K~,+I be the image of 
~ §  under the mapping z ~ z/2nr.. Then K'.+I is an H~,§ configuration and 
Lemma A applies. The mapping denoted generically by 0, in Lemma A(i) will, for 
this configuration K'.+ 1, be denoted k.. We wish to show that k, converges to a 
conformal mapping k of P onto the region W = C - { - oo < z < - R/4}. 

We work with ~ + 1 rather than K'. + 1- Let .~, be the polygon formed by joining 
the centers of the generation n circles of o~.+ 1. Let gn: P ~ - ~ .  be the mapping 
,(.(z) = 2nr.k.(z). We show that .~. converges to the Koebe region ~/C = 
C -  { z : - ~  < z < -�88 in the sense of Carath6odory domain convergence; 
namely, given ~r ~ c ~r we have ~F 0 ~ .~. ~ ~1C for all sufficiently large n. It will 
then follow that ~. must converge to a conformal map ~r of P onto ~ .  

The following lemma is a spherical metric version of the Length-Area Lemma 
of I-RS]. A sequence of circles 71, 72 . . . .  ,7p from ~e'.+ 1 is called a cross-cut chain 
if 71 and 7p are of generation n + 1 and each circle other than the first is tangent 
to the preceding one. 

Lemma G. Suppose there are disjoint cross-cut chains o f  circles from o,~f,+l o f  
combinatorial length ml, m2, m3 . . . . .  m k which together with the ray [ - 0 0 ,  -- R/4] 
separate a circle 7 from 0 ~ C. Then the spherical metric radius p of 7 satisfies 
p <_ C(m~ 1 + m f  1 + m31 + ...  + m f  1)-1/2 for  an absolute constant C. 

Proof. Let the j th cross-cut chain consist of circles whose radii in the spherical 
metric are Psi, 1 < i < m s. Then, by the Schwarz inequality, 

Psi -<%Y~Ps~. 
i 

Let s s = 2 ~ i  rji be the spherical length of the j th chain. We obtain 

2 - 1  2 s~ m~ <_ 4 ~ Pji, 
i 

~ s~m] -1 < 4 E P~i. 
j ji 

In the spherical metric with curvature 1, the area a and radius r of a circle are 
related by a = 2rr(1 - cos r); therefore nr z < Cla for an absolute constant C r  In 
the last term above we have ~ p j2 < 1/n(47rC1) and so 

~, s ]mi  i <_ 16CI. 
J 

Thus s = min{sl, s2 , . . . ,  Sk} satisfies 

s 2 _< 16C1(mi -1 + m~ 1 + m31 + - . .  + ink1) -1. 



The Asymptotic Value of the Circle-Packing Rigidity Constants sn 115 

We can find a Jordan curve of length < 2s which separates the circle y from the 
origin and which meets [ -  oo, - R / 4 ] .  If s is sufficiently small, then y must  have 
a diameter less than s. This proves Lemma G. []  

A circle of generation n or n + 1 in H,  + 1 can be separated from the generation 
0 circle by disjoint cross-cut chains of combinator ial  lengths not  exceeding 7, 
10 . . . . .  3n + 1. Therefore Lemma G allows us to conclude that each circle ~ of 
generation n or n + 1 in Jd, + 1 has a spherical metric radius 

p < C(7-1 + 10 - l  + . . .  + (3n + 1)-1)-1/2 ~ 0. 

Therefore, -~n converges to W" in the sense of Carath6odory. Therefore ~r converges 
to a conformal map ~r of P onto ~r = C - {z: - ~ < z < -�88 with ~r = 0. 

Recall from (6) that the conformal map h: D ~ P has h(0) = 0 and h'(0) = R. 
Since ,~ o h is the Koebe function with derivative 1 at 0~  C we must  have 
~'(0) = 1 /R .  Since ,('(0) = lim ,('~(0) = lim 2nr~, we conclude that k = lim k~ has 
k'(0) = 1 and maps P onto  W =- C - { - oo < z < - R / 4 } .  Since (,( o h)"(0) = 4, 
k"(O) = 4 / R .  This completes the proof of Lemma F. []  
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