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Abstract. Suppose that P is a (not necessarily convex) polytope in I~ n that can fill 
~n with congruent copies of itself. Then, except for its volume, all its classical 
Dehn invariants for Euclidean scissors congruence must be zero. In particular, in 
dimensions up to 4, any such P is Euclidean scissors congruent to an n-cube. An 
analogous result holds in all dimensions for translation scissors congruence. 

1. Introduction 

The problem of characterizing polyhedra that can fill E3 with congruent copies is 
complicated even for the simplest case of tetrahedra. In 1896 a tetrahedral space 
filler was found by Hill [17]. In 1923 Sommerville [32], [33] listed four space-filling 
tetrahedra, and claimed this was the complete set. This was later shown wrong by 
the discovery of other space-filling tetrahedra, including three infinite families found 
in 1974 by Goldberg [11]. The set of all tetrahedral space fillers is, to our knowledge, 
still not completely classified. 

In 1900 Hilbert [16] in his eighteenth problem raised the question: "Whether  
polyhedra also exist which do not appear as fundamental regions of groups of 
motions, by means of which nevertheless by a suitable juxtaposition of congruent 
copies a complete filling up of all space is possible." This question was answered in 
1928 by Reinhardt [28], who found a nonconvex space-filling polyhedron in ~3 that is 
not a fundamental domain of any discrete subgroup of Euclidean motions. In 1935 
Heesch found a nonconvex polygon that tiles ~2 and is not a fundamental domain, 
and later Kershner [23] found a convex polygon that tiles R 2 but is not a fundamen- 
tal domain. These and more recent results are surveyed in Milnor [27] and in Bezdek 
and Kuperberg [2]. 
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More generally, there are polyhedra that can fill ~3 with congruent copies but  
only via complicated tilings. In 1988 Schmitt [30] found a polyhedron P that can tile 
•3 with uncountably many different face-to-face tilings, for which all face-to-face 
tilings are aperiodic. Conway and Danzer  then found an infinite family of eight-sided 
convex polyhedra (biprisms) having this property,  see [5]. According to Danzer,  the 
method of [5] extends to prove that biprisms exist for which all tilings of ~3 are 
aperiodic. 

This paper  gives a necessary condition for a polyhedron (three-dimensional  
polytope) to be space filling; more generally we give a necessary condition for a 
polytope in ~n to be space filling. This necessary condition arises in connection with 
Hilbert 's  third problem. Call polyhedra P and Q Euclidean scissors congruent if P 
can be cut up into a finite number  of pieces by plane cuts and the pieces 
reassembled (using Euclidean motions) to make the polyhedron Q. Hilbert 's  third 
problem asked if all three-dimensional  polyhedra of the same volume are Euclidean 
scissors congruent. 1 It was immediately solved in the negative by Dehn [6], [7], who 
showed among other  results that a regular te t rahedron is not Euclidean scissors 
congruent to a cube. Dehn actually derived invariants which gave necessary condi- 
tions for two (sets of) polytopes to be Euclidean scissors congruent in ~n. 

We show that a necessary condit ion for a space-filling polyhedron is: 

Theorem 1. Any (convex or nonconvex) polyhedron P that can fill ~3 with congruent 

copies is Euclidean scissors congruent to a cube. 

In this result the space-filling tiling of ~3 by copies of the polyhedron P need not 
be face-to-face. We remark that in 1943 Sydler [35] showed that a necessary and 
sufficient condition for a polyhedron P in ~3 to be scissors congruent to a cube is 
that P be scissors congruent to a finite set of smaller polyhedra all similar to itself. 
Later  Sydler [36] and Goldberg  [9], [10] studied te t rahedra  that are scissors congru- 
ent to a cube. 

The proof  of Theorem 1 is given in Section 2. It uses a result of Sydler [37] giving 
necessary and sufficient conditions for Euclidean scissors congruence in E3, which 
are equality of volumes and of a single codimension 2 Dehn invariant A(p )  defined 
in Section 2. All  cubes Q have A(Q) = 0, and the point of the proof  is to show that 
A ( p )  = 0. 

The basic argument  of Section 2 generalizes to a higher-dimensional result 
concerning the vanishing of various Dehn invariants in R n. Dehn's  invariants for 

1 The definition of scissors congruence given here is called equidecomposability. Hilbert allowed 
sets of polyhedra and actually asked for equicomplementability, also called stable scissors congruence, 
which asserts that a finite set of auxiliary polyhedra L 1 , . . . ,  L k exist such that P, L1, . . . ,  L k can be 
separately cut up and reassembled to make Q, L 1 . . . . .  L k . The concepts of equicomplementability 
and equidecomposability were shown to be equivalent for Euclidean motions in R 2 by Hilbert [15], 
for Euclidean motions in R n by Hadwiger [12], and for other groups by Zylev [40]. Hilbert asked 
specifically if two regular tetrahedra are stably scissors congruent to a regular tetrahedron of twice 
the volume, and Dehn showed they were not. 
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polytopes in E" were originally defined in terms of solvability in integers of certain 
homogeneous linear equations with coefficients involving metric quantities attached 
to P. They have since been recast in various more abstract forms, either as additive 
functionals on an algebra of all polytopes with Minkowski sum as an operation, or in 
a dual form as elements of certain tensor product spaces, see [20], [3], and [29]. Dehn 
invariants give necessary conditions, while Hadwiger [13, Satz 8, p. 58] has shown 
that a necessary and sufficient condition for scissors congruence in En is the 
equivalence of all "Jessen-content functionals," which are a generalization of Dehn 
invariants. However, a complete set of such functionals is not explicitly known in 
dimensions n > 5. We prove a result for the classical total Euclidean Dehn invariant 
of Sah [29], which essentially encodes a set of Dehn invariants A , j (p)  with 
1 _< j <_ n. (An exact definition appears in Section 3.) For polytopes P in En, 
An,,_j(P) = 0 whenever j is odd or j = n, so there are [(n + 1)/2] such invariants 
that are nontrivial. We also note that A~ ,n (P)=  vol , (P)  and that A3,1(P) essen- 
tially coincides with A(p) above, as explained in Section 3. 

Theorem 2. Any (convex or nonconvex) polytope that can fill ~n with congruent 
copies of  itself has An,j(P) = 0 for 1 < j < n - 1. 

Theorem 2 logically includes Theorem 1 but we give a separate proof since it 
requires more machinery. 

Jessen [20] showed that in ~4 equality of volume m4, 4 and of the Dehn invariant 
A4, 2 is also a sufficient condition for Euclidean scissors congruence, 2 so we obtain: 

Corollary 2a. Any (convex or nonconvex) polytope P that can fill ~4 with congruent 
copies of  itself is Euclidean scissors congruent to a 4-cube. 

It remains an open question whether equality of total Dehn invariants is a 
sufficient condition for Euclidean scissors congruence in [~n for n > 5. Regardless 
of whether this is so, we expect that the analogue of Theorem 1 is valid in all 
dimensions. 

In Section 4 we give some generalizations. We show that analogous theorems 
hold for translation scissors congruence. We also show that information on Dehn 
invariants can be obtained for finite sets of  polytopes that give tilings of R n, which 
may potentially be useful as a method of  proving nonperiodicity of tilings by certain 
tile sets. 

2. Dehn Invariants for Polytopes that Tile R 3 

In this section we follow the framework of Jessen [19] for Dehn invariants in ~3. 

Proof o f  Theorem 1. The Dehn-Sydler  theorem [19, Theorem 2] states that two 

2 See also Theorem 29 of [3]. 
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polyhedra P and Q in ~3 are scissors-congruent if and only if Vol(P)  = Vol(Q) and 
A(p)  = A(Q), where A(p) ~ R ~ (~/7r7/) is a Dehn invariant defined by 

A ( p )  = Y'~ l(e) | ct(e), (2.1) 
e edge of P 

where l(e) is the length of e and a(e) is the dihedral angle measured between the 
two faces of  P incident on the edge e. The space ~ ~ (~/~rY) has the structure of 
a vector space over ~ (obtained using its first factor) of uncountably many dimen- 
sions. The invariant A(p) is additive, i.e., 

A(PI + P2) = A(PI) + A(P2). (2.2) 

It is preserved under Euclidean motions, and vanishes on cubes (more generally on 
prisms). 

The idea of  the proof is simple. Suppose that P tiles [~3 using Euclidean motions. 
Consider the set of copies of P in this tiling which intersect the open ball B(r) of 
radius r around 0 in 1~3: together they form a (possibly nonconvex) polytope Q~ that 
contains the ball B(r). We compute the invariant A(Q~) in two ways. One way uses 
the additivity property (2.2) and gives 

A(Qr) = nrA(P), (2.3) 

where n r is the number of copies of P in Qr. As r --, ~ the quantity nr grows 
proportionally to the volume of  B(r), i.e., it grows like ~~(r3).  The other way uses 
formula (2.1), which is computed using the boundary of  Qr. From it we can show 
that A(Qr) grows at most proportionally to the surface area of B(r), i.e., it grows like 
O(r2). We get a contradiction for large r unless A(p)  = 0. 

To make this argument rigorous requires some extra details bounding the size of 
A(p)  computed using (2.1), because the tensor product construction introduces 
relations over Q. A key observation is that the set of dihedral angles that can occur 
in any Qr is drawn from a fixed finite set 5z'(P), independent of r. This occurs 
because any such dihedral angle comes from juxtaposed copies of P, so must be a 
sum of dihedral angles of P, possibly together with 7r, that adds up to less than 27r. 
(The term 7r occurs because the tiling need not be face-to-face, so that an edge of 
one copy of P may cross a face of another copy of P.) Consequently the terms 
in (2.1) for A(Qr) all lie in a fixed finite-dimensional ~-subspace V(P) of ~ 
(R/TrY) generated by {1 | a :  a ~5~(P)}. Now choose a subset S : + ( P )  such that 
{1 | a :  a ~ S#+(P)} is an E-basis of  V(P); thus for each angle c~ i ~ S'~(P) - S : + ( P )  
there is a unique expression 

1 | ot i :=  ~ Cij(1 | %). ( 2 . 4 )  
%~+(P) 

(We are removing all the Q-linear dependencies among the elements of 5e(P)  when 
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we do this.) Given an arbitrary element X of V(P), with 

x : =  ~ t o ( l ~ ) ,  
ae,~+(P) 

define its length IlSll by 

IlXll 2 = E t~, 
aE~+(P) 

Now formula (2.2) gives 

IlA(Or)ll = nrllA(P)ll >- 

whence 

V o l ( B ( r ) )  
IIA(P)II, 

V o l ( P )  

577 

IIm(Qr)ll > Cor31IA(P)[I as r ~ ~,  (2.5) 

is a positive constant depending on P. Next, using the expression for where C O 
A(Qr) based on (2.1), since each a(e) ~ ~ (R)  we have 

IIA(Qr)II = ~ l(e) | or(e) 
e edge of Qr 

< C 1 ~ [l(e)[, (2.6) 
e edge of Qr 

where C I := max i I[1 | ai][ = max, r  c2., where the cij are as in (2.4). Now the 

edges of Qr all arise from parts of edges of copies of P that lie on the boundary of 
Qr, and all these copies touch the sphere of radius r around 0, so that all copies lie 
inside the concentric region 

l'~r := B(r + d p )  - B(r - d p ) ,  

where dp is the diameter  of P. Since V o l ( ~ )  _< C2r 2 as r ~ % there are at most  
C2(Vol(P))-~r 2 such copies of P,  so their  total edge-length is therefore < C3r 2. 
Thus (2.6) gives 

IIA(Qr)II < C1C3 r2 as r ~ ~.  

Comparing this with (2.5) gives a contradiction unless IIA(P)II = 0, whence A(p)  = 0 
as required. [ ]  

3. Dehn Invariants for Polytopes that Tile R n 

The basic argument of Section 2 carries over to Dehn invariants in ~".  Fo r  this we 
use the framework of Sah [29]. 

We  first define the classical total Euclidean Dehn invariant. Let vol n denote 
n-dimensional volume in Euclidean space. Let  ~ E  be the abelian group generated 
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by all polytopes in Euclidean space (of any dimension), with relations P = Q if P 
and Q are congruent  and P = Q + R if P can be dissected into Q and R For  
n > 0, we take the n-sphere, S n, to be the set of all rays from the origin in En§ 1. We 
also allow n = - 1, where we define S -  1 to be {0}. For  n > 0, we can define convex 
polytopes in spherical space S n by taking the convex hull of  a finite set of rays in 
~n+l ,  and obtain other  polytopes by gluing together  convex polytopes. The only 
polytope in S -1 is {0}. We assign volumes 3 to n-dimensional  polytopes in S n by 
taking the volumes of their intersection with the ball  around the origin in ~n § 1 with 
volume 2 n+ 1; the volume of {0} is 1. Let ~ S  be defined analogously to ~ E  but with 
all polytopes in S ~, for some n. For  spherical polytopes Q and R, we define the 
product  Q * R by letting it be the Minkowski sum Q + R' ,  where R '  is a spherical 
polytope congruent to R and such that every ray in R '  is orthogonal to every ray in 
Q. This extends to make ~ S  a ring. The polytope {0} becomes the multiplicative 
identity in this ring. Let ~ S  be the ideal in ~ S  generated by a ray p, and let ~m S 
be the mth  power of this ideal (for m ~ Z _> 0). Call a union of  polyhedra 19i interior 
disjoint if the interiors of the Pi's are disjoint. 

For  P a Euclidean polytope, x a point in P,  and A ~ R >0, let X/ , ,x (Z)be  the 
union of the rays E _>0(w - x), taken over all w ~ P at distance less than )t from x. 
For  sufficiently small A, Xp, x(A) is independent  of A, and we then call it YP, x; it is a 
spherical polytope of dimension d im(P)  - 1. Let m x be maximal such that Yp, x ~ 
~mxS. We call mx the angle dimension of P at x. Then Yp,~ = p m x *  Z p ,  x for some 
Zp, x ~ S ,  and the image of Ze, x in 9 S / ~ S  is well defined, up to torsion, 
according to Sah [29, Chapter  6, Theorem 3.29]. 

For  an n-simplex P, it is clear that the set of points in P with angle dimension 
d < n is, up to a set of exceptions of dimension less than d, a polytope or union of 
polytopes of dimension d, and that, in fact, we can write this polytope or union of 
polytopes as an interior  disjoint union of polytopes of  dimension d, such that Yp, x is 
constant on all of each of these polytopes, except a Set of dimension less than d. If  
the two preceding facts are true for polytopes Pi, they remain true for the interior 
disjoint union of P/'s. This is a consequence of the fact that if P is the interior 
disjoint union of  P/'s, then Ye x is the interior disjoint union of Yp, It follows that , , X "  

they hold for all polytopes. Similarly, for simplexes P, Yt,.x takes on only a finite 
number  of different values, so this is also true for polytopes. 

Now, for a given polytope P in En, approximate the set of  all x ~ P with angle 
dimension d _ < n by an interior  disjoint union U i=1 nd edi  of polytopes as above, such 
that Ye, x is constant almost everywhere on each polytope. For  each Pd~, pick some 
point xdi , not in the exceptional set, and let Y d i  = ZP, xa," Then we define the 
classical total Euclidean Dehn invariant E ~(  P ) to be 

E ~ ( P )  ~ An,a(P)T a ~ nd I T )  a = := ~., VOld(Pdi)(~ | Ydi E ~ [ T ]  ~ ( 9 S / ~ S ) .  
d=0 d=0 i=1 

(3.1) 

3 We use a ball of volume 2 n+ 1 for consistency with Sah [29, p. 101]. This convention produces 
the factor of 2 appearing in (T/2) a in formula (3.1) below, to match Sah [29, pp. 135, 137]. 
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This is well defined since, as we have already noted, the image of ~'ai in ~ S / ~ S  is 
well defined, up to torsion, and any torsion vanishes when we tensor by the divisible 
abelian group ~[T]. The map Eqb: ~ E  ~ ~[T]  ~ ( ~ S / ~ S )  is then an additive 
homomorphism. 

In this definition, we have A ( p )  = vo l , (P) ,  and A _ j (p )  = 0 whenever j is 
odd or j = n. Furthermore,  A3a(P) agrees with A(p )  in Section 2, under a natural 
isomorphism. 4 Finally we note that an n-cube Q has A j (Q)  = 0 for 0 < j < n - 1. 
(In fact this follows from Theorem 2, since an n-cube certainly tiles R".) 

Proof of  Theorem 2. Let P have dimension n, and fill E n with congruent copies. 
For  r ~ ~ >_ 0 large, let Qr be the polytope that is the union of  all copies of P in our 
tiling that intersect B(r), the open ball of radius r around 0. Let P have diameter  
de .  Evidently B(r)  c_ Qr c B(r + de). Let S r be the polytope consisting of the union 
of all copies of P in Qr that intersect 0Qr. Then S r n B ( r - d  e )=~3 .  Hence 
Sr c_ B(r + dp) - B(r - de), so the volume of Sr is O(r ~- 1). It follows that S r is 
the union of  O(r n- 1) copies of P. Also, since B(r)  c_ Qr, the polytope Qr is the 
union of ~ ( r  ~) congruent copies of P. 

Now if x has angle dimension d _< n - 1 or less in Qr, it must be in dQr and 
thus have angle dimension d or less in St. It must then come from some point of 
some copy of P with angle dimension d or less. (This follows from the additivity of 
Yn, x, as before.) Also, YQ,~ = Ys.,x must be an interior disjoint union of Ye,, 's, 
where each Pi is a copy of P. However, there are only a finite number of possible 
distinct Yp,~'s; hence there is a minimal volume Ye,~ can have, which bounds the 
size of our interior disjoint union. These facts imply that the Ys., ' s  fall into only a 
finite number  of classes in ~ S ,  independent  of r. We can then write the term 
A~,a(Q~) as ~ = ~  ~ | wj, for some j and wj's independent  of r, and some scalar 

Vfs with ~ = ~  ~ = O(r ~- ~), since the total set of points in our O(r ~- ~) copies of 
P with angle dimension d or less must have d-dimensional  volume O(r ~ i). 
However, 
we also know that A~,d(Q ~) has the form lA, where the scalar l = O( r  ~) and 
A := A d (p )  is an element  of ~ ~ ( ~ S / ~ S ) .  We want to prove that A = 0. 
Now ~ ~ ( , ~ S / ~ S )  is an A-vector space; hence if A ~ 0, we can pick an R- 
homomorphism f :  R | ( ~ S / ~ S )  --, ~ such that f (A)  4: 0. Then 

k 
g(a)  = E 5f(1 | w). 

1=1 

The right-hand side is O(r n- l )  and the left-hand side is ~ ( rn ) ,  a contradiction. 
Hence A must be 0. This is the desired result. [ ]  

4 More precisely, we can identify the dimension 1 part of 5~ with R/(~r/2)2 r by taking the 
length of arcs in the dimension 1 piece of ~ S  ~'. We take these lengths in the usual way, so that 
the semicircle has length 7r. Now R ~e R/(Tr/2)2~ -= R ~ R/~'Z, and one isomorphism sends 
a | (b + (~-/2)7/) to a | (b + ~r~_), for all a and b. Under this isomorphism, A3. I(P) agrees with 
A(e). 
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4. Genera l i zat ions  

The idea behind the proofs of Theorems 1 and 2 applies also to scissors congruence 
for some other  subgroups of the group of Euclidean motions. The most well studied 
of  these is translation scissors congruence, which uses the group T,, of all transla- 
tions of R n. A complete set of translation scissors congruence invariants, called 
Hadwiger invariants, is known in all dimensions. 

Theorem 3. A n y  (convex or nonconvex)  polytope P that fills N ~ by translations is 
translation scissors congruent to an n-cube. 

Proof. There is a Hadwiger invariant l~n(v, . . . . .  vjXP) for each ordered sequence 5 
(v 1 . . . . .  vj) of or thonormal  vectors in N n, where 0 < j  < n -  1. The invariant 
f~n(v 1 . . . . .  vj) adds up, with appropr ia te  signs, the volumes of codimension j faces of 
P normal to all of  {v l , . . . ,v j}  which are contained in codimension j - 1 faces of P 
normal  to {v 1 . . . . .  vj_ 1}, which must be contained in codimension j - 2 faces of P 
normal to {v I . . . . .  vj_2}, and so on. See Section 2.6 of [29] for a precise definition. 
Such invariants were originally introduced by Hadwiger,  [13], [14], and were later 
proved complete by Jessen and Thorup [21] and independently by Sah [29, Chapter  
4]. (These invariants are not independent ,  and have nontrivial relations, which were 

determined by Dupont  [8].) 
If we define S n-  1 as in Section 3, we can look at the group fn  generated by the 

(n - 1)-dimensional spherical polytopes in S n-  1, with relations Q = R + T if Q can 
be dissected into R and T, and no congruence relations at all. Define the homomor-  
phism vol ,_  1 : f ,  -4 [R by extending it from voln_ 1 on spherical polytopes in S n. For  
each unit vector v in IR n, let U be the subspace of 1~ normal to v. We then view 
S " - z  as the rays in U. For  convex polytopes Q ~ fin, we define ~bv(Q) E f , - 1  as 
being F if Q has a face F contained in U and Q is on the same side of U as v, as 
being - F  if Q has a face F contained in U and Q is on the opposite side of U to v, 
and as 0 otherwise. We define 4~v: fn  -4 f n - 1  by extending this linearly. 

If we have an n-dimensional  Euclidean polytope P, and x ~ N~, if we take Y~'.x 
as in Section 3, and if we have or thonormal  vectors v 1 . . . . .  vj ~ N ", then 
49vl ..... vi(Ye, x), by which we mean (qSvj . . . . .  q~vlXYe x) will be 0 except when x is in 

a codimension j subset of  Nn. As in Section 3, we approximate this set by an interior 
disjoint union U ~= 1 Pi of (n - j ) -dimensional  polytopes, with Yp, x being constant 
almost everywhere on each polytope. For  each Pi, pick x~ not in the exceptional set. 

Then we can write 

an(Vl . . . . .  v / ) ( e )  = cy ~_~ vol, ,_j(Pi)vol, ,_j_ 1( ~ ....... vj(YP, x,))' 
i=1 

for some nonzero constant cj ~ N. We apply the volume-versus-surface area argu- 

5 This data actually determines an oriented flag of subspaces 1/1,..., V~ of R n with Vj having the 
oriented basis [v 1 . . . . .  vj]. 
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ment of Theorem 2 to show that any P that fills I~ n by translation has 
~ / . n ( v  1 . . . . .  vjXP) = 0 f o r j  > 1. []  

Venkov [39] proved that any convex body that tiles R" by translations has a lattice 
tiling, see also [1]. This result was rediscovered by McMullen [26]. On the other hand 
Stein [34] and Szab6 [38] found nonconvex polytopes in Nn for various n >_ 3 which 
fill ~n by translations but which do not possess any lattice tilings. These provide 
nontrivial examples to which Theorem 3 applies. In passing we remark that Kuper- 
berg [25] has constructed polyhedral tiles that are knotted, which nevertheless tile 
N3 with a lattice tiling having no linking of the polyhedra. 

In principle some information about Dehn invariants can also be obtained for 
finite sets of polytopes {P1 . . . . .  It} that can fill space ~"  using Euclidean motions. 
Finite sets of polyhedra in [R 3 that fill space aperiodically have been recently studied 
as tiling models for quasicrystals. 6 For example, Kramer [24] uses seven polyhedra to 
produce a tiling with icosahedral symmetry around one point. Katz [22] finds 22 
"decorated" rhombohedra, and Danzer [4] finds 4 "decorated" tetrahedra all of 
which give only nonperiodic "allowed" tilings of R 3. Here the "decorations" are 
matching rules on how edges and faces may meet in "allowed" tilings. Matching 
rules can be eliminated by encoding them geometrically with (polyhedral) bumps and 
dents in the polyhedra, resulting in a new set of nonconvex polyhedra in which 
arbitrary tilings are allowed. Given a tiling of N3 by such {P1 . . . . .  Pt}, as in Section 2 
we extract from it a sequence of larger and larger polyhedra {Qr,: J = 1,2 . . . .  } 
covered by the tiles, where Qr, contains njk tiles of type Pk for 1 < k _< I. We 
associate to Qr, the tiling frequencies 

njk 
hjk:= t , 1 _<k_<l. (4.1) 

~_~ nji 
i=1 

If (A 1 . . . . .  A l) is any limit point as j ~ o0 of these tiling frequencies, then the 
argument of Section 2 shows that the Dehn invariants A(P k) must obey the linear 
relation 

/ 

E Aka(e~) = 0. 
k = l  

(4.2) 

We may sometimes obtain several independent linear relations in this way. For 
tilings obtained by "inflation" rules, the tilings are completely known so that such 
limiting frequencies (h 1 . . . . .  h l) can be computed explicitly. 

The usefulness of (4.2) does not necessarily lie in getting information about the 
Dehn invariants A(Pi), because typically the tiles {P1 . . . .  , Pt} are known in advance, 
so that the A(P k) are already directly computable. Rather it may possibly be useful 
in reverse, as a criterion for proving nonperiodicity of tilings. Suppose that we are 

6 For information and further references on quasicrystals consult [18] and [31]. 
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given a set of polyhedra {P1 . . . . .  PI} that tile ~3, satisfying the hypothesis that all 
l inear relations (4.2) satisfied by their Dehn invariants A(P k) have (A 1 . . . . .  AI ) ~ Qn. 
Then we could conclude: no tiling o f  ~3 using these tiles is periodic. 7 For  a periodic 
tiling implies that a relation (4.2) exists having all A i rational. We do not know of 
any example where this hypothesis is satisfied, however, and it would be interesting 
to find one or to show that none exists. The simplest case would be a set of two 
polyhedra {Pa, P2} which can be used to fill It~ 3 and which have A(P  2) = AA(P 1) 4= 0, 
with A irrational. 

Finally we address the analogous question for hyperbolic polytopes that tile 
hyperbolic space H n may be considered. Dehn invariants for the group of hyperbolic 
isometries exist, see Chapter  8 of [29]. These are known to be complete scissors 
congruence invariants in dimensions 1 and 2; the problem of completeness remains 
open for all larger dimensions. Are  the analogues of Theorems 1 and 2 true in the 
hyperbolic case? We do not know. The arguments of Sections 2 and 3 fail to apply in 
the hyperbolic case, because hyperbolic polyhedra may have surface area propor-  
tional to their volume. 
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