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Abstract. It is shown that a special case of Mahler's conjecture can be reformu- 
lated in terms of the solutions to the scaling equation of wavelet theory. 

Introduction 

This paper describes a connection between the well-known geometric problem of 
Mahler concerning the volumes of convex bodies and their polars, and the theory of 
wavelets which has attracted so much recent attention. A special case of Mahler's 
conjecture leads naturally to a question about solutions of the scaling equation 
which appears in the construction of wavelets. This latter question is not completely 
natural for wavelet theorists because the inequality "goes the wrong way". However, 
a solution of this question would shed considerable light on the rather mysterious 
behaviour of the scaling equation and one may hope that some insight can be gained 
from a consideration of the underlying geometric problem. 

The paper is in three parts. The first describes the special case of Mahler's 
conjecture which is to be considered and expresses this geometric problem in 
probabilistic form. The second part explains the appearance of the scaling equation 
and its geometric significance. The third part contains a final statement of the 
problem and discusses several situations in which the proposed inequality is sharp. 

1. A Special Case of Mahler's Conjecture 

Let K be a symmetric convex body in R n, and let K* be its polar {x: [(y, x)[ < 1 
for all y ~ K}. Mahler's conjecture asserts that 

vol(K) �9 vol(K*) >_ n! ' (1) 
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there being equality for the cube/oc tahedron pair (in each dimension) and for other 
pairs of bodies. Mahler originally made this conjecture in connection with the 
successive minima of  convex bodies which appear in the geometry of numbers. The 
strongest result to date, in the direction of Mahler's conjecture, is the theorem of 
Bourgain and Milman [BM] which shows that the inequality holds up to a factor of 
(constant) n , the constant being independent of everything. 

The expression vol(K)vol(K*) is an affine invariant of K and so there is equality 
in (1) whenever K is a parallelepiped--i.e., K has 2n facets. A sharp upper estimate 
for this invariant is provided by the Blaschke-Santalo inequality 

vol(K) �9 vol(K* ) < (vn) 2, 

v n being the volume of the n-dimensional Euclidean unit ball, 

7.1. n/2 

v,, F ( n / 2  + 1 ) '  

2 is roughly (27re~n) n, the ratio of the upper and conjectured lower bounds Since v n 
is of  the order of (constant)". 

Since Mahler's conjecture says nothing for symmetric bodies with 2n facets it is 
reasonable to ask what happens if K has 2n + 2 facets. Such a K can be realized, 
up to affine invariance, as a one-codimensional section (through the centre) of an 
(n + 1)-dimensional cube. If H is an n-dimensional subspace of ~,+1 and 

K = H A  [ - 1 , 1 ]  n+l, 

then the polar of K in H is the orthogonal projection of the "octahedron" 

B~+I = {x" E I x i l  <~ 1} 

onto H. Replacing n + 1 by n, the special case of Mahler's conjecture, for bodies 
with one extra pair of  facets, can be stated as follows: 

If H is a one-codimensional subspace of ~n and P is the orthogonal projection onto 
H, then 

4 n - I  
vo l (H N [-- 1, 1]") �9 vol (P(B~))  >_ (n - 1)! " (2) 

1 n If Qn is taken to be the unit cube [ -  �89 ~] , the inequality rescales as 

2n-1 
vol (H n Q . ) . v o l ( P ( B ~ ' ) )  > ( n  - 1)!" (3) 



Mahler's Conjecture and Wavelets 273 

The volume of P(B~) is easy to express in terms of the unit normal  a = (ai)' ~ to H. 
The projection onto H of the surface of B~' covers almost all of P(B~) exactly twice. 
The surface is composed of 2 n facets indexed by the choices of n signs e = (ei)~'. 
Each facet has (n - 1)-dimensional volume v'n/(n - 1)! and the volume of the 
project ion of the e-facet is 

(n  - 1)! v~- l<a ' e> l '  

since (1/~h--)e  is the unit normal to the e-facet. Thus 

1 
1 - - I < a ,  E)I v o l ( P ( B D )  = ~ (n - 1)' 

E 

2 n-1 1 

= (n - 1)~ " ~ ~ l ( a ,  e>] 
8 

2n-1 E 

(n - 1)! 1 aiU/ 

1 where U 1 . . . . .  U n are iid random variables with P ( U / =  1 ) =  P ( U / = - 1 )  = y. 
Mahler 's  conjecture for bodies with two extra facets is thus 

n 

vo l (H  A an) "E ~laiUi >__ 1, (4) 

for all unit vectors a and H = (a> j- . 
The Khintchine inequality states that, for some constant C, 

n ~ 1/2 n 

~1 a2) < CE ~laiUi 

for any sequence (ai)' ~ (and all n). It was conjectured by Littlewood that the sharp 
constant here is C = v~.  This was proved by Szarek [S]. On the other hand, it was 
shown by the author [B] that, for any K, vol (H O Qn) < v~. Thus Szarek's result 
would follow from the cube-slicing theorem together  with (4). 

The quantity vol (H n Qn) can also be expressed using the iid random variables 
(U/)~'. This is perhaps most easily seen by evaluating the integrals in [B] using 
residue calculus. The result is that if a is a unit vector with all a i nonzero and 
H = {a} •  then 

1 I v~ ( n -  1)!I-ITai E ( I ~ U j ) s g n ( Y ' ~ a j U j ) "  ()-~ajUj)  " 
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Inequality (4) thus states that, for any sequence (ai)~, 

( n -  1 ) ! I I a i  <E[(1--IUj)sgn(Y' .ayUi)(Y '~ajUj)n- ']El~aiUil .  (5) 

This form of the inequality is made highly suggestive by noting that 

n! I-Iai = E aj . 

Nevertheless, inequality (5) does not seem to be easy to attack. The approach 
described below looks more promising. 

In view of the probabilistic form of vol(P(B~)) it is natural to ask for a simple 
probabilistic expression for vol(H C~ Qn). Such a representation was already used in 
[B] and [H]. If Z 1 . . . . .  Zn are iid random variables, uniformly distributed on 

_ _  1 1 7, ~], then the random vector (Z 1 . . . . .  Z n) induces Lebesgue measure on Qn. If, 
for each r ~ N, 

q~(r) = vol ( (H + ra) rl Qn) 

so that q~ is the function obtained by scanned Qn with translates of H, then it is easy 
to see that q~ is the density of the random variable Y'~ aiZ i. For reasons that will 
become apparent, it is convenient to replace the random variables (U~) by another 
sequence, half as large. If (Vi) ~' are iid with P(V i = �89 = P (V i = - �89 = �89 then 
inequality (4) states that, with q~ as above, 

1 ~(0)E{ Ea,.V, I ___ 7. (6) 

2. The Appearance of the Scaling Equation 

The similar forms of the random variables 

X = ~_~aiV i and Y =  E a i Z i  

which (effectively) appear in (6) makes it possible to express the relationship 
between X and Y without reference to their origins as linear combinations of other 
random variables. If  (~)1  is an iid sequence with each Vj distributed equally on the 
points +�89 then the random variable 

E 2-Jvj 
1 
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is uniformly distributed on the interval [ -  �89 �89 Hence if (Xj) 1 is an iid sequence of 
copies of X, 

c~ 

Y'.2-JXj 
1 

is distributed like Y. Inequality (6) thus states that 

l ~(0)EIXI  ~> y (7) 

if ~ is the density of Y = Y'. ]~ 2-/Xj. Inequality (7) is probably too much to expect 
for a general symmetric random variable X (as opposed to the special ones 
discussed above). However, (7) can be weakened without any information being lost 
in the special case. If q~ is obtained by scanning a cube, then it attains its maximum 
value at 0: this follows from the Brunn-Minkowski  inequality among other things. 
So for the purpose of establishing Mahler's conjecture for one-codimensional 
sections of the cube it would suffice to obtain 

0c 

for q~ the density of ~ 1  2-JXj.  
The relationship 

1 II,p[t~EIXI ~ ~ (8) 

oc 

Y =  E2- / X j  
1 

is already recognizable to wavelet theorists. If  X and (Xj)] ~ are idd, then X + Y has 
the same distribution as 2Y so that if Y has densi~' q, and P is the law of X, then 

q~(y) = 2 f  q~(2y - x) dP(x). (9) 

This equation is the so-called two-scale relation for the functions q~ used in the 
construction of wavelets. (The actual wavelet, W, associated to q~ is given by 
W(y) = 2~p(2y) - ~(y).) If X is a random variable of the form ~ a i V  i, then (9) has 
a simple geometric interpretation which depends upon the decomposition of a cube 
into 2 n cubes of half the size. For example, when y = 0, (9) says that the volume of 
the central slice of H n Qn is twice the average of the volumes of the parallel slices 
through the corners of Qn : equivalently, that it is 1 /2  n i times the sum of the 
volumes of these parallel slices. This is immediately apparent from Fig. 1. 

3. The Problem 

The upshot of  the foregoing discussion is the following conjecture concerning the 
scaling functions ~0 which appear  in the construction of wavelets. Suppose P is the 
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law of a symmetric random variable X and there is a nonnegative integrable 

satisfying f ~  = 1 and 

then 

~0(y) = 2 f ~  ~ ( 2 y _  - x ) d e ( x ) ,  y ~ ~, 

1 I[~ilo~EIXI >__ 3. (10) 

(The existence of II ~11oo is not really a necessary hypothesis if II~ll= is understood to 
be infinite when no bounded ~ exists.) As mentioned in the Introduction, inequality 
(10) goes the "wrong way" for applications to wavelets: it says that ~ cannot be too 
well behaved. On the other hand, any possibility of a sharp inequality involving 
solutions of the scaling equation, looks intriguing. It should be remarked that if the 

1 inequality is relaxed sufficiently, it ceases to be a problem. II~,II~EIXI > ~ is trivial, 
1 as is the sharp estimate II,plI~(EX2) 1/2 _> 3. 
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Finally, it is worth noting that if (10) is true, it is exact for a wide variety of 
oo 1 random variables X. If (1//.) 1 is an iid + ~ sequence, 

oD 

X = Y '~a iV i ,  (11) 
1 

and al >- ~ lail, then the "slice of the infinite cube" perpendicular to (ai)~ is a 
cube: hence, there is equality in Mahler's conjecture. An amusing special case occurs 
when X is uniformly distributed on [ -  1 1 ~, ~] (or any other symmetric interval). This 
corresponds to the choice a i = 2 i in (11). In this case q~ is supported on [ -  �89 �89 
and one easily gets from the scaling equation 

q~(O) = 2]-l/2~p(X)~ d x  = 2. 
- 1 / 2  

1 (EIVI = x in this case.) 
There is a further case of equality which is isolated and does not fit the above 

pattern. The slices of a four-dimensional cube, which are perpendicular to its 
diagonals, are three-dimensional regular octahedra and so satisfy Mahler's conjec- 
ture with equality. The associated spline q~ is the basic cardinal cubic spline: the 
nonzero cubic spline with equally spaced knots whose support is shortest. It is my 
feeling that this pathological case of equality is the major barrier to a proof of (10). 

Standard references for wavelets are [C] and [D]. 
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