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Abstract. In Euclidean d-space E a we prove a lattice-point inequality for arbi- 
trary lattices and for the intrinsic volumes V~ (i.e., normalized quermassintegrals) of 
convex bodies. The V i are not equi-affine invariant (except the volume), hence 
suitable functionals of the lattice have to be introduced. The result generalizes an 
earlier result of Henk for the integer lattice zd. 

1. Introduction and Results 

In the following let E d, d > 2, denote the Euclidean d-space and let .9 ~d denote the 
set of lattices L c E d with de t (L)  =/= 0. Further,  let S denote the set of convex 
bodies K c E d and let ~00 denote the subset of 0-symmetric convex bodies. For  
K ~ a  let V~(K), i = 0 . . . . .  d, be its intrinsic volumes or normalized quermassinte- 
grals (see [7]). In particular, Vd(K) = V ( K )  is the volume and V d_ I (K)  = �89 is 
the half-surface area of K. For  K ~-~0  and L ~ . ~ d  let a i (K,  L)  denote the i th 
successive minimum of  K with respect to the lattice L. For  the special case K = B d 
we have the successive minima Ai(L) = Ai(B d, L )  of the lattice L (see [6]). 

For  centrally symmetric K ~ ~ Henk [5] proved 

Ai+I(K,~_ d) . . . . .  Ad(K, Iga)Vd(K) < 2d- iVi (K) ,  i = 1 . . . . .  d - 1, (1) 

which for i = 0 is Minkowski's second theorem (see p. 59 of [2]). 
Clearly, a generalization of (1) to arbitrary lattices is desirable. The problem is 

that the proof  of (1) uses special propert ies  of 77 a, and that the V~ (except V a) are not 
equi-affine invariant. The basic idea to overcome these difficulties is to introduce 
functionals of L, which correspond to the V~ as, e.g., the minimal determinants  (see 
[14]), 

D i ( L )  = min{det (Li) :  L i is an / -d imens iona l  sublattice of L}, i = 1 . . . . .  d,  
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and D o ( L )  = 1. Obviously Di(71 d) = 1, i = 0 . . . . .  d, and Dd(L)  = det(L). With D i 
and the last successive minimum A a of the lattice, generalizations of  a lattice-point 
inequality for convex bodies by Bokowski et al. [1] and of  an isoperimetric inequality 
for lattice periodic sets by Hadwiger [4] for the integer lattice yd to arbitrary lattices 
have been given (see [8]-[11]). 

Further, the following generalization of (1) is conjectured. 

Conjecture. Let  K ~ o o  and L ~ S aa. Then 

V a ( K )  2d_ i V i ( K )  
A/+a(K,L)  . . . . .  A d ( K , L ) D - D - ~  < D i ( L ) ,  i = 1 . . . . .  d - 1. (2) 

A first result of this type is given implicitly by Wills [13]. He proved that (2) is true if 
the factor i! is added to the right-hand side. 

In Section 2 we prove that the Conjecture is best possible for each lattice. 
A proof of the Conjecture seems to be hard. It is the purpose of this paper to 

introduce some related lattice functionals instead of D~ and to prove tight inequali- 
ties related to (1) for arbitrary L ~_owd. These functionals are 

C i ( L )  = max min det(Li)  , i = 1 . . . . .  d, (3) 
Ld-, La_,NL,={O} 

where L i and Ld_ i are i- and (d - / ) -d imens iona l  sublattices of L, respectively, but 
not necessarily L i + La_ i = L.  Further, let Co(L)  = 1. Obviously C a ( L )  = det(L) 
and Ci(77 d) = 1, i = 0 . . . . .  d. These and other properties of C~ are collected in the 
following proposition. 

Proposition. 

(a) The C i are invariant under rigid motion and homogeneous o f  degree i. 
(b) L e t k  1 < ... < k a and i = 1 . . . . .  d. Then 

Ci(diag(kl  . . . . .  kd )~-d) = kd-i+ 1 . . . . .  kd" 

(c) C a ( L )  = D d ( L )  = det(L). 
(d) The C i exist and Ci(L)  <_ Ad_i+ I (L)  . . . . .  Ad(L), i = 1 . . . . .  d. 
(e) C I (L )  = Ad(L). 
(f) C i ( L )  > Di(L), i = 0 . . . . .  d. 
(g) D i+j (L )  <_ D i ( L ) C j ( L ) ,  i = 0 . . . . .  d ; j = 0 . . . . .  d - i. 
(h) For each inequality there is an L with strict inequality. 

Our main result is now: 

Theorem 1. Let K ~ ~ and L ~.~d. Then 

hi+ 1(K, L )  . . . . .  h d ( K ,  L ) V a ( K )  < 2 d - i C d _ i ( L ) V i ( K ) ,  i = 0  . . . . .  d - 1 .  

This inequality is tight, i.e., C i ( L )  cannot be replaced by C i ( L )  - e. From (b) in 
the Proposition it follows that Theorem 1 generalizes (1) and from (g) and (h) in the 
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Proposition it follows that Theorem 1 is weaker than the Conjecture. From (d) and 
(h) of the Proposition it follows that Theorem 1 is an improvement of (see [11]) 

Ai+ 1( K ,  L )  . . . . .  Aa( K ,  L)Vd(  K )  

< 2 a ~ i + l ( L )  . . . . .  A a ( L ) V i ( K ) ,  i = 0 . . . . .  d - 1. 

Further, we can give the following geometric interpretation of the relation 
between A i and V/: 

Corollary 1. Let  K ~ Soo and L ~ . ~ .  Then (with A i = Ai(K, L )) 

Vd(�89 < Cd_i (L)V~( �89  i = 0 . . . . .  d - 1. 

For i = 0 Corollary 1 is Minkowski's main theorem in Geometry o f  Numbers .  
In Section 3 we give some basic properties of C i. In particular we prove the 

Proposition and the following theorem. 

Theorem 2. Let  L ~.c2a. Then 

C i ( L  ) = C d ( L ) C d _ i ( L * ) ,  

where L* is the dual lattice o f  L.  

i = 0  . . . . .  d, 

2. Tightness of the Conjecture 

Now we give a sequence of convex bodies such that the defect in the Conjecture 
tends to zero. For i = 0 the Conjecture is the second theorem of Minkowski, which 
is tight for each lattice (e.g., for the DV- or Voronoi-cell (see, e.g., [2]) of the lat- 
tice, equality holds). Here we consider the case 1 < i < d -  1. Let L i be an 
/-dimensional sublattice of L with det(Li) = Di(L) and let E i = lin(Li). Further, let 
K o c E i temporarily be an arbitrary convex body and let Z be the DV-cell of the 
(d - /)-dimensional lattice L / E i  I (where / denotes the orthogonal projection), 
then it follows from Lemma 1 in [8] that 

de t (L)  
V a - i ( Z )  = d e t ( L / E i i  ) det(Li)  

D e ( L )  

D i ( L  ) ' 

where Vj denotes the j-dimensional volume. In the following let K := K o + Z .  We 
have 

Further, 

A;+j(K, L )  >__ A j (KIE~"  , L / E ,  •  = A j ( Z ,  L / E ~  • ) = 2. 

I~i( Ko)  Da( L ) 
V a ( K )  = V i ( K o ) V a _ i ( Z )  D i ( L  ) 
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Hence it follows that 

2d - iV i (K)Dd(L )  V ; (K)Dd(L)  v i ( g  o + Z )  

D i ( L )  Ai+ I(K, L )  . . . . .  Ad(K, L )Vd (K)  D; (L )Vd(K)  Vi(K o) 

So it suffices to give a sequence of K 0 such that V/(K 0 + Z ) / V i ( K  o) tends to one. 
If we write the formula for quermassintegrals of a sum of convex bodies lying in 

complementary subspaces (see p. 215 of [3]) in terms of the intrinsic volumes and 
apply it to K 0 + Z we obtain 

d - i  d - i  

I~i(K o + Z )  = ~ I~i_ ~(Ko)V~(Z) = I~i(K o) + ~_, l~i_ ~(Ko)V~(Z). 
v = 0  v = l  

With  R := maxl_<~_<d_ i V~(Z) it follows that  Vi(K o + Z )  _< I//(K 0) + 
R i - I  E~=0 V~(Ko). 

Now let K o := rB i be the ball with radius r > O, then it follows, with Vi(B a) = 

( d )Kd/Kd_i (where Kj denotes the volume of the j-dimensional unit ball), that 

/ K i 

V;(Ko + Z )  i - 1  Vv(Ko) i -  I r V (  lp) 

Vi( Ko) - _ K i v=O v=O r i - -  
\ ' /  K 0 

,1  ( / )  
= l + R Y ' r ~  i - * 1  ( r  ~ ~) .  

v=O K i -  v 

3. Properties of C i 

To give a slightly different definition of C i we need the following lemma, which is a 
straightforward application of the dimension formula for submodules (see p. 120 of 
[12]) and for linear subspaces, respectively. 

Lemma 1. Let L i and Ld_ i be i- and (d - i)-dimensional sublattices of  a lattice 
L E . ~  d, respectively. Then 

Ld_ i 0 L i = {0} r l in(Ld_ i) (~ l in (L i )  = {0}, 

where l in (M)  is the linear hull of  the set M. 

The following lemma shows that  we can maximize over arbitrary subspaces 
instead of sublattices in the definition of C i. 

Lemma 2. Let L ~.Z~ 'd. Then 

Ci (L)  = max min de t (L i ) ,  
Ed , Ed-iCILE={O} 

where Ea_ i is an arbitrary (d - i)-dimensional subspace of  E d. 
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Proof. Le t  E a i be  an arbitrary (d  - / ) -d imensional  subspace of E a and let 
L r := L n E a _  i be an r -d imens ional  sublattice of L (0 < r __< d - i). Then  we can 
complete  L r to a (d  - / ) - d i m e n s i o n a l  sublattice L a ~ of L,  such that Lr a Ld_ ~. 

If Ld_ i N L i = {0}, then  L~ (~ L i = {0} and so Ed_ i 0 L i = Ed_ i 0 L n L i = 
L~ n L i = {0}. Consequent ly ,  we have 

min  d e t (L i )  > min  de t (L i )  , 
La_~AL,={O} E a ~f~L,= {0} 

which yields " >  ." The reverse inequal i ty  follows from Lem m a  1. []  

Proof  o f  the Proposition. (a), (b), and  (c) are clear, (f) follows from (3). 
To prove (d) let uj ~ h j (B  d, L ) B  d n L,  j = 1 . . . . .  d, be d l inearly independen t  

lattice points. Then  [u j[ = h j ( L )  and U = {u 1 . . . . .  u d} forms a basis of E d. Let L d i 
be a (d  - / ) -d imensional  sublatt ice of L and  let A = {a 1 . . . . .  ad_ i} be a basis 
of Ld_ ~. Le t  U 1 c U be a maximal  subset of U with A lg U 1 l inearly independent .  
Then  u ~ l in(A u U 1) for all u ~ U and so A U U 1 forms a basis of E d. Hence  
we have lUll = i and  the / -d imensional  lattice L i spanned  by U 1 has the property 
d im(L d ~ + L~) = d and so we can conclude,  as in the proof  of I_emma 1, that 
Ld i f) Li  = {0}. Now (d) follows from 

d e t (L i )  < 1-1 [ul < Aa_ i+l (L )  . . . . .  A d ( L ) .  (4) 
u~ U1 

To prove (e) it suffices to prove C 1 >_ A d (we omit  the L). If A d > C1, then there 
is an r > 1 such that Ar+ 1 > C 1 > Ar, since C~ > D~ = A 1. Let U l , . . . , u  r ~ L with 
lUll = Ai, i = 1 . . . . .  r, and let L r be the r -d imensional  sublatt ice spanned  by 
u 1 . . . . .  u r. Then  we can complete  Lr to a (d  - D-d imens iona l  sublattice L d_ 1 and 
by the defini t ion of C 1 a lattice vector  ur+ 1 q~ L d _  1 with [ur+ll _< C 1 < Ar+ 1 exists. 
Since u ~ , . . . ,  u~+ 1 are l inearly independent ,  this is a contradict ion to the defini t ion 

of hr+ 1" 

In  (g) the cases i = 0 ,  i = d ,  and j = 0  are clear. For  1 < i < d - 1  and 
1 _< j < d - i let L i be an / -d imensional  sublattice of L with de t (Li )  = Di(L) .  We 
can complete  L~ to a (d  - j ) - d i m e n s i o n a l  sublattice La_ j with Ea_ j := l in(Ld_j) .  
Consider  the lattice Lj  with Lj  n Ed_ j = {0} and  min imal  de te rminan t ,  then  

C i ( L )  > de t (L j ) .  (5) 

Let P1 and  Pz be the fundamen ta l  epipeds to L i a n d  L j ,  respectively. Then  
P = P1 + P2 is a f u n d ame n t a l  epiped to the (i + j ) -d imens iona l  sublatt ice Li+  j = 

L i + L j .  With the principle of Cavalieri  and (5) it follows that 

Vi+j(P)  = V i ( P 1 ) V j ( P 2 / E L j  ) <- V/(P1)Vj(P 2) 

= d e t ( L i ) d e t ( L j )  < D i ( L ) C j ( L ) .  (6) 

Now (g) follows f rom Di+j (L )  < det(Li+ j)  = Vi+j(P). 
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Now we prove (h). For  (f) choose the lattice with basis {el ,2e  2 . . . . .  ded}. Then  
/ - - \  

D i : i [ a n d C i = d I / ( d - i ) ! a n d s o C i / D i = { a l >  1, for i = 1 . . . . .  d -  1. For  (d) 

and  (g) we choose a lattice L, such that  v �9 w ~ 0, for all v, w ~ L \ {0} (e.g., the 
lat t ice with basis  (1, 0 . . . . .  0) t, (Tr, ~', 0 . . . . .  0) t, (~2 ,  ~r 2, ~2 ,  0 . . . . .  0) t, 

. . . .  (Tr d-  1 . . . . .  7r d-  1)t has this proper ty  since 7r is t ranscendenta l ) .  T h e n  we have, in 
(4) and  (6) (in (4) only for i > 1) in the proofs of (d) and  (g), strict inequality.  []  

Proof  o f  Theorem 2. For  i = 0 and i = d the assert ion follows from Co(L)  = 1 and  
C a ( L )  = det(L) .  For  1 < i < d - 1 it suffices to prove Ci(L)  < C d_ i (L* )d e t (L ) ,  
because we can apply this to L* and  d -  i instead of i and obta in  the reverse 
inequality.  

Let  Ld_  i be a (d  - / ) - d i m e n s i o n a l  sublattice, such that 

C i ( t )  = min  de t (A  i) 
La_,N A,={0} 

and  let Ea_ i = l in(Ld_i) ,  then  EdL_i is an  / -d imensional  subspace, which is spanned  
by a sublatt ice of L* (see [8]). Let  [ 'd- i  be a (d  - / ) - d i m e n s i o n a l  sublattice of L* 

with Ld_ i n Ed~_i = {0} and  det(/~d_ i) minimal ,  then  

Cd_i (L*)  > d e t ( L a _ i ) .  (7) 

W e  can assume that  L d i is primit ive in L*, since from Lemma 1 it follows that 
l in(La_ i) N E~-_ i = {0}, and otherwise the lattice L * N  l in(Ld_ i) would be a 
"be t t e r "  lattice. Now let L i := L n (lin(/~d_i)) • , then  L i is an / -d imensional  sub- 
lattice of  L with L i N E d _  i = {0}. 

Let  x ~ L i n E d _  i. As in the proof  of  I_emma 1, we can show t h a t  l i n ( t d -  i) + 

E~- i = E a, i.e., we can represent  each y ~ E d as y = U + U, where u ~ l in(Ld_ i) 
and  v ~E~-_ i. T h e n  it follows that x . y  = x . u  + x . v  = 0 + 0 = 0, since x E L  i c 
( l in (s  " and  x ~ Ea_ i = (EdL i) • . Consequent ly ,  x = 0. 

Hence  we have 

d e t ( L i )  _> min  d e t (A i )  = C i ( L ) .  (8) 
L a INAi={0} 

It  fur ther  follows from [8], Th eo rem 1, and  (8) that 

d e t ( L a _ i )  = de t (L*)  d e t ( L i )  

Final ly it follows from (7) and (9) that  

C . . ( L * )  > d e t ( L  ) > - -  a - z  - -  d - i  - -  

and  T h e o r e m  2 is proved. 

d e t ( L i )  C i ( L )  
> - -  (9) 

d e t ( L )  d e t ( L )  " 

C i ( L )  

d e t ( L )  ' 
[ ]  

4. Proof of Theorem 1 

For  i = 0 T h e o r e m  1 is the second theo rem of Minkowski,  so it suffices to con- 
sider the case 1 _< i < d - 1. For  j = 1 . . . . .  i let yj ~ Aj(K, L ) K  n L be  i l inearly 
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independen t  lattice points. Let  E i = lin{y 1 . . . . .  Yi}, then it follows by the definit ion 

of  C a i(L),  that  a (d  - / ) - d i m e n s i o n a l  sublattice Ld_ i of L exists such that: 

(1) Ld_ i n E i = {0} (and, with L e m m a  1 in Sect ion 3, l in (La_  i) 7~ E i = {0}). 

(2) det (Ld_  i) < Cd_i(L) .  

Let  K d i : :  K (~ l in(Ld_i) ,  then it follows, with the second fundamenta l  t heo rem of  

Minkowski  for Kd_ ~ and L d ~, that  

A l ( g d _ i ,  L d - i )  . . . . .  Ad_i( Kd_i ,  Ld_ i )Vd_ i (Kd_ i )  

<-- 2 d - i d e t ( L a  i) -< 2a- iCa i ( L )  �9 

By the choice of  L a i (see (1)), Aj(Ka_i ,  L a i )K  contains  i + j  l inear - independen t  

lattice points  of  L,  such that  

Ai+j(K,  L )  < A j (Kd_i ,  Ld_ i )  , j = 1 . . . . .  d - i, 

and so 

Ai~I (K , L )  . . . . .  Ad(K,  L ) V d _ i ( g d _  i) ~ 2 d - i C d _ i ( L ) .  (10) 

Now T h e o r e m  1 follows f rom (10) and Vd(K) < Vi (K)Vd_i (Kd_ i) (see [5]). [ ]  
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