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Abstract. In Euclidean d-space E? we prove a lattice-point inequality for arbi-
trary lattices and for the intrinsic volumes V; (i.e., normalized quermassintegrals) of
convex bodies. The V; are not equi-affine invariant (except the volume), hence
suitable functionals of the lattice have to be introduced. The result generalizes an
earlier result of Henk for the integer lattice Z<.

1. Introduction and Results

In the following let E¢, d > 2, denote the Euclidean d-space and let ¢ denote the
set of lattices L < E¢ with det(L) # 0. Further, let #% denote the set of convex
bodies K < E? and let % denote the subset of O-symmetric convex bodies. For
Kez? let V(K),i=0,...,d,be its intrinsic volumes or normalized quermassinte-
grals (see [7]). In particular, V,(K) = V(K) is the volume and V,_(K) = 3F(K) is
the half-surface area of K. For K €. %¢ and L € ¥¢ let A(K, L) denote the ith
successive minimum of K with respect to the lattice L. For the special case K = B¢
we have the successive minima A, (L) = A,(B% L) of the lattice L (see [6]).
For centrally symmetric K €.%¢ Henk [5] proved

A (K 29 oo MK, ZDVAK) <247 W(K),  i=1,...,d—1, (1)

which for i = 0 is Minkowski’s second theorem (see p. 59 of [2]).

Clearly, a generalization of (1) to arbitrary lattices is desirable. The problem is
that the proof of (1) uses special properties of Z¢, and that the V; (except V) are not
equi-affine invariant. The basic idea to overcome these difficulties is to introduce
functionals of L, which correspond to the V; as, e.g., the minimal determinants (see

(14D,
D;(L) = min{det(L;): L; is an i-dimensional sublattice of L}, i=1,...,d,
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and Dy(L) = 1. Obviously D(Z%) = 1,i=0,...,d, and D,(L) = det(L). With D,
and the last successive minimum A, of the lattice, generalizations of a lattice-point
inequality for convex bodies by Bokowski et al. [1] and of an isoperimetric inequality
for lattice periodic sets by Hadwiger [4] for the integer lattice Z¢ to arbitrary lattices
have been given (see [8]-[11]).

Further, the following generalization of (1) is conjectured.

Conjecture. Let K € %g and L € %, Then
; Vi(K)

V(K
A(K) d-i Z77 i=1,...,d-1. 2

AalKo L) MK D s < 27 s

A first result of this type is given implicitly by Wills [13]. He proved that (2) is true if
the factor i! is added to the right-hand side.

In Section 2 we prove that the Conjecture is best possible for each lattice.

A proof of the Conjecture seems to be hard. It is the purpose of this paper to
introduce some related lattice functionals instead of D; and to prove tight inequali-
ties related to (1) for arbitrary L €. These functionals are

C.(L) = max min det(L,), i=1,...,d, 3
Ly, Ly ,nL,~{0)

where L; and L,_; are i- and (d — i)-dimensional sublattices of L, respectively, but
not necessarily L; + L,_;, = L. Further, let Cy(L) = 1. Obviously C,(L) = det(L)
and C{Z%) =1,i=0,...,d. These and other properties of C; are collected in the
following proposition.

Proposition.

(a) The C; are invariant under rigid motion and homogeneous of degree i.
) Letk, < - <kzandi=1,...,d. Then

C/diagky, ..., k)2 =k,_,.,- ~ -k,

(¢) C,L) = D,L) = det(L).

(d) The C, exist and CAL) < Ay_;, (L) - A (L), i=1,...,d.
(e) C(L) = A,(L).

® C(L)=D(L),i=0,...,d

@® D, (L) < DALICALY, i =0,...,d;j =0,...,d — i.

(h) For each inequality there is an L with strict inequality.

Our main result is now:

Theorem 1. Let K € 7% and L € %°. Then
Mai(K L) o - a (K, LW(K) <2¢7C,_(L)W{(K), i=0,...,d—1.

This inequality is tight, i.e., C,(L) cannot be replaced by C{L) — &. From (b) in
the Proposition it follows that Theorem 1 generatizes (1) and from (g) and (h) in the
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Proposition it follows that Theorem 1 is weaker than the Conjecture. From (d) and
(h) of the Proposition it follows that Theorem 1 is an improvement of (see [11])

Ai+1(K,L)' e )\d(K’L)V;j(K)
<247, (L) - -Af(LWAK), i=0,....d—1.

Further, we can give the following geometric interpretation of the relation
between A; and V;:

Corollary 1. Let K € 2% and L €.%°. Then (with A, = A(K, L))

V,GA . K) < Cy_ (LWV,(30,,,K),  i=0,...,d - 1.

For i = 0 Corollary 1 is Minkowski’s main theorem in Geometry of Numbers.
In Section 3 we give some basic properties of C,. In particular we prove the
Proposition and the following theorem.

Theorem 2. Let L € %% Then
CAL) = CALIC, (L%, i=0,....d,

where L* is the dual lattice of L.

2. Tightness of the Conjecture

Now we give a sequence of convex bodies such that the defect in the Conjecture
tends to zero. For i = 0 the Conjecture is the second theorem of Minkowski, which
is tight for each lattice (e.g., for the DV- or Voronoi-cell (see, e.g., [2]) of the lat-
tice, equality holds). Here we consider the case 1 <i<d— 1. Let L, be an
i-dimensional sublattice of L with det(L;) = D(L) and let E; = lin(L)). Further, let
K, C E; temporarily be an arbitrary convex body and let Z be the DV-cell of the
(d — i)-dimensional lattice L/E (where / denotes the orthogonal projection),
then it follows from Lemma 1 in [8] that

det(L)  D,(L)
det(L) DJ(L)’

V, (Z) = det(L/E/*) =

where V; denotes the j-dimensional volume. In the following let K = K, + Z. We
have

/\Hj(K, L) > )xj(K/E,-l ,L/E*) = )aj(Z,L/E,-l) = 2.
Further,

VAKy)D,(L)

VilK) = V(K Vi(2) = =
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Hence it follows that

24-1y(K)D,(L) VAKID,(L) VK, +Z)
DDA, (K, L)- — AfK,LWVAK) = DALWVAK)  V{Ky)

So it suffices to give a sequence of K, such that V(K, + Z)/V{K,) tends to one.

If we write the formula for quermassintegrals of a sum of convex bodies lying in
complementary subspaces (see p. 215 of [3]) in terms of the intrinsic volumes and
apply it to K, + Z we obtain

d—i d—i
VKo + Z) = L Vi (KIV(Z) = V(Ko) + LV, (K, (2).
v=0 v=1

With R = max;_, ., ; V,(Z) it follows that Vi(K, + Z) < V(Ky) +
RILV(Kp. '
Now let K, = rB' be the ball with radius r > 0, then it follows, with V(B?) =

(‘j)xd /x4_; (Where «; denotes the volume of the j-dimensional unit ball), that

Kl
VK, + Z) i-1 Y (K,) i1 ru(L)KH
——_—K(Ko) <1 +RE0 7Ky <1 +Ry=o—_,i(i)ﬁ
il K,
i—1 (l)
—1+RYL L 51 (ro ).
»=0 Kiy

3. Properties of C;

To give a slightly different definition of C; we need the following lemma, which is a
straightforward application of the dimension formula for submodules (see p. 120 of
[12]) and for linear subspaces, respectively.

Lemma 1. Let L, and L,_; be i- and (d — i)-dimensional sublattices of a lattice
L €.%°, respectively. Then
L, .nL,={0) < lin(L, ) nlin(L) = {0},
where lin(M) is the linear hull of the set M.
The following lemma shows that we can maximize over arbitrary subspaces
instead of sublattices in the definition of C,.
Lemma 2. Let L €.%° Then

CA(L)=max min det(L)),
Edﬂ Ed_inL,=(0)

where E,_; is an arbitrary (d — i)-dimensional subspace of E a
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Proof. Let E, ;, be an arbitrary (d — i)-dimensional subspace of E¢ and let
L,=LNE, ; be an r-dimensional sublattice of L (0 <r <d — {). Then we can
complete L, to a (d — i)-dimensional sublattice L, ; of L, such that L, c L, ..
f L, ,nL;={0}, then L NL,={0} and so E, ,NL,=E, ,NnLNL,=
L, N L; = {0}. Consequently, we have

min  det(L;)) > min det(L)),
L, ,nL,={0} E; NL,={0}

which yields “ > .” The reverse inequality follows from Lemma 1. O

Proof of the Proposition. (a), (b), and (c) are clear, (f) follows from (3).

To prove (d) let u; € /\j(Bd, L)BYNL,j=1,...,d, be d linearly independent
lattice points. Then |u;| = A(L) and U = {u,,..., u,} forms a basis of E Let L, _,
be a (d — i)-dimensional sublattice of L and let A4 = {ay,...,a,_,} be a basis
of L, ;. Let U; € U be a maximal subset of U with 4 U U, linearly independent.
Then u € lin(4 U U)) for all u € U and so 4 U U, forms a basis of E° Hence
we have |U)l = i and the i-dimensional lattice L; spanned by U, has the property
dim(L,_; + L;) = d and so we can conclude, as in the proof of Lemma 1, that
L, . N L;={0}. Now (d) follows from

det(L,) < T[T lul <ty (L)« - <A, (L). )

ue U,

To prove (e) it suffices to prove C; > A, (we omit the L). If A, > C,, then there
isan r 2 1 such that A, > C; = A, since C; > D; = A.. Let uy,...,u, € L with
lul=a, i=1,...,r, and let L, be the r-dimensional sublattice spanned by
uy,...,u4,. Then we can complete L, to a (d — 1)-dimensional sublattice L,_; and
by the definition of C, a lattice vector u,,, & L,_, with |u,, | < C; < A, exists.
Since u,,...,u,,, are linearly independent, this is a contradiction to the definition
of A,

In (g) the cases i =0, i=d, and j =0 are clear. For 1 <i<d —1 and
1 <j<d—iletL,be an i-dimensional sublattice of L with det(L,) = D{L). We
can complete L; to a (d — j)-dimensional sublattice L, ; with E, ;= 1lin(L,_;).
Consider the lattice L; with L; N E,;_; = {0} and minimal determinant, then

C,(L) = det(L)). &)
Let P, and P, be the fundamental epipeds to L; and L, respectively. Then
P =P, + P, is a fundamental epiped to the (i + j)-dimensional sublattice L, ; =
L; + L;. With the principle of Cavalieri and (5) it follows that
Vi, (P) = V(PV(P,/Ej- ;) < VAPDV(Py)
= det(L,) det(L;) < D,(L)C;(L). 6)

Now (g) follows from D, (L) < det(L,,;) =V, (P).
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Now we prove (h). For (f) choose the lattice with basis {e;,2e,,..., de,}. Then

D;=iland C,=d!/(d — i) and so C,/D, = (j)> 1,fori=1,...,d — 1. For (d)

and (g) we choose a lattice L, such that v-w # 0, for all v,w € L\ {0} (e.g., the
lattice with basis (1,0,...,0), (m, 7, 0,...,0 (72 7% #20,...,0),
(w4 L w? Y)Y has this property since 7 is transcendental). Then we have, in
(4) and (6) (in (4) only for i > 1) in the proofs of (d) and (g), strict inequality. O

Proof of Theorem 2. For i = 0 and i = d the assertion follows from Cy(L) = 1 and
C,(L)=det(L). For 1 <i <d — 1 it suffices to prove C,(L) < C,_(L*)det(L),
because we can apply this to L* and d — i instead of i and obtain the reverse
inequality.

Let L,_; be a (d — i)-dimensional sublattice, such that

C.(L) = min  det(A;)
Ly ,nA,={0}
and let E,_; = lin(L,_,), then E;-; is an i-dimensional subspace, which is spanned

by a stlattice of L* (see [8)). Let I:d_ ; be a (d — i)-dimensional sublattice of L*
with L,_; N E;~; = {0} and det(L,_,) minimal, then

Cyi(L*) = det(L,_,). N

We can assume that L, , is primitive in L*, since from Lemma 1 it follows that
lin(L,_) N Ej~, =1{0}, and otherwise the lattice L* N lin(L,_,) would be a
“better” lattice. Now let L; == L N (lin(L,_,)*, then L, is an i-dimensional sub-
lattice of L with L, N E,_; = {0).

Let x € L, N E, ;. As in the proof of Lemma 1, we can show that lin(L,_,) +
E}- . = E* ie., we can represent each y € E4 as y = u + v, where u € lin(L,_,)
and v € E;- ;. Then it follows that x-y =x-u+x-v =0+ 0=0, since x € L; C
(in(L,_N* and x € E,_; = (Ej~)* . Consequently, x = 0.

Hence we have

det(L;) > min det(A;) = C(L). (8)
Ly inA;={0}

It further follows from [8], Theorem 1, and (8) that
det(L;) C,(L)

det(L,_,) = det(L*) det(L,) = o) > o) ©)
Finally it follows from (7) and (9) that
. C(L)
Cy(L*) 2 det(L,_;) = FRTTAL
and Theorem 2 is proved. O

4. Proof of Theorem 1

For i = 0 Theorem 1 is the second theorem of Minkowski, so it suffices to con-
sider the case 1 <i<d— 1. Forj=1,...,i let y, € A(K,L)KN L be i linearly



Successive Minima, Intrinsic Volumes, and Lattice Determinants 239

independent lattice points. Let E; = lin{y,, ..., y;}, then it follows by the definition
of C, (L), that a (d — i)-dimensional sublattice L,_; of L exists such that:

(1) L,_; N E; = {0} (and, with Lemma 1 in Section 3, lin(L,_;) N E; = {0}).
(2 det(L,_)) < C,; (L)

Let K, ;= K N lin(L,_,), then it follows, with the second fundamental theorem of
Minkowski for K, ; and L,_,, that

MKy Lgo) s o g (K Ly WV, (K, )
< 247idet(L,_;) < 2¢7iC,_(L).

By the choice of L,_; (see (1)), A{K,_;, L,_)K contains i +j linear-independent
lattice points of L, such that

MoK L) < AM(Ky i Ly, j=1,...,d =i,

and so

N (K LY o A K, LWV, (K, ) <2970C, (L) 10)
Now Theorem 1 follows from (10) and VAK) < V(K)W,_(K,_,) (see [5]). ]
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