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Abstract. We give purely combinatorial proofs of the lower-bound theorems for 
pseudomanifolds with or without boundary. 

1. Introduction 

Let A denote a simplicial complex and let fk (A)  denote the number of its k-dimen- 
sional faces. For positive integers k, d, v, v i, and v b define the functions 

[ [d~ k[d + 1 
q~k(v,d) := { V t k  ] - t k  + 1) 

~ (d  - 1)v - (d  + 1)(d - 2) 

~'~(vi, vu, d) : =  v u  k k + 

t u b  "+ (d - 1)v i - (d - 1) 

if 1 < k < d 7 2 ,  

if k = d -  1, 

1)  if l < _ k < d - 2 ,  

if k = d -  1. 

The main aim of  this paper is to prove the following lower-bound theorems. 
Throughout this paper d is always an integer > 3 unless otherwise stated. 

Theorem 1.1. Let  A be a (d - 1)-pseudomanifold with v vertices. Then: 

(i) fk(A) >_ q~k(v, d) i f  1 < k < d - 1. 
(ii) I f  equality holds for  any k, 1 < k < d - 1, then A is a stacked (d - 1)-sphere 

for  d > 4 and a triangulated 2-sphere for  d = 3. 

Theorem 1.2. Let A be a (d - 1)-pseudomanifold whose nonempty boundary is the 
disjoint union of normal pseudomanifolds. Suppose A has v i vertices in the interior and 
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v b vertices in the boundary, then: 

b (i) fk(A) >_ ~Ok(Ui , Ub , d )  i f  1 < k <_ d - 1. 
(ii) f f f k ( A ) =  q~b(vi, Cb, d) for  some k, 1 <_k < _ d -  1 then A is a stacked 

(d  - 1)-baU i f  d >_ 4 and a triangulateddisk i f  d = 3. 

Kalai [8] proved these two theorems for manifolds and conjectured them to be 
true for pseudomanifolds and pseudomanifolds with arbitrary boundary (see also [1] 
and [2]). Previously, Klee [9] had proved the case k = d - 1 of Theorem 1.1(i) while 
Bj6rner [3] had conjectured Theorem 1.2(i). Kalai also pointed out, without giving 
details, that they would follow from the generic 3-rigidity of triangulated 2-mani- 
folds. Later Fogelsanger [5] proved that triangulated 2-manifolds are generically 
3-rigid. As a result of our investigation we think that Theorem 1.2 for the case of 
arbitrary boundary remains open. 

In 1986 Gromov [7] defined a weaker form of rigidity, M a-rigidity, and proved 
that triangulated 2-manifolds are M3-rigid. He then used this result to prove part (i) 
of Theorem 1.1. However, his proof of the M3-rigidity of triangulated 2-manifolds 
had some gaps. These were subsequently corrected by Connelly and Whiteley [14]. 
We give a simple proof of this result. Then we use the techniques developed by 
Kalai [8] and the idea of M d -rigidity to give a proof of Theorem 1.1. M d -rigidity is a 
weaker form of generic rigidity as defined in [14]. The techniques used here have 
their roots in theory of generic rigidity. 

Recently, Tay et al. [12] introduced the idea of skeletal rigidity of cell complexes, 
which generalizes infinitesimal rigidity of graphs. Connections between skeletal 
rigidity and the g-theorem of pl-spheres (piecewise linear spheres) have been made. 
It is conceivable that a weaker form of skeletal rigidity can be defined that 
generalizes Md-rigidity. The techniques in this paper could then be generalized to 
yield a combinatorial proof of the g-theorem. 

In writing up this paper we benefited greatly from the works of Kalai [8] and 
Gromov [7] and from continuing discussion with Walter Whiteley. For further 
historical note on the lower-bound theorems, readers are referred to [8]. 

The paper is organized as follows. In Section 2 we give the basic definitions and 
state the MPW (McMullen-Perles-Walkup) reduction which reduces the proof of 
the lower-bound theorem for certain simplicial complexes to the case k = 1. In 
Section 3 we define normal pseudomanifolds and show that the lower-bound 
theorem for pseudomanifolds can be reduced to the case where the pseudomanifolds 
are normal. In Sections 4 and 5 we prove that triangulated 2-manifolds are M3-rigid 
and triangulated normal ( d -  1)-pseudomanifolds are Ma-rigid for d _> 4. The 
proofs of Theorems 1.1 and 1.2 are presented in Section 5 and Section 6, respec- 
tively. 

2. Basic Definitions and MPW Reduction 

We use the following definitions and notations on simplicial complexes. Let A be a 
finite abstract simplicial complex on the vertex set V. Thus, A is a collection of 
subsets of V (called the faces of A) and if ~- ~ A and cr c_ ~-, then cr E A. For tr ~ A 
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the dimension of ~r is dim o" := 1~1 - 1. fk(m) denotes the number  of k-dimensional 
faces (or briefly k-faces) of A. V(A) is the set of vertices (0-faces) of A. 1-faces of A 
are called edges. The dimension of A is the maximum dimension of  its faces. A 
one-dimensional simplicial complex is called a graph. The graph G(A)  of A is the 
graph obtained by taking the vertices and edges of A. For a face tr E A the link of tr 
in A is lk(o-, A) := { r -  o-: r ~ A, z ~_ ~r}. 

A simplicial complex A is pure if all its maximal faces have the same dimension. 
Maximal faces of a pure simplicial complex are called facets. Two facets cr, ~" of a 
pure simplicial complex are adjacent if they intersect in a maximal proper  face of 
each. A pure simplicial complex A is strongly connected if, for every two facets 6r 
and ~- of A, there is a sequence of facets cr = ~r0, at1,...  , ~r,~ = z, such that ~r i ahd 
%+1 are adjacent of 0 < i < m. A is said to be connected if its graph is strongly 
connected. It follows from the definition that strong connectedness and connected- 
ness are equivalent for a one-dimensional  simplicial complex. 

Every simplicial complex A is associated with a topological space, denoted by IAI 
(see [10]). A d-pseudomanifold is a strongly connected d-dimensional  simplicial 
complex such that every (d - 1)-face is contained in exactly two facets. A d-pseudo- 
manifold A is a triangulated d-manifold if JAI is a manifold. 

Remark  2.1. By a process known as M P W  reduction, if a class of simplicial complex 
is closed under taking links, then the lower-bound theorem for this class follows 
from the case k = 1. (See [8] for details.) 

3. Pseudomanifolds Without Boundary 

The class of pseudomanifolds is not closed under taking links. The pinched torus is 
an example (Fig. 3.1). Thus the MPW reduction does  not apply directly. Therefore 
we go to the class of  normal pseudomanifolds: a ( d  - 1)-pseudomanifold is normal 
if every k-face, 0 < k < d - 2, has a connected link. Note that, by Proposit ion 3.1 
below, lk(tr ,  A), for every k-face t~, 0 < k < d - 2, is strongly connected. Thus the 
class of normal pseudomanifolds is closed under taking links of faces of dimension 
< d -  2, whence par t  (i) of  the theorem for a normal ( d -  1)-pseudomanifold 
reduces by MPW reduction to the case k = 1. 

U U ! U 

Fig. 3.1. Normalization of the "pinched" toms: The pinched torus (left) is a pseudomanofold. 
"Pulling apart" at u yields a normal pseudomanofold. 
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Proposition 3.1. Let or be a k-face of  a normal (d - 1)-pseudomanifold, 0 < k < d 
- 2. Then lk(tr, A) is strongly connected. 

Proof. If k = d - 3, then lk(tr, A) is a one-dimensional simplicial complex. In this 
case connectedness and strong connectedness are equivalent. 

Suppose k < d - 3 and lk(tr, A) is not strongly connected. Partition its facets 
into strongly connected subcomplexes, all of  dimension d - k - 2. Since lk(~r, A) is 
connected, two of these subcomplexes, say A 1 and A 2, have some vertices in 
common. Let r be a maximal face in m 1 f " ) m  2. Then d i m ( r ) <  d -  k -  4 and 
dim(or U z ) <  d -  2. However, lk(cr U ~', A ) =  lk(r, lk(tr, A)) and this is not 
connected. Thus we have a contradiction. []  

We can turn an arbitrary pseudomanifold into a normal one by "pulling apart" at 
certain faces. (See Fig. 3.1 for an example.) This normalization process is described 
on p. 83 of [11]. (See also p. 151 of  [6] and [8].) 

As a consequence, for part (i) of Theorem 1.1 it suffices to prove the following: 

Theorem 3.2. Let A be a normal (d  - 1)-pseudomanifold with v vertices. Then 

f l ( A ) > q h ( v , d ) = d v - ( d + l )  
- -  2 " 

We devote the next two sections to proving this result as well as part (ii) of 
Theorem 1.1. 

4. Triangulated 2-Manifolds are M3-Rigid 

Given a graph, its subgraphs are its subcomplexes. A subgraph is spanning if it 
includes all the vertices of the graph. For a simplicial complex we say that a face tr 
meets a given set U of vertices of or • U :~ ~. 

Definition 4.1. A graph G = (V, E)  is M3-rigid if, for every triple of vertices a, b, 
and c and for every V* _c V - {a, b, c}, we have IE*[ > 3IV*l, where E* is the set of 
all edges that meet V*. 

Clearly, a graph is M3-rigid if and only if it contains a spanning subgraph which is 
M3-rigid. 

As an immediate consequence of  the definition we have 

Proposition 4.2. Suppose a graph G = (V, E )  contains a triangle and is M3-rigid, then 

IE[ > 3 l V I -  6. 

However, the M3-rigidity of G = (V, E)  does not imply that [El > 31V[ - 6 if G 
does not have a triangle. In particular, the graph obtained from the complete 
bipartite graph g6, 6 by deleting six edges symmetrically and one other edge is 
M3-rigid by the following proposition. 



Lower-Bound Theorems for Pseudomanifolds 207 

Proposition 4.3. Suppose G = (V, E)  is a graph with tEl = 31Vt - t, where t is an 
integer. Then G is M3-rigid if  and only if every subgraph H = (V' ,  E ' )  with at least three 
vertices satisfies 

[E'] _< 3 l V ' l -  t. 

Proof. Let H = (V', E ' )  be any subgraph with at least three vertices. Let V* = V 
- V'. Then IE*I >_ 31V*l if and only if 

IE'I = IEI - IE*P _< IEI - 31g*l = 31Vl -  t - 3lg*l = 3lg'l  - t. []  

The graphical interpretation of M3-rigidity is the following. 

Proposition 4.4. A graph G = (V, E)  is M3-rigid if and only if, for every triple of  
vertices a, b, c, there are three edge-disjoint matchings of  V - {a, b, c} with adjacent 
edges. 

Proof. We need to use Hall's theorem on matchings in bipartite graphs. Define a 
bipartite graph whose bipartitions are A := V -  {a, b, c} and B := E with the 
obvious adjacency. Then the result is just an easy consequence of Hall's theorem. [] 

Suppose we identify the three vertices a, b, and c and call the resulting graph 
Gab c. Then each of the matchings described in Proposition 4.4 corresponds to a 
spanning subgraph of Gab ~ with IV(Gahc)l- 1 edges. This subgraph is a spanning 
tree if it is connected; otherwise it has two components. This subgraph may not be a 
spanning tree as shown by the following example. 

Example 4.5. Let G be the graph obtained by joining two disjoint copies of KT, the 
complete graph on seven vertices, using two edges. It can be shown (by using 
Proposition 4.3 with t = - 2 )  that G is M3-rigid. Since G is two-edge connected, 
Gab c does ot contain three edge-disjoint spanning trees. 

Remark 4.6. The term M3-rigidity was coined by Walter Whiteley. Gromov used the 
term 3-rigidity which has a different meaning in rigidity theory. Originally Gromov 
defined Md-rigidity for two-dimensional simpliciat complexes and the three vertices 
{a, b, c} were required to form a face of the complex. However, with the more 
general definition, we can still prove M3-rigidity of triangulated 2-manifolds. 

Remark 4.7. Connections with rigidity: We now say something about generic rigidity 
which has been mentioned earlier. A bar framework in d-space consists of a set of 
rigid bars which are linked together at their ends using ball joints. It is infinitesimally 
rigid if no infinitesimal deformation of the vertices is possible without infinitesimally 
altering the edge lengths. Such a framework has an underlying graph. A graph is said 
to be generically d-rigid if it is the underlying graph of  some infinitesimally rigid bar 
framework in d-space. (See [14].) 

Unlike generic rigidity, M3-rigidity does not give rise to a matroid because 
minimally M3-rigid spanning subgraphs of a complete graph can have different 
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numbers of  edges (Propositions 4.3 and 4.2). (See [14] for a discussion on matroids 
and rigidity.) 

We say that a graph G = (V, E)  satisfies the d-count if every subgraph H = 
(V',  E ' )  with IV'I _> d satisfies 

IE'I < dIV'I - ( d + l ) 
- 2 ' 

with equality when H = G. (In the literature on rigidity, this condition is also known 
as Laman's condition or Maxwell's condition.) 

If the bar framework in d-space on graph G is minimally generically d-rigid, then 
it satisfies the d-count. However, the converse is true only when d = 2. (This is 
known as Laman's theorem, see [14].) Later (Section 7) we give an example to show 
that M3-rigidity is weaker than generic 3-rigidity. 

To prove that the graph of every triangulated 2-manifold is M3-rigid, we need a 
result from topological graph theory. (See Sections 6.2 and 11.1 of [13]) A graph is 
embedded in a surface M if it is drawn in M so that edges intersect only at their 
common vertices. Such an embedding partitions M into regions which are the 
components of the 2-manifold after the edges are deleted. 

For a manifold M we denote its genus by g ( M )  if it is oriented and by ~(M) if it 
is nonoriented. We denote the oriented and nonoriented genus of a graph G by 
g(G) and ~(G), respectively. The next series of lemmas can be found in [13]. A 
graph G has e edges and v vertices and the corresponding numbers for its subgraph 
G i a r e  e i and v i. 

Lemma 4.8. 

Lemma 4.9. 

I f  a graph G is connected with v > 3, then 

e 
3v + 6g (G)  - 6, 

3v + 3~(G)  - 6. 

For any graph G, ~(G)  < 2g(G)  + 1. 

Lemma 4.10. I f  H is a subgraph o f  G, then g ( H )  < g(G)  a n d S ( H )  <_ ~(G). 

Lemma 4.11. Let Iz(G) := max{2 - 2g(G), 2 -~ (G)} ,  then I~(G) = 2 - ~ ( G )  or 
3 - g(G). 

Proof. If /z(G) 4= 2 - ~ ( G ) ,  then ~(G) > 2g(G). Hence ~(G) = 2g(G)  + 1 and 
the result follows. []  

Lemma 4.12. 

and 

I f  G 1 . . . . .  Gk are the connected components of a graph G, then 

g ( G )  = E g ( G  i) 

[1  + k + ~,~,(G i) if ~ ( G ) = 2 g ( G ) +  1, 

~,(G) = ~ 2k  - E tx(G i) otherwise. 
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Proposition 4.13. Suppose G is a graph with v (>_ 3) vertices and e edges. I f  G is 
embedded in a 2-manifold with Euler characteristic X, then 

e <_ 3v - 3 X. 

Equality holds if  and only if G is connected and all the regions are triangles. 

Proof. First no te  that  X = 2 - 2 g ( M )  if M is o r ien ted  and X = 2 - ~ ( M )  if M is 

not  or iented.  If G is connected ,  then the  result  follows f rom L e m m a  4.8. 

So we assume that  G 1 . . . . .  G k are  the connec ted  componen t s  of  G. F r o m  

L e m m a s  4.8 and 4.12, we have 

e <_3v+ 6Eg(G i ) -  6k 

< 3v + 6 g ( G )  - 6. 

I f  ~ ( G )  = 2 g ( G )  + 1, then e < 3v + 3~ (G)  - 9 < 3v + 3 ~ ( G )  - 6. 

In the  remaining case ~ ( G ) <  2g (G) .  Since tx(G i) <_ 3 -  ~,(Gi), f rom L e m m a  
4.12, 

e < 3v + 3 E ~ ( G i )  - 6k  

_< 3v - 352/x(G i) + 3k 

< 3 v + 3 ~ ( G ) - 6 k + 3 k  

_< 3v + 3 g ( G )  - 6. 

The  last inequali ty fol low because  k > 2. []  

We are  now ready to prove the  main  theorem of  this section. 

Theorem 4.14. The graph of  every triangulated 2-manifold without boundary is M3-rigid. 

Proof. If the graph of  the 2-manifold  A has v vertices, e edges, and the Eu le r  

characteris t ic  of  A is X, then, by Proposi t ion 4.13, e = 3v - 3X. The  M3-rigidity of  

A then follows f rom Proposi t ions  4.3 and 4.13. []  

5. (d - 1)-Pseudomanifolds are Md-Rigid 

Definition 5.1. A simplicial ( d  - 1)-complex, d >_ 4, A is M d-rigid if, for every 

(d  - 1)-simplex o- and for every  V* _ V(A)  - ~r, we have IE*] > d[V*[, where  E*  

is the set  of  all edges that m e e t  V*. 
The  following is an immed ia t e  consequence  of  the definit ion.  

Proposition 5.2. Suppose A is a simplicial (d - D-complex which is Md-rigid. Then 

f l ( A ) > d f ~  d +  2 



210 Tiong-Seng Tay 

Fig. 5.1. Graph G. 

i 

v 

Unlike M3-rigidity, Me-rigidity for d >_ 4 is a property of  A rather than its graph 
(Example 5.3). However, if the graph of a simplicial (d - D-complex A contains a 
spanning subgraph which satisfies the d-count, then A is Me-rigid (see Proposition 
5.4 below with 

t=(d+l))2 
Thus A is Me-rigid if its graph is generically d-rigid. 

Example 5.3. Consider the graph G shown in Fig. 5.1. Let A be the simplicial 
3-complex with {b, c, d, e} and the other edges of G as its maximal cells. Let L be 
the simplicial 3-complex with {a, b, c, e} and the other edges of G as its maximal 
cells. Then A is not Me-rigid for if V* = {a, f}, then IE*I < 41V*I. By checking all 
possibilities it can be shown that L is Mn-rigid. However, both have the same graph. 

Proposition 5.4. Suppose A is a simpficial ( d -  1)-complex satisfying f l ( A ) =  
df0(A) - t for some integer t. Then A is M a -rigid i f  and only if, for every subgraph H of  
A' which contains the vertices o f  a (d - D-simplex, IE(H)I < dIV(H)l  - t. 

This is a direct generalization of Proposition 4.3 with similar proof. Thus we omit 
the proof. The following is an immediate consequence. 

Corollary 5.5. A simplicial (d - 1)-complex A is M e-rigid if  its graph contains a 
spanning subgraph which satisfies the d-count. 

Let A be a simplicial (d - 1)-complex and let u be a new vertex. The one-point 
cone with u is the simplicial d-complex 

A , u  = {o-u {u}: o- e A} u ~. 

The following two results are crucial to the proof  of the main theorem in this 
section. They are analogues of  similar theorems in rigidity theory. These two results 
and Theorem 5.9 are known to Gromov who gave a sketch of their proof  in [7]. 
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Proposition 5.6. I f  a simpfic&l ( d -  1)-complex A is Md-rigid, then the one-point 
cone with a new vertex u is Ma+ 1-rigid. 

Proof. Take any d-simplex o- in A �9 u. This simplex contains u, whence ~r - {u} is 
a ( d -  1)-simplex in A. Let V* c V ( A * u ) -  o-. Then V* c V ( A ) - ( ~ r - { u } ) .  
Thus E ' ,  the set of all edges in A that meet V*, satisfies IE'I -> dlV*l. If E* is the 
set of all edges in A �9 u that meet V*, then 

IE*I = IE'I + IV*I > (d + 1)lV*l. [] 

Proposition 5.7. Suppose A t and A 2 a r e  two Md-rigid simplich~l (d  - 1)-complexes 
and A 1 n A 2 contains a (d  - 1)-simplex. Then A 1 U A 2 is Ma-rigid. 

Proof. Take any (d - 1)-simplex cr in A l U A 2. Assume for convenience that g is 
in A 1. Let U* c V ( A  1 U A 2 ) - ~ r ,  U 1 = U* r V(A1),and U 2 =  U * -  U 1.Suppose 
E~ is the set of all edges in A I that meet U~, and E 2 is the set of all edges in 
A 2 - A 1 that meet U 2. Then E*, the set of all edges of A 1 U A 2 that meet U*, 
contains E 1 u E 2. By the Ma-rigidity of h 1, we have IEll > d[Ull. Also, since 
U 2 _c V(A2) - V(A 1 n A 2) and A 1 n A 2 contains a (d - 1)-simplex, we have, by the 

Ma-rigidity of A 2, IEzIdIU2I. Thus 

IE*I >-- IE, I § IE2I >__ dlUll § dlf21 + dlU*[. [] 

Remark 5.8. Our definition of M a-rigidity for d > 3 coincides with that of Gromov. 
The main reason that we cannot relax the condition to all arbitrary sets of d vertices 
is that Proposition 5.7 will no longer be true. 

With these we can now prove that all normal ( d -  1)-pseudomanifolds are 
Ma-rigid. 

Theorem 5.9. All  normal (d  - 1)-pseudomanifolds are Ma-rigid. 

Proof. We prove this by induction on d. Since the normal 2-pseudomanifolds are 
just triangulated 2-manifolds, the theorem is true for d = 3. 

Assume that the result is true for d - 1. Let A be a normal d-pseudomanifold 
and let /x be one of its vertices. Then lk(/z, A) is a normal (d - 1)-pseudomanifold. 
By the induction hypothesis, lk(/x, A) is Ma-rigid. Therefore the cone lk(/z, A) * u is 
Ma+l-rigid. If w is a vertex adjacent to u, then the cones of their links, lk(tz, A) ,  u 
and lk(w, A)* w, have a d-simplex in common, whence their union is Ma+l-rigid. 
Repeated applications show that A is Md+ l-rigid. [] 

We can now prove Theorem 1.1. 

Proof o f  Theorem 1.1. Part (i) is an immediate consequence of Theorem 5.9 and the 
MPW reduction. 

For part (ii), if equality holds for some k, then by the normalization procedure in 
Section 3, A is a normal pseudomanifold. For d = 3, a normal 2-pseudomanifold A 
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is just a tr iangulated 2-manifold. So f i(A) = q~i(v, 3) for i = 1 or 2 implies that A is 
a t r iangulated sphere. 

For  d >  3, fk(A)=CPk(V, d)  for some k, 1 < k < d ,  implies by the M P W  
reduction that  

f l ( A ) = q ~ l ( v , d ) = d v -  ( d + l )  
2 " 

For  all u ~ V(A), lk(u, A), being a normal  (d  - 2)-pseudomanifold, is M a 1-rigid. 
Thus the cone lk(u, A ) ,  u is Md-rigid, whence 

e * > d v * -  ( d + l )  
- -  2 ' 

where e* and v* are the number  of vertices and edges of the cone respectively. By 
Proposit ion 5.4 with 

w  ave w eoce 
' - 2 ' 

By the construction of  the cone, lk(u, A) satisfies fl( lk(u,  A)) = ~l(v* - 1, d - 1). 
Thus lk(u, A) is a tr iangulated (d  - 2)-sphere. Since this is true for every vertex u, 
A is a t r iangulated ( d -  1)-manifold. Kalai [8] has shown that a tr iangulated 
(d  - 1)-manifold A which satisfies 

[ 
f l  (A)  = f 0  (A)  -- [ 

is a stacked sphere, thus completing the proof.  

d§ 
[]  

6. M a n i f o l d s  a n d  P s e u d o m a n i f o l d s  w i t h  B o u n d a r y  

A d-pseudomanifold with boundary A is a strongly connected d-dimensional  simpli- 
cial complex such that  every (d  - 1)-face is contained in at most two facets. The 
boundary of  A, aA, is the (d  - 1)-dimensional pure simplicial complex whose facets 
are those (d  - D-faces of A which are included in a unique facet of  A. A is a 
triangulated d-manifold with boundary if IAI is a d-manifold with boundary. 

Let A be  a simplicial complex and let o- be a face of A. The antistar of ~r is 
defined by as t (g ,  A) -'= {r ~ A: z n cr = 0}' A simplicial complex is a stacked 
(d - 1)-ball if it is the antistar of a vertex of  a stacked (d - 1)-sphere. 

By the definition a stacked (d  - D-ball O is a t r iangulated (d  - 1)-manifold with 
boundary. I f  O = ast(u, 1)), where 1) is a stacked (d  - 1)-sphere and u is a vertex 
of  f l ,  then the facets of the boundary of  O are the (d  - 2)-faces of lk(u, ~ ) .  
Suppose | has v vertices, with v b of them on the boundary and u i in the interior. 
Then u b ~ d. Since fk(O)  = fk(~'~) - - fk-1  (lk(u, l-l)), direct computat ion shows that 
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f k ( O )  = b r V b, d). Thus  Th eo rem 1.2 is true for stacked balls. To prove Theorem 
1.2 in general  we need  the following pre l iminary results. The proofs of these are 
similar to the analogous results in [8] and  are thus omitted.  

Proposi t ion  6.1. Let A be a (d - 1)-dimensional pure simplicial complex which is 
Md-rigid. For any vertex u of  A, v(lk(u ,  A)) _< y(A).  

Proposition 6.2. Let A be an M d-rigid ( d - 1)-pseudomanifoM and let u be one of  its 
vertices. Suppose the link o f  every face o f  A is connected, except possibly lk(u, A). Then 

Yk(A) >->- Yk i ( l k ( u , A ) ) ,  1 < k < d - 2 .  

I f  equality holds, then , /(A) = 0. 

We  are now ready to prove Th eo rem 1.2. 

Proof o f  Theorem 1.2. The case d = 3 is quite simple. Note that normal iza t ion 
increases either v i or  v b, and therefore  increases q~b(v i, V b, 3) while keeping f~(A) 
unchanged.  Thus we need  only consider  that normal  2-pseudomanifolds  with bound-  
ary are just  t r iangulated 2-manifolds with boundary.  For  a t r iangulated 2-manifold A 
with Eu le r  characteristic X and t connec ted  componen ts  in the boundary,  we have 

f l ( A )  = 3v i + 2v b + 3t - 3 t '  >- 3v~ + 2v b - 3 

and 

f2 (A)  = 2v i -I- U b + 2t  -- 2X > 2vi + u b - -  2 

with equali ty if and  only if X = 2 and t = 1, i.e., A is a 2-ball. 
For  d > 4, let u be  a vertex not  in A and  let A' be the complex A U (0A �9 u). By 

the given condi t ions  on the links of A, for each vertex x different  f rom u, lk(x, A') 
is a no rma l  (d  - 2) -pseudomanifold  an d  is hence M e l-rigid. It is an easy conse- 
quence of  Proposi t ions 5.6 and 5.7 that  A' is Ma-rigid. 

Also note  that f0(A')  = v i + u b + 1. Recall that,  for j > 1, Tj(A') = ~ ( A ' )  -- 
~j(n,  d). Put  y0(A')  = 0. A simple inspect ion shows that 

~-(A) - q0b(vi, Vb, d )  = y j (A ' )  -- y j_ l ( l k (u ,  A ' ) ) .  

We  apply the normal iza t ion  procedure  to A'. Let ~ 4~ {u} be a face of m i n i m u m  
d imens ion  k, k < d - 2, such that lk(o-, A') has t connected  components .  (Note 
that by the condi t ion  on the boundary ,  u ~ ~.)  W e  pull apar t  A' at cr to ob ta in  
N, (~ ' . )  and  wish to show that 

{Tj(A')  - T j (N~(A' ) )}  + {y j_ l ( lk (u ,  N ~ ( A ' ) ) )  - y j_ l ( l k (u ,  A'))} > 0. (6.1) 
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Since N~(A ' )  is ob ta ined  by replacing cr with t copies  of  it, ~ri, o" 2 . . . . .  ~rt; and 

replacing each  face ~r W ~" with o" i U �9 if ~" is in the i th c o m p o n e n t  of  lk(o-, A'), the  

first d i f ference  is always positive.  Since u ~ ~ ,  the second di f ference is zero because  

pulling apar t  at ~r does  not  affect lk(u, A'). Thus inequal i ty  (6.1) follows. 

H e n c e  we can assume that  A '  satisfies the  condi t ions  o f  Propos i t ion  6.2. F r o m  
this par t  (i) follows 

To  prove  part  (ii) we first note  that  equal i ty  implies  3,(A') = 0. By T h e o r e m  1.1, 

A' is a s tacked (d  - 1)-sphere. H e n c e  A is a s tacked (d  - 1)-ball. [ ]  

7. Conc lud ing  Remarks  

The  idea o f  M3-rigidity evolves  f rom D e h n ' s  p roof  that  the bar f r amework  on the 

graph of  a convex t r iangula ted  3-polytope is infinitesimally rigid in 3-space [4]. 

Cons ider  a convex t r iangula ted  3-polytope in 3-space with v vert ices  and e = 3v - 6 

edges.  Its rigidity matr ix  R is an e • v matr ix  whose  columns are  indexed by its 

ver t ices  and rows by its edges  and whose  entr ies  are  in •3. In the row cor responding  

to the  edge  {x, y}, there  are  only two nonzero  entries,  namely  x - y in co lumn x and 

y - x in co lumn y. Take  any face abc .  L e t  R '  be the matr ix ob ta ined  f rom R by 

dele t ing the  three rows cor responding  to the  three  edges ab ,  ac,  and bc,  and the 

nine co lumns  cor responding  to the three  ver t ices  a, b, and c. T h e n  the rank of  R is 

3v - 6 if  and only if the rank of  R '  is 3u - 9. Now R '  is a (3v - 9) • (3v - 9) 

matrix. T h e  nonzero  terms of  its de t e rminan t  are products  of  3v - 9 terms compris-  

ing, for  each  x ~ V -  {a, b, c}, three  distinct componen t s  cor responding  to the 

three edges associated with it by the  three matchings  (see Fig. 7.1 for example).  

a b c d e ] 

ab a - b  b - a  0 O 0 0 
a ac a - c  0 c - a  0 0 0 

ad a - d  0 0 d o a  0" 
d ae a e 0 0 e - a 0 

be 0 b e 0 0 e b f 0 
b b f  0 b f 0 0 -0 - b 

cd 0 0 c - d  d c 0 f 0  
c f  0 0 c f 0 0 c 
de 0 0 0 d -  e e d 

f df  0 0 0 d f 0 f O d  
e f  0 0 0 0 e - f  f - e  

Fig. 7.1. The figure on the left shows the graph of an octahedron. The arrows show a set of three 
distinct matchings from edges to adjacent vertices (excluding the three vertices a, b, and c). There 
are two sets of such matchings. The matrix on the right shows the rigidity matrix of the octahedron. 
The submatrix enclosed in the smaller rectangle is the matrix R'. det R' = [dace] [eabf] [fbcd] + 
[dacf] [eabd] [eabd] [.tbce], where, for example, [dace] denotes the matrix whose rows areal - a, 
d - c, and d - e. The first term corresponds to the set of three matchings shown, while the second 
term corresponds to the other set. It is not hard to see, by convexity, that the two terms are of the 
same sign. 
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I 

I 

Fig. 7.2. A"2-bananas" graph. 

Thus the truth of the condition E*_> 3IV*I for all V * -  V - { a ,  b, c} is 
equivalent to the existence of a nonzero term in the Laplace expansion of det R ' ,  
the determinant  itself may be zero. The case where {a, b, c} is not a face is similar 
but more subtle. M3-rigidity of the polytope is equivalent to the existence of a 
nonzero term. 

Dehn went further to show that all the terms in det R '  were of the same sign, 
thus completing the proof  of his theorem. However, it is not clear how Dehn's  proof  
can be extended to arbitrary 2-manifolds. 

We wish to emphasize here that M3-rigidity is strictly weaker than generic 
3-rigidity. An example is the "2-bananas" graph shown in Fig. 7.2. This graph is 
clearly not generically 3-rigid because in any realization in 3-space it can always 
rotate about the "hinge" indicated by the broken line. However, it is M3-rigid by 
Proposit ion 4.3 with t = 6. 

Another  difference is that while generically 3-rigid graphs are necessarily 3-con- 
nected in the vertex sense, M3-rigid graphs may not be connected. Take an M3-rigid 
graph G with v vertices and e = 3v edges. (The 1-skeleton of any tr iangulated torus 
is an example of such a graph.) Then the graph obtained by taking the disjoint union 
of two copies of G is disconnected and M3-rigid by Proposition 4.3 with t = 0. 
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