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Abstract. We give purely combinatorial proofs of the lower-bound theorems for
pseudomanifolds with or without boundary.
1. Introduction

Let A denote a simplicial complex and let f,(A) denote the number of its k-dimen-
sional faces. For positive integers k, d, v, v;, and v,, define the functions

e (v, d) = ”(Z)—k(ii}) if 1<k<d-2,
(v, d) =
(d-=Dv-(d+Dd-2) if k=d-1,
d—1 d) _ d . ~
ot (v;, vy, d) = ”"( k )*”*(k) k(k+1) if 1<k<d-2,

vy + (d— Doy~ (d — 1) if k=d-—1.

The main aim of this paper is to prove the following lower-bound theorems.
Throughout this paper d is always an integer > 3 unless otherwise stated.

Theorem 1.1. Let A be a (d — 1)-pseudomanifold with v vertices. Then:

D fA) 2o, dif 1l <k<d-1
(i) If equality holds for any k, 1 < k <d — 1, then A is a stacked (d — 1)-sphere
ford = 4 and a triangulated 2-sphere for d = 3.

Theorem 1.2. Let A be a (d — 1)-pseudomanifold whose nonempty boundary is the
disjoint union of normal pseudomanifolds. Suppose A has v; vertices in the interior and
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vy, vertices in the boundary, then:

@ fi(Ad) = oi(v;, vy, D if 1l <k <d— 1.
Gi) If f(A) = @2(v;, vy, d) for some k, 1 <k <d — 1 then A is a stacked
(d — D-ball if d > 4 and a triangulated disk if d = 3.

Kalai (8] proved these two theorems for manifolds and conjectured them to be
true for pseudomanifolds and pseudomanifolds with arbitrary boundary (see also [1]
and [2]). Previously, Klee [9] had proved the case k = d — 1 of Theorem 1.1(i) while
Bjorner [3] had conjectured Theorem 1.2(1). Kalai also pointed out, without giving
details, that they would follow from the generic 3-rigidity of triangulated 2-mani-
folds. Later Fogelsanger [5] proved that triangulated 2-manifolds are generically
3-rigid. As a result of our investigation we think that Theorem 1.2 for the case of
arbitrary boundary remains open.

In 1986 Gromov [7] defined a weaker form of rigidity, M, -rigidity, and proved
that triangulated 2-manifolds are M,-rigid. He then used this result to prove part (i)
of Theorem 1.1. However, his proof of the M,-rigidity of triangulated 2-manifolds
had some gaps. These were subsequently corrected by Connelly and Whiteley [14].
We give a simple proof of this result. Then we use the techniques developed by
Kalai [8] and the idea of M, -rigidity to give a proof of Theorem 1.1. M, -rigidity is a
weaker form of generic rigidity as defined in [14]. The techniques used here have
their roots in theory of generic rigidity.

Recently, Tay et al. [12] introduced the idea of skeletal rigidity of cell complexes,
which generalizes infinitesimal rigidity of graphs. Connections between skeletal
rigidity and the g-theorem of pi-spheres (piecewise linear spheres) have been made.
It is conceivable that a weaker form of skeletal rigidity can be defined that
generalizes M -rigidity. The techniques in this paper could then be generalized to
yield a combinatorial proof of the g-theorem.

In writing up this paper we benefited greatly from the works of Kalai [8] and
Gromov [7] and from continuing discussion with Walter Whiteley. For further
historical note on the lower-bound theorems, readers are referred to [8].

The paper is organized as follows. In Section 2 we give the basic definitions and
state the MPW (McMullen—Perles—Walkup) reduction which reduces the proof of
the lower-bound theorem for certain simplicial complexes to the case k= 1. In
Section 3 we define normal pseudomanifolds and show that the lower-bound
theorem for pseudomanifolds can be reduced to the case where the pseudomanifolds
are normal. In Sections 4 and 5 we prove that triangulated 2-manifolds are M,-rigid
and triangulated normal (d — 1)-pseudomanifolds are M rigid for d > 4. The
proofs of Theorems 1.1 and 1.2 are presented in Section 5 and Section 6, respec-
tively.

2. Basic Definitions and MPW Reduction

We use the following definitions and notations on simplicial complexes. Let A be a
finite abstract simplicial complex on the vertex set V. Thus, A is a collection of
subsets of V (called the faces of A)andif r€ Aand o0 C 7,then c€ A.Foro€ A
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the dimension of o is dim o = |o| — 1. f,(A) denotes the number of k-dimensional
faces (or briefly k-faces) of A. V(A) is the set of vertices (0-faces) of A. 1-faces of A
are called edges. The dimension of A is the maximum dimension of its faces. A
one-dimensional simplicial complex is called a graph. The graph G(A) of A is the
graph obtained by taking the vertices and edges of A. For a face o € A the link of o
inAislk(eg, ) ={r—c:7€ A, 7D20).

A simplicial complex A is pure if all its maximal faces have the same dimension.
Maximal faces of a pure simplicial complex are called facets. Two facets o, 7 of a
pure simplicial complex are adjacent if they intersect in a maximal proper face of
each. A pure simplicial complex A is strongly connected if, for every two facets o
and 7 of A, there is a sequence of facets o = o, 04,..., 0,, = 7, such that o, and

0;,, are adjacent of 0 <i < m. A is said to be connected if its graph is strongly
connected. It follows from the definition that strong connectedness and connected-
ness are equivalent for a one-dimensional simplicial complex.

Every simplicial complex A is associated with a topological space, denoted by [A|
(see [10D. A d-pseudomanifold is a strongly connected d-dimensional simplicial
complex such that every (d — 1)-face is contained in exactly two facets. A d-pseudo-

manifold A is a triangulated d-manifold if |A|is a manifold.

Remark 2.1. By a process known as MPW reduction, if a class of simplicial complex
is closed under taking links, then the lower-bound theorem for this class follows
from the case k = 1. (See [8] for details.)

3. Pseudomanifolds Without Boundary

The class of pseudomanifolds is not closed under taking links. The pinched torus is
an example (Fig. 3.1). Thus the MPW reduction does not apply directly. Therefore
we go to the class of normal pseudomanifolds: a (d — 1)-pseudomanifold is normal
if every k-face, 0 < k <d — 2, has a connected link. Note that, by Proposition 3.1
below, Ik(o, A), for every k-face o, 0 < k < d — 2, is strongly connected. Thus the
class of normal pseudomanifolds is closed under taking links of faces of dimension
<d — 2, whence part (i) of the theorem for a normal (d — 1)-pseudomanifold
reduces by MPW reduction to the case k = 1.

Fig. 3.1. Normalization of the “pinched” torus: The pinched torus (left) is a pseudomanofold.
“Pulling apart” at u yields a normal pseudomanofold.
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Proposition 3.1. Let o be a k-face of a normal (d — 1)-pseudomanifold, 0 < k < d
— 2. Then Ik(a, A) is strongly connected.

Proof. 1f k =d — 3, then lk(o, A) is a one-dimensional simplicial complex. In this
case connectedness and strong connectedness are equivalent.

Suppose k < d — 3 and lk(o, A) is not strongly connected. Partition its facets
into strongly connected subcomplexes, all of dimension d — k — 2. Since k(o, A) is
connected, two of these subcomplexes, say A; and A,, have some vertices in
common. Let 7 be a maximal face in A; N A,. Then dim(r) <d — k — 4 and
dim(o U 1) <d — 2. However, lk(cU 7, A) = Ik(r, k(o, A)) and this is not
connected. Thus we have a contradiction. O

We can turn an arbitrary pseudomanifold into a normal one by “pulling apart” at
certain faces. (See Fig. 3.1 for an example.) This normalization process is described
on p. 83 of [11]. (See also p. 151 of [6] and [8].)

As a consequence, for part (i) of Theorem 1.1 it suffices to prove the following:

Theorem 3.2, Let A be a normal (d — 1)-pseudomanifold with v vertices. Then

FUA) > (v, d) = dv — (d ; 1).
We devote the next two sections to proving this result as well as part (i) of
Theorem 1.1.

4. Triangulated 2-Manifolds are M,-Rigid

Given a graph, its subgraphs are its subcomplexes. A subgraph is spanning if it
includes all the vertices of the graph. For a simplicial complex we say that a face o
meets a given set U of vertices of o N U # {.

Definition 4.1. A graph G = (V, E) is M,-rigid if, for every triple of vertices a, b,
and c¢ and for every V* C V — {a, b, ¢}, we have | E*| > 3|V*|, where E* is the set of
all edges that meet V'*.

Clearly, a graph is M,-rigid if and only if it contains a spanning subgraph which is
M;-rigid.

As an immediate consequence of the definition we have

Proposition 4.2. Suppose a graph G = (V, E) contains a triangle and is M;-rigid, then
|El = 3|V| - 6.

However, the M,-rigidity of G = (V, E) does not imply that |E| > 3{V| - 6if G
does not have a triangle. In particular, the graph obtained from the complete
bipartite graph K, by deleting six edges symmetrically and one other edge is
M -rigid by the following proposition.
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Proposition 4.3. Suppose G = (V, E) is a graph with |E| = 3|V | — t, where t is an
integer. Then G is M-rigid if and only if every subgraph H = (V', E') with at least three
vertices satisfies

|E'| < 3]V — 1.

Proof. let H = (V', E') be any subgraph with at least three vertices. Let V* =V
— V. Then |E*| = 3[V*| if and only if

|E'l = |E| — |E¥| < |E| = 3[V* =3V| ~— ¢ = 3V* = 3V'| — 1. il
The graphical interpretation of M,-rigidity is the following.

Proposition 44. A graph G = (V, E) is My-rigid if and only if, for every triple of
vertices a, b, c, there are three edge-disjoint matchings of V — {a, b, ¢} with adjacent
edges.

Proof. We need to use Hall’s theorem on matchings in bipartite graphs. Define a
bipartite graph whose bipartitions are 4 =1V —{a, b, ¢} and B := E with the
obvious adjacency. Then the result is just an easy consequence of Hall’s theorem. O

Suppose we identify the three vertices a, b, and ¢ and call the resulting graph
G,p.- Then each of the matchings described in Proposition 4.4 corresponds to a
spanning subgraph of G,,. with [I'{G,,.)| — 1 edges. This subgraph is a spanning
tree if it is connected; otherwise it has two components. This subgraph may not be a
spanning tree as shown by the following example.

Example 4.5. Let G be the graph obtained by joining two disjoint copies of K, the
complete graph on seven vertices, using two edges. It can be shown (by using
Proposition 4.3 with ¢ = —2) that G is M,-rigid. Since G is two-edge connected,
G, does ot contain three edge-disjoint spanning trees.

Remark 4.6. The term M;-rigidity was coined by Waiter Whiteley. Gromov used the
term 3-rigidity which has a different meaning in rigidity theory. Originally Gromov
defined M rigidity for two-dimensional simplicial complexes and the three vertices
{a, b, c} were required to form a face of the complex. However, with the more
general definition, we can still prove M;-rigidity of triangulated 2-manifolds.

Remark 4.7. Connections with rigidity: We now say something about generic rigidity
which has been mentioned earlier. A bar framework in d-space consists of a set of
rigid bars which are linked together at their ends using ball joints. It is infinitesimally
rigid if no infinitesimal deformation of the vertices is possible without infinitesimally
altering the edge lengths. Such a framework has an underlying graph. A graph is said
to be generically d-rigid if it is the underlying graph of some infinitesimally rigid bar
framework in d-space. (See [14].)

Unlike generic rigidity, M,-rigidity does not give rise to a matroid because
minimally M;-rigid spanning subgraphs of a complete graph can have different
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numbers of edges (Propositions 4.3 and 4.2). (See [14] for a discussion on matroids
and rigidity.)

We say that a graph G = (V, E) satisfies the d-count if every subgraph H =
(V', E') with [V'| = d satisfies

E'| <dlV'| - (d“),

2

with equality when H = G. (In the literature on rigidity, this condition is also known
as Laman’s condition or Maxwell’s condition.)

If the bar framework in d-space on graph G is minimally generically d-rigid, then
it satisfies the d-count. However, the converse is true only when d = 2. (This is
known as Laman’s theorem, see [14].) Later (Section 7) we give an example to show
that M,-rigidity is weaker than generic 3-rigidity.

To prove that the graph of every triangulated 2-manifold is M;-rigid, we need a
result from topological graph theory. (See Sections 6.2 and 11.1 of [13]) A graph is
embedded in a surface M if it is drawn in M so that edges intersect only at their
common vertices. Such an embedding partitions M into regions which are the
components of the 2-manifold after the edges are deleted.

For a manifold M we denote its genus by g(M) if it is oriented and by (M) if it
is nonoriented. We denote the oriented and nonoriented genus of a graph G by
g(G) and g(G), respectively. The next series of lemmas can be found in [13]. A
graph G has e edges and v vertices and the corresponding numbers for its subgraph
G, are e; and v,.

Lemma 4.8. If a graph G is connected with v > 3, then

3v + 6g(G) — 6,
e<
3v +35(G) — 6.

Lemma 4.9. For any graph G, §(G) < 2g(G) + 1.
Lemma 4.10. If H is a subgraph of G, then g(H) < g(G) and §(H) < g(G).

Lemma 4.11. Let w(G) = max{2 — 2g(G), 2 — g(G)}, then w(G) =2 — §(G) or
3 - §(G).

Proof. If w(G) # 2 - g(G), then g(G) > 2g(G). Hence §(G) = 2g(G) + 1 and
the result follows. a

Lemma 4.12. If G,,..., G, are the connected components of a graph G, then
g(G) = Lg(G)
and

1+k+XLg(G) if 8(G)=2g(G) +1,

§(6) = 2k — L u(G) otherwise.
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Proposition 4.13. Suppose G is a graph with v (> 3) vertices and e edges. If G is
embedded in a 2-manifold with Euler characteristic x, then

e <3v—3y.

Equality holds if and only if G is connected and all the regions are triangles.

Proof. First note that y =2 — 2g(M) if M is oriented and y =2 — g(M)if M is
not oriented. If G is connected, then the result follows from Lemma 4.8.

So we assume that G,,...,G, are the connected components of G. From
Lemmas 4.8 and 4.12, we have

e < 3v+ 6Lg(G) — 6k
< 3v + 6g(G) — 6.

If §(G) =2g(G) + 1, then e < 3v + 38(G) ~ 9 < 3v + 35(G) — 6.
In the remaining case g(G) < 2g(G). Since w(G,) <3 — g(G,), from Lemma
412,

e < 3v + 3£4(G)) — 6k
< 3v - 3L u(G,) + 3k
< 3v +35(G) — 6k + 3k

< 3v+ 35(G) ~ 6.
The last inequality follow because k > 2. 0

We are now ready to prove the main theorem of this section.

Theorem 4.14.  The graph of every triangulated 2-manifold without boundary is M y-rigid.
Proof. 1f the graph of the 2-manifold A has v vertices, e edges, and the Euler
characteristic of A is y, then, by Proposition 4.13, e = 30 — 3x. The M,-rigidity of
A then follows from Propositions 4.3 and 4.13. O
5. (d — 1)-Pseudomanifolds are M,-Rigid

Definition 5.1. A simplicial (d — 1)-complex, d = 4, A is M,-rigid if, for every
(d - 1)-simplex o and for every V* < V(A) — o, we have |E*| > d|V*|, where E*
is the set of all edges that meet V'*.

The following is an immediate consequence of the definition.

Proposition 5.2. Suppose A is a simplicial (d — 1)-complex which is M ;rigid. Then

FA) = dfy(A) — (d ] 1)
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d

Fig. 5.1. Graph G.

Unlike Mj-rigidity, M -rigidity for d > 4 is a property of A rather than its graph
(Example 5.3). However, if the graph of a simplicial (d — 1)-complex A contains a
spanning subgraph which satisfies the d-count, then A is M rigid (see Proposition

5.4 below with
_(d+1
"( 2 ))

Thus A is M rigid if its graph is generically d-rigid.

Example 5.3. Consider the graph G shown in Fig. 5.1. Let A be the simplicial
3-complex with {b, ¢, d, e} and the other edges of G as its maximal cells. Let L be
the simplicial 3-complex with {a, b, ¢, e} and the other edges of G as its maximal
cells. Then A is not M,-rigid for if V* = {a, f}, then |E*| < 4|I/*|. By checking all
possibilities it can be shown that L is M,-rigid. However, both have the same graph.

Proposition 54. Suppose A is a simplicial (d — D-complex satisfying f(A) =
df(A) — t for some integer t. Then A is M, ~rigid if and only if, for every subgraph H of
A’ which contains the vertices of a (d — 1)-simplex, |E(H)| < d\V(H)| — .

This is a direct generalization of Proposition 4.3 with similar proof. Thus we omit
the proof. The following is an immediate consequence.

Corollary 5.5. A simplicial (d — 1)-complex A is M, -rigid if its graph contains a
spanning subgraph which satisfies the d-count.

Let A be a simplicial (d — 1)-complex and let u be a new vertex. The one-point
cone with u is the simplicial d-complex

Axu={ocu{u}):0c€ A} UA.

The following two results are crucial to the proof of the main theorem in this
section. They are analogues of similar theorems in rigidity theory. These two results
and Theorem 5.9 are known to Gromov who gave a sketch of their proof in [7].
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Proposition 5.6. If a simplicial (d — 1)-complex A is M ,rigid, then the one-point
cone with a new vertex u is M, , -rigid.

Proof. Take any d-simplex o in A * u. This simplex contains u, whence o — {u} is
a (d — D-simplex in A. Let V* c V(A*u) — o. Then V* Cc V(A) —~ (o — {u}).
Thus E’, the set of all edges in A that meet V'*, satisfies |E'| > d|V*|. If E* is the
set of all edges in A * « that meet V'*, then

|EX| = |E'|+ V¥ = (d + DIV*. O

Proposition 5.7. Suppose A, and A, are two M rigid simplicial (d — 1)-complexes
and A, N A, contains a (d — 1)-simplex. Then A, U A, is M rigid.

Proof. Take any (d — 1)-simplex o in A, U A,. Assume for convenience that o is
in A, Let U* c V(A UA)) — o, U =U*nV(A), and U, = U* — U,. Suppose
E, is the set of all edges in A, that meet U;, and E, is the set of all edges in
A, — A, that meet U,. Then E*, the set of all edges of A; U A, that meet U*,
contains E; U E,. By the M,rigidity of A,, we have |E,| = dlU,l. Also, since
U, c V(A,) — V(A; N A,)and A; N A, contains a (d — 1)-simplex, we have, by the
M ,rigidity of A,, | E,|dIU,|. Thus

[E*| 2 |E|| + |E,} = d|U| + dIU,| + d|U*. O

Remark 5.8. Our definition of M, -rigidity for 4 > 3 coincides with that of Gromov.
The main reason that we cannot relax the condition to all arbitrary sets of d vertices
is that Proposition 5.7 will no longer be true.

With these we can now prove that all normal (d — 1)-pseudomanifolds are
M ;-rigid.

Theorem 5.9. Al normal (d — 1)-pseudomanifolds are M ,rigid.

Proof. We prove this by induction on d. Since the normal 2-pseudomanifolds are
just triangulated 2-manifolds, the theorem is true for d = 3.

Assume that the result is true for d — 1. Let A be a normal d-pseudomanifold
and let u be one of its vertices. Then Ik( u, A) is a normal (d — 1)-pseudomanifold.
By the induction hypothesis, Ik( u, A) is M -rigid. Therefore the cone lk(u, A)* u is
M, ,-rigid. If w is a vertex adjacent to u, then the cones of their links, lk( &, A)*u
and k(w, A)*w, have a d-simplex in common, whence their union is M, ,-rigid.
Repeated applications show that A is M, ,-rigid.

We can now prove Theorem 1.1.

Proof of Theorem 1.1.  Part (i) is an immediate consequence of Theorem 5.9 and the
MPW reduction.

For part (ii), if equality holds for some k, then by the normalization procedure in
Section 3, A is a normal pseudomanifold. For d = 3, a normal 2-pseudomanifold A
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is just a triangulated 2-manifold. So f(A) = ¢,(v, 3) for { = 1 or 2 implies that A is
a triangulated sphere.

For d >3, f{A) = ¢, (v, d) for some k, 1 <k <d, implies by the MPW
reduction that

f](A) = (P](U, d) = dU - (d _; 1)

Forall u € V(A), Ik(u, A), being a normal (d — 2)-pseudomanifold, is M,,_ -rigid.
Thus the cone Ik(u, A)*u is M rigid, whence
e* > dv* — (d;l),

where ¢* and v* are the number of vertices and edges of the cone respectively. By
Proposition 5.4 with

d+1

_(d+1
- N

’ ), we have e*sdv*—(

), whence e* =dv* — (d+1).

2

By the construction of the cone, lk(x, A) satisfies f,(lk(x, A) = ¢(v* — 1, d — 1).
Thus lk(x, A) is a triangulated (d — 2)-sphere. Since this is true for every vertex u,
A is a triangulated (d — 1)-manifold. Kalai [8] has shown that a triangulated
(d — 1)-manifold A which satisfies

£(A) = f(A) — (d er 1)

is a stacked sphere, thus completing the proof. O

6. Manifolds and Pseudomanifolds with Boundary

A d-pseudomanifold with boundary A is a strongly connected d-dimensional simpli-
cial complex such that every (d — 1)-face is contained in at most two facets. The
boundary of A, 94, is the (d — 1)-dimensional pure simplicial complex whose facets
are those (d — 1)-faces of A which are included in a unique facet of A. A is a
triangulated d-manifold with boundary if |A| is a d-manifold with boundary.

Let A be a simplicial complex and let o be a face of A. The antistar of o is
defined by ast(o, A) ={re A: 7N o ={@). A simplicial complex is a stacked
(d — 1)-ball if it is the antistar of a vertex of a stacked (d — 1)-sphere.

By the definition a stacked (d — 1)-ball ® is a triangulated (d — 1)-manifold with
boundary. If ® = ast(u, (1), where Q is a stacked (d — 1)-sphere and u is a vertex
of (1, then the facets of the boundary of ® are the (d — 2)-faces of Ik(u, Q).
Suppose @ has v vertices, with v, of them on the boundary and v; in the interior.
Then v, = d. Since f,(®) = f,(Q) — f_; Uk(u, £2)), direct computation shows that
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fi(®) = @f(v;, vy, d). Thus Theorem 1.2 is true for stacked balls. To prove Theorem
1.2 in general we need the following preliminary results. The proofs of these are
similar to the analogous results in [8] and are thus omitted.

Proposition 6.1. Ler A be a (d — 1)-dimensional pure simplicial complex which is
M -rigid. For any vertex u of A, y(Ik(u, A)) < y(A).

Proposition 6.2. Let A be an M rigid (d — V)-pseudomanifold and let u be one of its
vertices. Suppose the link of every face of A is connected, except possibly 1k(u, A). Then

Y (A) = v, (k(u,A)), 1<k<d-2.

If equality holds, then y(A) = 0.
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The case d = 3 is quite simple. Note that normalization
increases either v; or vy, and therefore increases @f(v;, vy, 3) while keeping f,(A)
unchanged. Thus we need only consider that normal 2-pseudomanifolds with bound-
ary are just triangulated 2-manifolds with boundary. For a triangulated 2-manifold A
with Euler characteristic y and ¢ connected components in the boundary, we have

f1(A) =30, + 20, + 3t = 3x > 30, + 2v, - 3
and

HA) =20, +v,+2t —2x =20, + v, — 2

with equality if and only if y =2 and ¢ = 1, i.e., A is a 2-ball.

For d = 4, let u be a vertex not in A and let A’ be the complex A U (JA * u). By
the given conditions on the links of A, for each vertex x different from u, lk(x, A’)
is a normal (d — 2)-pseudomanifold and is hence M,_,-rigid. It is an easy conse-
quence of Propositions 5.6 and 5.7 that A’ is M -rigid.

Also note that fy(A") =uv; + v, + 1. Recall that, for j = 1, y(A") = f(4") —
@{(n, d). Put y,(A") = 0. A simple inspection shows that

£(8) = @P(uy, vy, d) = %(8) — v;_ (Ik(u, A)).

We apply the normalization procedure to A'. Let o # {u} be a face of minimum
dimension k, k < d — 2, such that Ik(o, A’) has ¢t connected components. (Note
that by the condition on the boundary, u ¢ o.) We pull apart A’ at ¢ to obtain
N_(A’) and wish to show that

{y,(A") — %(N, (AN} + {y,_(k(u, N,(A"))) — v;_,(Ik(u, A"))} > 0. (6.1
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Since N, (A') is obtained by replacing o with ¢ copies of it, oy, o,,..., 0,; and
replacing each face o U 7 with o; U 7 if 7 is in the ith component of k(o, A’), the
first difference is always positive. Since u ¢ o, the second difference is zero because
pulling apart at ¢ does not affect k(u, A"). Thus inequality (6.1) follows.

Hence we can assume that A’ satisfies the conditions of Proposition 6.2. From
this part (i) follows

To prove part (ii) we first note that equality implies y(A") = 0. By Theorem 1.1,
A’ is a stacked (d — 1)-sphere. Hence A is a stacked (d — 1)-ball. O

7. Concluding Remarks

The idea of M;-rigidity evolves from Dehn’s proof that the bar framework on the
graph of a convex triangulated 3-polytope is infinitesimally rigid in 3-space [4].
Consider a convex triangulated 3-polytope in 3-space with v vertices and e = 30 — 6
edges. Its rigidity matrix R is an e X v matrix whose columns are indexed by its
vertices and rows by its edges and whose entries are in R>. In the row corresponding
to the edge {x, y}, there are only two nonzero entries, namely x — y in column x and
y — x in column y. Take any face abc. Let R’ be the matrix obtained from R by
deleting the three rows corresponding to the three edges ab, ac, and bc, and the
nine columns corresponding to the three vertices a, b, and c¢. Then the rank of R is
3v ~ 6 if and only if the rank of R is 3v —9. Now R'is a Qv — N X Bv -9
matrix. The nonzero terms of its determinant are products of 3v — 9 terms compris-
ing, for each x € V — {a, b, c}, three distinct components corresponding to the
three edges associated with it by the three matchings (see Fig. 7.1 for example).

a b c d e f
ab a~-b b-a 0 0 0 0
a ac a—c 0 c—a 0 0 0
be 0 b—-c c—b 0 0 0
ad a-d 0 0 d—a 0 0
d % a—e 0 0 0 e—a 0
be 0 b-e 0 0 e—b 0
b ? of 0 b-f 0 0 0o f-b
cd 1] 0 c—-d |d-c¢ 0 0
cf [¢] 0 c—f 0 0 f-c
de 0 0 0 d—e e-d 0
f df 0 0 [} d-f 0 f—-d
ef 0 0 0 0 e—f f-e

Fig. 7.1. The figure on the left shows the graph of an octahedron. The arrows show a set of three
distinct matchings from edges to adjacent vertices (excluding the three vertices a, b, and c). There
are two sets of such matchings. The matrix on the right shows the rigidity matrix of the octahedron.
The submatrix enclosed in the smaller rectangle is the matrix R’. det R’ = [dace] [eabf ][ fbcd] +
[dacf] leabd) [eabd] [ fbce], where, for example, [dace] denotes the matrix whose rows aresd — a,
d ~ ¢, and d — e. The first term corresponds to the set of three matchings shown, while the second
term corresponds to the other set. It is not hard to see, by convexity, that the two terms are of the
same sign.
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Fig. 7.2. A ‘“2-bananas” graph.

Thus the truth of the condition E* = 3|IV* for all V* CcV —{a, b, ¢} is
equivalent to the existence of a nonzero term in the Laplace expansion of det R’,
the determinant itself may be zero. The case where {a, b, c} is not a face is similar
but more subtle. M;-rigidity of the polytope is equivalent to the existence of a
nonzero term.

Dehn went further to show that all the terms in det R’ were of the same sign,
thus completing the proof of his theorem. However, it is not clear how Dehn’s proof
can be extended to arbitrary 2-manifolds.

We wish to emphasize here that M,-rigidity is strictly weaker than generic
3-rigidity. An example is the “2-bananas” graph shown in Fig. 7.2. This graph is
clearly not generically 3-rigid because in any realization in 3-space it can always
rotate about the “hinge” indicated by the broken line. However, it is M;-rigid by
Proposition 4.3 with ¢ = 6.

Another difference is that while generically 3-rigid graphs are necessarily 3-con-
nected in the vertex sense, M,-rigid graphs may not be connected. Take an M,-rigid
graph G with v vertices and e = 3v edges. (The 1-skeleton of any triangulated torus
is an example of such a graph.) Then the graph obtained by taking the disjoint union
of two copies of G is disconnected and M,-rigid by Proposition 4.3 with ¢ = 0.
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