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Abstract. In this paper we use geometric dissection to obtain linear equations on 
the flag vectors on convex polytopes. These results provide new proofs and 
expressions of the complete system of such equations originally discovered by 
Bayer and Billera. The Mayer-Vietoris equation applies to a situation where two 
convex polytopes overlap to produce union and intersection, both convex polytopes. 
The operators I and C applied to a polytope produce the cylinder (or prism) and 
cone (or pyramid), respectively, with the given polytopes as base. The IC equation 
relates the flag vectors of the polytopes obtained in this way. As a consequence, it 
becomes easier to define linear functions of the flag vector, via initial data and 
their law of transformation under the operators I and C. 

1. Introduction 

In this paper  we use geometric dissection to obtain linear equations on the flag 
vectors of convex polytopes. A flag 6 on a d-dimensional  convex polytope A is a 
sequence 

8 = ( 8  l c 8 2 c  . . . c 8  r C A )  

of proper  faces of A, each strictly contained in the next. Its type or dimension is the 
ascending sequence 

dl < d z  < . . .  < d r < d ,  

where d i = dim 8 i is the dimension of the ith term of 6. It is convenient to consider 
the type of a flag to be a subset S of {0, 1 . . . . .  d - 1}. 
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A = A1 + A2 - A12 

Fig. 1 

For each such S the quantity fs is the number of flags on A with type S. There 
are 2 a subsets of {0, 1 . . . . .  d - 1}. The flag vectorf = fA  of A has for components 
the 2 a quantities fs. It counts not only vertices, edges, faces, etc., but also incidence 
relations. 

According to Bayer and Billera [1], the flag vectors of d-dimensional polytopes 
span a space whose dimension is the (d + 1)st Fibonacci number. Moreover, they 
also show that this space has as a basis the flag vectors of the polytopes formed by 
successively applying the operators C and IC to the point polytope. 

Here C is the operator that takes a polytope A to the cone or pyramid CA with 
base A, while IA is the product of A with an interval. (In fact, because they prefer 
simplicial polytopes to simple polytopes, Bayer and Billera use the bipyramid 
operator rather than the prism or cylinder operator I. That C and IC produce a 
basis corresponds under the duality induced by polarization to the basis result 
proved in their paper.) 

In algebraic topology the Mayer-Vietoris  equation relates the homology of a 
union A U B  to that of  A, of B, and of the intersection A AB.  Here, the 
Mayer-Vietoris  equation is an inclusion-exclusion result which applies when A = 
A 1 W A 2 expresses the convex polytope A as a suitable overlapping union of 
polytopes A 1 and 6 2 (see Fig. 1). 

Of the 2 a polytopes of  dimension d that can be formed by applying I and C to 
the point polytope, only a Fibonacci number are linearly independent. (The easy part 
of  [1] is to show that at most a Fibonacci number are independent. That this bound 
is sharp is the hard part.) The other purpose of this paper is to make clear the 
relationship between the operators I and C. In particular, an equation between I 
and C is presented here. As a consequence, it becomes easier to define linear 
functions of the flag vector, via their law of transformation under I and C. This will 
be exploited elsewhere. 

2. A Proof of a Result of  Bayer and Billera 

Here another proof is given of their bound on the dimension of span of the flag 
vectors of convex polytopes, a proof which is related to (the polarization of) 
McMullen's celebrated proof [4] by shelling of the Dehn-Sommervil le  equations for 
simple polytopes. In this proof the appearance of  the Fibonacci numbers is perhaps 
more natural. This proof leads us to the Mayer-Vietoris  theorem. 

Let a be a linear function that takes a different value on every vertex of  A. It will 
be thought of as a height function. Now let 6 be a flag on A. Let 6 ~ be the highest 
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point on the first term 61 of 6, and let 6~ be the lowest. By hypothesis on a ,  these 
points exist, and are vertices of A. 

Now let v be a vertex of A. Let f ~ v  be a local flag vector, that counts all flags on 
A with 6 ~ = v. Thus, fA is the sum of f ~ v  over all vertices of A. Similarly, let f~v 
count flags on A with 6~ = v. The result of Bayer and Billera would follow if the 
self-dual sum 

f~  + Lv 

for any vertex v on a d-polytope were known to lie in a fixed space of dimension at 
most the (d  + 1)st Fibonacci number. 

A_round v the polytope A looks like a cone on something. That something is the 
link L = L v which is constructed as follows. Let {fl = 0} be a hyperplane that 
supports h at v. In other  words, /3 is zero at v and strictly positive on the rest of A. 
The link L = L v is the intersection {/3 = e} n A of A with a parallel  displacement 
of {/3 = 0}, where e is a suitably small positive number.  

The hyperplane {a = av}  will in general  meet  the link L~.. (It will not if v is the 
highest or lowest vertex of A). It will divide it into two. The upper and lower links 
are 

LL +, = L~ n {c~ >_ av} ,  

L~ = L~ n {c~ <_ av} ,  

respectively, while 

L ~ = L , ,  n { a =  av}  

is the level link, and L~. itself is the total link (see Fig. 2). 
Note that the upper,  lower, and total links have dimension (d - 1), while the 

level link has dimension (d - 2). The next step is to relate f ~ v  + f~v to the upper, 
lower, level, and total links. In fact: 

Proposition. There are linear functions A and B such that the equation 

f ~ v  + f~v = A ( f L + v  + f L - v )  - B ( C L ~  

holds. Note that A and B depend on the dimension d. 

This equation entails the Bayer -Bi l le ra  bound on the span of flag vectors. To 
begin with, for 0-polytopes and 1-polytopes also the span of  the flag vectors has 
dimension 1. The above equation, together  with 2fA being the sum of f a y  + fay 

L~ L + 

Fig. 2 

L~- L0 
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over all vertices of  A, now suffices to support  an inductive proof  of  the Bayer -  
Billera bound. 

The ease of proof  of the proposit ion depends  very much on the degree to which 
the reader  is accustomed to linear functions of the flag vector. For  now, note that 
flags 6 with 6 ~ =  v or 6~ = v can be constructed from L v and from L+v, 

respectively. This construction will not apply to all flags on L - v  or L+v. Such 
inadmissible flags can be cons t ruc t ed - - and  thus c o u n t e d - - b y  L~ More details are 
given in Section 4. 

3. T h e  M a y e r - V i e t o r i s  E q u a t i o n  

The configuration of upper,  lower, level, and total links is not so different from that 
of the Mayer -Vie to r i s  theorem, which is now stated. 

T h e o r e m  (Mayer -Vie to r i s  or Inclusion-Exclusion).  Let A be a convex polytope. Let 

H 1 and H 2 be two hyperplanes, cutting A as in Fig. 1. Neither H 1 nor H 2 are to pass 
through any vertex of  A, nor are they to meet on A. Choose a height function a so that 

H 2 N A lies entirely above H 1 r A. 

Then the four polytopes 

satisfy the equation 

A = the originalpolytope, 

A 1 = allpoints of  A on or above H1, 

A 2 = aUpoints o f  A on or below H 2, 

A12 = A 1 0  A 2 

A = A t + A 2 -- A12 

by which is meant that the equation fA  = f A  1 + f A  z - f A 1 2  is satisfied by their flag 

vectors. 

Corollary.  Consider Fig. 2. Then 

L~ = L + + L ;  - IL~ 

holds as an equation between flag vectors, where I is the operator that takes a potytope A 

to the product [0, 1] • A o f  A with an interval. 

Proof. The level link L ~ can be  replaced by a thin slice of Lo, which has the 
combinatorial  type of IL~ by cutting Lo with a slight translate of  {a = a v} as well 
as {a = a v} itself. This displacement  will not  change the combinatorial  structure of 
the polytopes L~ + and L~-. The corollary now follows from Mayer-Vie tor i s .  []  
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Corollary. The flag vector fL  v is a linear function o f  fL  +~ + fL  j and fL  ~ . (Notation is 
as before.) 

Proof. The flag vector of IA is a linear function of that of A. This is left to the 
reader. [ ]  

The rest of the section is devoted to the proof of the Mayer-Vietoris theorem. It 
has two phases. The first is the matching up of the vertices, the second the matching 
up of flags. 

A bijection is required between the vertices of A 1 and A 2 on the one side, and A 
and Aa2 on the other. (The reader is advised to attempt this before proceeding.) 
Certain vertices of A~ are also vertices of A. Those that are not arise from A n H l 
and so lie on Al2. Similarly, certain vertices of A 2 lie on A12 and those that do not 
lie on A. 

This map is a bijection. This can be made clearer by introducing a function 
first(v, X, Y) where v is a vertex and X and Y are polytopes. It is defined by 

v as a vertex of X if v is a vertex of X, 

else v as a vertex of Y if v is a vertex of Y, 

else "an error has occurred" 

and using it the map defined above is 

while the rules 

A 1 ~ v ~ first(v, A, A12), 

A 2 ~ v ~ first(v, A12, A), 

A ~ v ~ first(v, A1, A2), 

A12 ~ v ~> first(v, A2, A1) , 

provide the inverse. 
To prove that these two maps are inverse to each other requires chasing the 

vertices through the rules. The facts 

a vertex of k I not of k is not of A 2, 

a vertex of A 2 not of A12 is not of A 1, 

a vertex of k not of k 1 is not of A12, 

a vertex of At2 not of A 2 is not of A 

will prove useful. The rest is left to the reader. 
This bijection on vertices can now be extended to flags. First, note that if v is a 

vertex of two polytopes X and Y chosen from {A, Al, A2, A12}, then X and Y are 
isomorphic in a neighbourhood of v and so any flag 6 on X whose first term 61 
contains v determines a unique flag on Y, and vice versa. 
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Now choose a height function c~ such that every vertex of the four A polytopes 
has a different height, and such that A • H 2 lies above A N H 1. Each flag 6 will 
have a unique highest vertex c = 6 7 of the first term. This vertex is subject to a 
bijection, which the flag then follows. This concludes the proof. 

4. Remarks on the Mayer-Vietoris Equation 

It is now possible to be more explicit about the calculation of  f~  + f~ from the link. 
Flags with first terms v can readily be calculated from L~. (=  L+~ + L,~-IL~ 
Other flags have a first term 81 which meets either L~ or L~7, but not L~ The 
inadmissible flags fall into two types. Those for which 81 lies on ~ 0 can readily be a ~  u 

counted. Those for which 81 only intersects L ~ can be counted in a manner similar 
to the counting of IL ~ 

An important application of  Mayer-Vietoris is to the situation where two parallel 
hyperplanes are used to truncate A along a face c5. Suppose, for definiteness, that 8 
lies below H v 

From a rational polytope A a torus embedding PA can be constructed [3]. Under 
this correspondence the truncation of A along 8 becomes a monoidal transforma- 
tion of PA along D = P~. This geometry supports a conjecture concerning the middle 
perversity intersection homology Betti numbers of algebraic varieties, which will be 
described elsewhere. 

To conclude, here is an observation that arose in conversation with McMullen. 
According to Mayer-Vietoris the equation 

hA + hA12 = hA 1 + hA 2 

holds for h any linear function of the flag vector. If a suitable homology theory 
H ( - . - )  for convex polytopes (and torus enbeddings) can be defined, then an 
isomorphism 

H ( A )  ~9 H(A12)  --~ H(A 1) ~9 H ( A  2) 

should be expected, and conversely this isomorphism could be used to help construct 
H( . - -  ) and derive its properties. This conjectured isomorphism helps justify the use 
of the name Mayer-Vietoris.  

5. The Polytopes CCA and ICA Compared 

Suppose that A is a convex polytope. The cone CA has A for its base, and around A 
the combinatorial structure of  CA is the same as that of IA around one of its end 
facets, say {0} • A. However, at its apex a the cone CA is very different, for it there 
has A as the link. For  example, if A is simple than CA is simple away from its apex, 
where it is nonsimple unless the base A is in fact a simplex. 

The cone CCA on CA has its own apex a' as well as the apex a of CA. The 
preceding description might lead one to expect a' to be a most distinguished point of  
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CCA, and indeed the author was so deceived for some time. However, this is not so. 
The cone CA is no more than the free join of A with the line segment aa'. In 

other  words, in some suitable affine space containing (a copy of) A, choose a line 
segment aa' that is skew to the subspace spanned by A, and take the convex hull of 
A with aa'. This is CCA. 

Along aa' the combinatorial  structure of CCA does not change. The structure is 
locally similar to that of a product,  for example, that of ICA along l{a}, where a is 
still the apex of CA. 

Proposition. The polytopes CCA and ICA have the same local combinatorial structure 
along the edges aa' and I{a}, respectively. 

Proof. It is enough to show that at the four vertices a and a' of CCA and {0} • {a} 
and {1} • {a} of ICA, respectively, the combinatorial  structure is the same. Firstly, 
CCA is the free join of  aa' to CA and so the structure at a is the same as at a'. 
Secondly, CA is the base of CCA and so the structure at a on CCA is the same as 
that of {0} • {a} on ICA. Finally, ICA is a product,  so {0} x {a} and {1} x {a} have 
the same structure. [ ]  

6. The Polytopes ICA and CCA Truncated 

The similarity between ICA and CCA has just been seen. The difference will 
become more apparent  when that which they have in common is removed. This is 
done by the process of truncation. 

Let {a = 0} be an affine hyperplane that supports ICA along I{a}. In other 
words, c~ is zero on I{a} and strictly positive on the remainder  of ICA. The 
intersection 

{~ > e} n lCA, 

where e is a suitably small positive number, this is the truncation of  ICA along I{a}. 
The truncation of CA along a is equivalent combinatorially to IA, and so ICA 
t runcated along I{a} is equivalent to IIA. 

The geometry of CCA t runcated along aa' is more subtle (Fig. 3). Each vertex v 
of A gives rise to three vertices on the t r unca t i on - -on  the base A the vertex v itself, 
and the intersection of  the truncating hyperplane with the edges va and va'. In fact, 
the truncation of CCA along aa' is the convex hull of three copies of A, of  which 
two have been translated and shrunk in size. It should not become clear that, just as 
CA truncated at a is equivalent to IA, so CCA t runcated along aa' is equivalent to 
S z • A, where S 2 is a two-dimensional simplex. (This product  is the convex hull of A 
and two parallel  translates of A. Shrinking the two translates does not change the 
combinatorial  structure.) The thick horizontal lines on Fig. 3 represent  A and its 
translates. The thickened part  of  the other edges belong to A • $2, which should be 
seen to be CCA truncated. 
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Fig. 3 

7. The IC Equation 

Our goal now is to reveal the relationship between the operators I and C. 
Truncation of I C A  along I{a} and of C C A  along aa' will produce the same change 
on flag vectors, for the combinatorial structure is the same along the two edges. 
(This is also a consequence of the Mayer-Vietoris equation for convex polytopes.) 
Thus the equation 

( I  - C ) C X  = I I X  - S 2 • X 

holds for any polytope X, in the following sense. The flag vector of I C X  less that of 
C C X  is equal to that of I I X  less that of S 2 • X. 

This equation applied to A yields 

( I  - C ) C A  = I I A  - S 2 X A 
( , )  

while applied to IA the equation 

( I  - C ) C I A  = I l i a  - S 2 X I A 

is produced. By virtue of the trivial equation 

I ( S  z • X )  = S 2 • I X  

and left multiplication of ( * ) by I, the equation 

I ( I  - C ) C A  = ( I  - C ) C I A  ( * * ) 

follows. 
According to Bayer and Billera the polytopes formed by successively applying I C  

and C to a point provide a basis for the span of the flag vectors of all polytopes. The 
equation (* *) is used to help understand this fact. 
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Theorem (The IC Equation). 

or more memorably 

The operators I and C satisfy the equation 

IIC + CCI = ICC + ICI  

I ( 1 -  C ) C  = ( I - C ) C  I 

in the sense that an equation holds between the flag vectors o f  the polytopes formed by 
applying IIC, etc., to a polytope A. 

8. Reduction to the I C  and C Basis 

The IC equation allows expressions in I and C to be rewritten, replacing IIC with 
ICC + ICI  - CCI. By itself this is not enough to reduce, say, I I C .  (where . is the 
point polytope) to a combination of polytopes in the Bayer-Billera IC and C basis. 
To deal with the terms I C I .  and CCI.  an additional rule is required-- that  I .  is 
equal to C - .  

Proposition (Reduction). 

(i) Let W be a word in 1 and C. Successive application o f  the rules 

I IC = ICC + ICI  - CCI, 

I . = C .  

to W .  will eventually result in a formal sum to which neither o f  these rules can 
be applied. 

(ii) I f  W .  is a word in I and C, terminated by ., to which neither o f  the rules applies, 
then W is a succession o f  the operators IC and C. 

Proof. Part (ii) is immediate. The problem is to prove termination. The first rule 
replaces IIC by ICC and CCI, each of which has only one I, and by ICI, which has 
two. The second rule similarly replaces an I by a C. 

Define a partial order on words in I and C, where the fewer I ' s  a word has the 
simpler (smaller) it is. Thus, the second rule replaces a word by a simpler word, and 
the first replaces a word by two simpler words, and one of the same simplicity. 

It is necessary to refine the order. The replacement of IIC by ICI  results in a C 
moving left (or an I moving right). This can be measured, for it will shorten the 
length of a block of I ' s  in the word, at the cost of lengthening the next block. 

It is now possible to define an order that will prove termination. Of two words, 
the smaller is the one with the fewer I 's,  or if equal, the one whose first block of I ' s  
is shorter, or if equal, the one whose second block of I ' s  is shorter, and so forth. 
According to this order, both of the rules result in a word being replaced by simpler 
word(s) and, as positive integers cannot indefinitely be decreased, the process 
terminates. [ ]  
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Corollary (Truncation Proof of Bayer-Billera Equations). The span of  the flag 
vectors o f  d-polytopes has dimension at most the ( d + 1)st Fibonacci number. 

Proof. Take a d-dimensional polytope and truncate it at the vertices to obtain A1. 
According to the Mayer-Vietoris equation the flag vector of A is expressible in 
terms of that of A 1, corrected by that of I and C applied to some (d - 1) polytopes. 
Let A 2 be the truncation of A 1 along (the residue of) the edges of A. Again, A 2 
differs from A 1 by H and and IC applied to (d - 2) polytopes. 

This truncation process finishes at Aa_ 2 which is a simple polytope. It is part of 
Dehn-Sommerville for simple polytopes that the polytopes 

I i C  j .  , where i + j  = d and i _<j, 

form a basis for the space of face (and flag) vectors of simple polytopes. 
The result now follows by induction on the dimension d and application of the 

reduction proposition. (It is trivial to show that there are a Fibonacci number of 
words in IC and C of length d.) [] 

9. Linear Functions of the Flag Vector 

Suppose that h is a linear function on the flag vector of polytopes, with the property 
that hlA and hCA can be calculated from hA. For the moment let [ and C denote 
the linear functions that calculate hlA and hCA from hA. By virtue of the IC 
equation the functions [ and C must satisfy 

i ( f -  d)d = 

and the equation 

( i-  d)d [ 

must also hold, by virtue of I -  = C . .  
For example, the number of vertices f0 is such a linear function of the flag 

vector. The formulae 

in = 2n, C n = n + l  

calculate foIA and foCA from fo A. As fo(') = 1 the equations 

[fo(')  = 2 x 1 = 2 ,  Cfo(') = 1 + 1 = 2  

hold. 
The linear functions I and C" defined above should satisfy the IC equation. In 

fact 

[ ( [ -  C)Cn = 2{2(n + 1) - (n + 2)} = 2n, 
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while 

( [ -  C)C[n = 2(2n + 1) - (2n + 2) = 2n 

and so [ and C do indeed meet the IC equation. 
This process can be reversed. Suitable f and C together with a boundary 

condition will define a linear function on flag vectors. 

Corollary (Definition via 1 and C ). Suppose that linear functions [ a n d  C are given, 
which satisfy the IC equation. Suppose also that an initial value h .  is given, such that 
[(') = C('). Then there is a unique linear function h defined on all convex potytopes, 
which satisfies 

hla  = [hA, hCa = d h a  

which also has prescribed initial value h('). 

Proof. The flag vector of any polytope can be expressed as a linear combination of 
the polytopes formed by successive application of I and C to the point polytope. 
From such a representation, hA can readily be calculated by the formulae for I, C, 
and h(.). 

It will follow immediately that hIA = [hA and hCA = ChA. The problem is that 
the representation as a linear combination of I and C polytopes is not unique. 

However, successive application of the rewrite rules of the reduction proposition 
will transform an arbitrary combination into one that involves only the polytopes in 
C and IC. Because [ and C satisfy the IC equation, and [ .  = Ch �9 each rewrite 
leaves the calculated value of hA unchanged. Because the Bayer-Billera basis is a 
basis, the final expression is completely determined by A, and so the value of hA 
obtained does not depend on the representation chosen for the flag vector in terms 
of I and C. [] 

10. Remarks on the IC Equation 

Sommerville's original proof [6] of the Dehn-Sommerville equations applied MiSbius 
inversion to Euler's equation, and the proof by Bayer and Billera [1] of the 
generalization used the same technique. This approach casts the Euler equation as a 
basic result in polytopes, to be manipulated by combinatorial technique. The proof 
by truncation presented here treats the Dehn-Sommerville equations as basic, 
together with the Mayer-Vietoris and IC equations. Geometry has replaced combi- 
natorial technique. 

In fact, the Euler equation can be proved quite easily from the Dehn-Sommer- 
ville equations, by successive truncation of a general polytope to a simple polytope. 
Moreover, McMullen in 1971 [4] provided a direct proof of the Dehn-Sommerville 
equations. Thus, convex polytope theory can be started with simple polytopes 
satisfying Dehn-Sommerville, or with general polytopes satisfying Euler. The author 
prefers the first approach. 
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The IC  equa t ion  was discovered by the au thor  in 1985 as a consequence  of some 
unpubl i shed  calculat ions involving the cd-index (see [2], [5], and  [7]). However,  its 
geometr ic  significance r ema ined  persistently misunders tood  and  undiscovered unti l  
1991. The  I C  equa t ion  provides an elegant  me thod  for defining l inear funct ions of 
the flag vector  of convex polytopes. Its mean ing  was found dur ing research on 
general ized Betti  n u m b e r s  for convex polytopes, which will be presen ted  elsewhere. 
The  geometr ic  proof  presen ted  here was found  quite easily, once the IC  equat ion  
had been  properly unders tood.  
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