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Abstract. In this paper we investigate the upper bounds on the numbers of 
transitions of minimum and maximum spanning trees (MinST and MaxST for 
short) for linearly moving points. Here, a transition means a change on the 
combinatorial structure of the spanning trees. Suppose that we are given a set of n 
points in d-dimensional space, S = {Pl, P2 , . . . ,  Pn}, and that all points move along 
different straight lines at different but fixed speeds, i.e., the position of Pi is a 
linear function of a real parameter t. We investigate the numbers of transitions of 
MinST and MaxST when t increases from -co to +oo. We assume that the 
dimension d is a fixed constant. Since there are O(n 2) distances among n points, 
there are naively O(n 4) transitions of MinST and MaxST. We improve these trivial 
upper bounds for L 1 and L= distance metrics. 

Let Kp(n) (resp. ~p(n)) be the number of maximum possible transitions of 
MinST (resp. MaxST) in Lp metric for n linearly moving points. We give the 
following results in this paper: Kl(n) = O(nS/2a(n)), x~(n) = O(nS/2a(n)), 
35(1(n) = @(n2), and ~ ( n )  = ~9(n 2) where a(n) is the inverse Ackermann's func- 
tion. We also investigate two restricted cases, i.e., the c-oriented case in which 
there are only c distinct velocity vectors for moving n points, and the case in which 
only k points move. 

1. Introduction 

Computational geometry problems for moving objects are theoretically interesting 
and have important applications in motion planning in robotics. The pioneering 



162 N. Katoh, T. Tokuyama, and K. Iwano 

MinST MaxS/" 

Fig. 1. MinST and MaxST. 

work in this field was done by Atallah [4], who gave nontrivial upper bounds on the 
number of combinatorial transitions of several fundamental geometric structures 
such as convex hulls for moving points. Voronoi diagrams and Delaunay triangula- 
tions for moving points have recently been investigated by Imai and Imai [11], Fu 
and Lee [7], and Guibas et al. [8]. 

Although the two-dimensional minimum spanning tree (MinST) is a subgraph of 
the Delaunay triangulation, it is not even clear that the number of  transitions of 
MinST is smaller than that of Delaunay triangulation. Recently, Monma and Suri 
[15] have investigated the case where only one point is allowed to move in an 
arbitrary manner, and gave an O(n 2a) bound (as well as a O(n z) tight bound in 
Euclidean two-dimensional space) for transitions of MinST. This bound has been 
recently improved to O(n a log c(d) n) by Aronov et al. [3], where a constant c(d) 
depends on d. However, to the authors'  knowledge, no one has ever succeeded in 
improving naive bounds on the numbers of combinatorial transitions of MinST and 
the maximum spanning tree (MaxST) (Fig. 1) when all points move linearly. 

In this paper we investigate the upper bounds on the numbers of transitions of 
MinST and MaxST for linearly moving points. Our paper is the first to give 
nontrivial upper bounds for these numbers. 

Let us formulate the problem: Suppose that we are given a set of n points in 
general d-dimensional space, S = {p:, P2 . . . . .  Pn}, and that all points move along 
different straight lines at different but fixed speeds, i.e., the position of Pi is a linear 
function of a real parameter t. We investigate the numbers of transitions of MinST 
and MaxST when t increases from - oo and + oo. We assume that the dimension d is 
a fixed constant. Figure 2 illustrates transitions of the MinST of five points when a 
point (shaded) moves linearly along the dashed line. 

When t is fixed, MinST and MaxST are determined only by the relative order of 
edge lengths. This implies that MinST (resp. MaxST) changes only if the relative 
order of the lengths for some pair of edges changes. 

Fig. 2. Transition of MinST. 
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Since there are O(n  2) distances among n points, there are naively O(n  4) 
transitions of MinST and MaxST. On the other hand, it is easy to construct an 
example that requires ~ ( n  2) transitions for each of MinST and MaxST. Therefore, 
there is a rather big gap between the lower and upper bounds of such transitions. 
Note that known bounds for the number of transitions of an L 2 planar Delaunay 
triangulation are O(n 3) and f~(n 2) [11], [8]. Very recently, Chew [5] showed an 
O(n2a(n))  upper bound for a planar Delaunay triangulation in L 1 or L= metric. 

Let Kp(n) (resp. ~p(n)) be the number of maximum possible transitions of MinST 
(resp. MaxST) in Lp metric for n linearly moving points. In this paper we restrict 
ourselves to the cases of p = 1 and ~ (except in Section 3), and give improved 
bounds for them as follows: 

Kl(n)  = O(nS /2a(n ) ) ,  

~ l ( n )  = O(n2) ,  

K=(n) = O(nS /2a(n ) ) ,  

~ ( n )  = O(n2),  

where a ( n )  is the inverse Ackermann's  function and is very slowly growing [1], [16]. 
In particular, a O(n 2) tight bound for MaxST is attained. 

We then consider two restricted cases. The first is the c-oriented case in which 
there are only c distinct velocity vectors for moving n points. The second is the case 
in which only k points move, while the other points remain in their original 
positions. We improve the above upper bounds for these cases. 

L 1 and Lo~ metrics are referred to as linear metrics in the subsequent discussion. 
The common technique we use to derive our upper bounds is the generalization of 
the combinatorial results obtained by Gusfield [9] and Katoh and Ibaraki [12] for the 
number of transitions of the minimum (or maximum) weight base in a matroid in 
which the weights of  all elements are linear functions of a single parameter t. Note 
that the minimum (or maximum) weight base in a matroid is an abstract notion of 
MinST and MaxST for general graphs. 

The distance between two points is a piecewise-linear convex function in t for 
linear metrics. If p ( t )  = ( p(a)(t) . . . .  , p(d)(t)) and q(t) = (qO)(t) . . . . .  q(d)(t)), the dis- 
tahoe function d l( p (  t ), q( t ) ) = Y'. ~= a l p( i)( t ) - q( ~ t )[ is a sum of d piecewise-linear 
convex functions, and, hence, is a piecewise-linear convex function itself. For the 
L= metric, the distance function is written as a function whose value is the maximum 
of d piecewise-linear convex functions and, hence, is piecewise-linear convex itself. 

Therefore, we must generalize the result of [9] and [12] to the piecewise-linear 
convex case. For this purpose, we introduce a minimum (resp. maximum) weight-base 
problem for matroids appropriately defined on certain multigraphs such that the 
weights of  all elements are linear in t, and the transition of  the minimum (resp. 
maximum) weight base occurs if the transition of  MinST (resp. MaxST) for the 
original graphs occurs. 

From this, we obtain O(m 3/2) and O(m~/-n) nontrivial upper bounds on the 
numbers of transitions of MinST and MaxST, respectively, for general graphs with n 
vertices and m edges in which each edge length is piecewise-linear convex in a single 
parameter t with a constant number of  breakpoints. As a direct consequence of 
these results, we have Kl (n )=  O(n a) and ~g(l(n)= 0(n5/2) .  These bounds are 
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further improved to those stated above through geometric insights into the struc- 
tures of  the problems. In particular, we use Yao's lemma [20], with which [20] 
developed efficient algorithms for the Euclidean MinST. 

Finally we study the problem of finding the value of t at which the total length 
of  MaxST is minimized. For linear and L 2 metrics, we give nearly linear-time 
algorithms for moving points in a plane, based on the parametric search technique 
developed by Megiddo [13]. 

2. Linear Metric Spanning Trees of Moving Points 

We derive the upper bounds on the number of transitions of MinST and MaxST in 
L 1 and L= metrics. Since the results we obtain and the techniques we use are the 
same for both metrics and for any d-dimensional space, we concentrate only on the 
L 1 metric case and on d = 2. Let pi(t) = ( x i ( t )  , yi(t)) denote the position of point 
Pi at t, where xi(t) and yi(t) are linear functions of t. The L 1 distance between two 
points in the plane is a piecewise-linear convex function in t with at most two 
breakpoints. Here t '  is said to be a breakpoint of a piecewise-linear function if the 
slope of  the function changes at t'. The L p  distance between points Pi and pj is 
denoted by dp(Pi, pj). Since dp(pi, pj) is a function of  t, it should be written as 
dp(Pi(t), pj(t)), but for convenience we omit the argument t unless there is a 
possibility of confusion. 

2.1. Number of Minimum Weight Bases of a Linearly Weighted Matroid 

First, we introduce a theorem on the minimum weight base of a linearly weighted 
matroid, previously presented by Gusfield [9] and Katoh and Ibaraki [12]. Let E be a 
finite set and let ~ be a family of subsets of E. The pair (E, ~ )  is called a matroid 
M(E, ~ ) ,  and the elements of ~ '  are the bases of M(E, ~) ,  if the following two 
axioms hold [18]: 

(A1) For a n y B ,  C c E w i t h  B g : C ,  i f B ~ ' a n d C c B ,  C ~ .  
(A2) For any B, B '  c ~ '  with B v~ B '  and for any e E B - B ' ,  there is e '  

B '  - B such that (B - {e}) U {e'} ~ ~ ' .  

For instance, let ,~- be a set of spanning trees in an undirected connected graph 
G = (V, E); then (E, J )  forms a matroid and 5 r is a set of bases [18]. 

The number IBI of  elements of a base B ~q~  is independent of the choice of B 
[18], and is denoted by p. Let m = IEI, and assume the elements of E to be indexed 
from 1 through m. We assume that each element i has a real-valued weight 
w i ( t )  ~ ait + b i that is linear in the parameter t. The minimum (resp. maximum) 
weight base is the one in which the sum of weights of elements is minimum (resp. 
maximum). It is known [18] that the minimum (resp. maximum) weight base changes 
only if the relative order of  weights of  some two elements i and j changes. 

Since the weight functions of two elements have at most one intersection, we 
have an  O ( m  2) trivial upper bound on the number of transitions of the minimum 
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(resp. maximum) weight base of M ( E ,  6t~). This was improved by [9] and [12], as is 
shown in the following theorem. The outline of its proof is given because the 
technique used is useful for deriving the results in the restricted cases discussed in 
Section 2.5. 

We remark that if we consider the trivial matroid where ~ '  consists of all subsets 
of cardinality p of E, Theorem 2.1 implies the well-known fact (see [6]) that the 
complexity of the p t h  level of an arrangement of m lines is O ( m  min{v~,  !f-m - p  }). 

Theorem 2.1 [9], [12]. When all wi(t)  are linear in t, the number o f  transitions is 

O ( m  m i n { f p ,  mfm-~-p}). (1) 

Proof. We briefly show the proof of  Theorem 2.1 which was originally given by [9] 
and [12]. We consider only the case of the minimum weight base (the case of the 
maximum weight base can be treated in the same manner). For ease of exposition, 
we assume that all ai's a re  distinct, where a i is the coefficient of t in wi(t). We 
rearrange the indices 1 through m in decreasing order of a i. Let  

b j  - b i 
t i j  - 

a i - a j '  

which is the value of  t at which the relative order of  the weights of two elements i 
and j changes. 

We further assume for simplicity that all tij's are distinct. This assumption implies 
that when the minimum weight base changes at t from B to B' ,  B is transformed 
into B '  by a single exchange, i.e., B '  = B U {i} - {j}. We represent a base B by an 
m-dimensional 0-1 vector, such that the ith element in the vector, denoted x i is 
equal to 1 if i ~ B, and is equal to 0 otherwise. Let us define the potential of  B as 

By definition, 

~-(B) = ~/x~. (2) 
i=1 

P ~ p ( m  + 1) 
p ( p  + 1) Y'~ i < 7r(B) _<_< i (3) 

2 i=1 i=m-p+l  2 

Let B1, B z , . . .  , B N denote the minimum weight bases generated by increasing t 
from - ~  to +~ .  When the minimum weight base changes from B k to Bk+ 1 at t k, it 
follows from the above assumption that i, j ~ E exist such that i ~ B k - Bk+ 1, 

j ~ Bk+ l - B~, and Bk+ 1 = (B  k W {j}) - {i}. In this case we say that B~ is trans- 
formed into B~+ 1 by an exchange (i, j ) .  It is clear that t k = tij and a i > aj hold, 
and that the change from B k to Bk+ x increases the potential by j - i. The  distance 

of exchange (i, j )  is defined as j - i. 
For  any i and j with i < j at most one k exists such that B k is transformed into 

Bk+ 1 by an exchange (i, j ) ,  because t k must equal tij .  Therefore, at most m - l k 's 
exist such that the change from B k to Bk+ 1 increases the potential by l. 
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From inequality (3), we have the following inequality: 

p ( m  - p )  
"rr(B N) - q'r(B 1) _< (4) 

2 

Therefore, the case, where N becomes as large as possible, happens when the 
potential increase due to each change from B k to Bk+ a is as small as possible. More 
precisely, this case happens when m - 1 exchanges with distance one exist, and 
m - 2 exchanges with distance two exist, and so on. From (4), the upper bound of N 
is obtained by first (i) computing the minimum q = q* that satisfies 

and then (ii) computing 

It is easy to see that 

becomes O(m min{grp -, ~ - p  }). 

q p ( m  - p)  
Y'. l (m - 1) > , (5) 

t=l 2 

q* 

Y'~ (m - 1). (6) 
l= l  

q * =  O ( m i n { ~ ,  g ' - m - p } ) .  Therefore, the term in (6) 
[]  

2.2. Number of  Distinct MinSTs and MaxSTs with Piecewise-Linear 
Convex Weight Functions 

Next, let us apply Theorem 2.1 to analyze the number of transitions of MinST (and 
MaxST) of a graph with piecewise-linear convex weights. 

The weight wi(t) of an edge i of a graph G = (V, E)  is a piecewise-linear convex 
function of  a parameter t. Let [Vq = n and IEI = m. Let l i denote the number of 
breakpoints of  wi(t), and let 

M =  ~ (l i +  1). (7) 
i~E 

When t increases from -o~ to + 0% we want to estimate the numbers Nmi n and 
Nma~ of  transitions of MinST and MaxST of G. Notice that MinST (resp. MaxST) 
changes only if the relative order between the weights for a pair of edges changes. 
For each pair of edges i and j, the functions wi(t) and wj(t) have at most l i + lj + 1 
intersections. Therefore, the trivial upper bound for both of Nma ~ and Nmi n is 
O ( E i q :  j I i q- ly + 1) = O(Mm).  

In order to improve this bound, we construct a multigraph G '  = (V, E ' )  from the 
original graph G = (I1, E) in such a way that the vertex set of  G '  is V, the weight of 
each edge of G '  is linear in t, and the minimum (or maximum) weight base of an 
appropriate matroid defined on G '  changes if (not necessarily only if) the topology 
of MinST (or MaxST) changes. Thus, the number of  transitions of the matroid is at 
least the number of  transitions of MinST (or MaxST). 
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G - vl G'  v 

v2 =v3 v2~ _2t+4 / v3 

Fig. 3. An example of graphs G and O d 

The convex function wi(t)  can be thought of as the upper envelope of l i 4- 1 
linear functions. I~ t  such l i + 1 linear functions be 

z ~ ( t )  = apt + b~, k = 1 . . . . .  l i + 1. (8) 

The edge set E '  consists of l i + 1 multiple edges e~, e/2 . . . . .  e~ ,+a connecting two 
endpoints for each edge i of G. The edge e/k has the linear weight zik(t) defined by 
(8). I E'I  = M holds from the definition of M. 

Figure 3 illustrates an example of graph G and its corresponding multigraph G' .  
As illustrated on the left-hand side of the figure, G has three vertices and three 
edges, and the weights of the edges are piecewise-linear convex functions I t -  II, 
12t - 41, and [3t - 51. The corresponding multigraph G '  has six edges with linear 
weights as illustrated in the figure. 

Lemma 2.2. 

(i) Let  C be a subset o f  E '  such that at most  one edge among {e), e2i,...,ei-/'+l*l 
does not belong to C for  each i, and the set 

{ i ~ Elall  edges e] , e 2 . . . . .  e~, + l belong to C} (9) 

is a spanning tree m G. Le t  ~ be the set o f  all such C's. Then (E ' ,  ~') t~ a 
matroid. 

(ii) Let  3 -  be the set o f  spanning trees o f  the multigraph G' .  Then ( E ' ,  J )  is a 
matroid. 

Proof. Since (ii) is obvious, we prove only (i). Since any C e ~ has M - (m - n + 
1) edges, axiom (A1) holds. For axiom (A2), let us consider, C '  e ~ with C ~ C' .  
Choose an arbitrary e/k ~ C - C' .  Let T and T '  be two spanning trees defined by 
(9) for C and C' ,  respectively. The following two cases are possible: 

Case 1: i ~ T. Some e k' e C '  - C exists because there are exactly l i edges with 
subscript i in C, as i ~ T, and at least l i edges with subscript i in C' ,  by definition of 
~. Thus (C U e/~') - e~ again belongs to ~.  
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Case 2: i ~ T. Since e/k q~ C' ,  i ~ T '  follows. Thus, a unique path in T '  connecting 
both endponts of i exists. Choose an edge j on the path such that j ~ T (such an 
edge always exists). Then (T  tO {j}) - {i} is again a spanning tree. Since a unique 
edge e~' exists such that e~' ~ C '  - C, (C U e y )  - e~ again belongs to ~.  [] 

Theorem 2.3. for an undirected graph G = (V, E) in which the edge weights are 
piecewise-linear convex functions of a single parameter t: 

(i) O ( M f m  ) transitions of MinST exist. 
(ii) O( M~/-n ) transitions of MaxST exist. 

Proof. (i) consider the matroid in Lemma 2.2(i). Given a MinST T at a certain 
value t, the set C defined by 

C = E ' -  {ei~'li ~ T, zik'(t)= max zik(t)} 
l<_k<_li+l 

is a minimum weight base in the matroid as can be easily shown. Conversely, for a 
minimum weight base in the matroid at a certain t, the corresponding spanning tree 
defined by (9) is MinST for the same t. Therefore,  if MinST changes, the corre- 
sponding minimum weight base in the matroid always changes. Thus, since every 
base in the matroid has M - (m - n + 1) elements, the theorem follows from 
Theorem 2.1. 

(ii) Consider the matroid defined in Lemma 2.2(ii). It is clear that if MaxST 
changes, the corresponding maximum weight base in the matroid always changes. 
Thus, since every base in the matroid has n - 1 elements, the theorem follows from 
Theorem 2.1. [] 

2.3. Number of Transitions of MinST 

Based on Theorem 2.3(i), the following theorem is immediate. 

Theorem 2.4. Kl(n) = O(n3). 

Proof. Consider the complete graph G = (S, S x S), where S is the set of  n points 
in the plane, and the length of an edge between two points is measured in the L~ 
metric. Since the t 1 distance between two points is a piecewise-linear convex 
function in t with at most two breakpoints, we have M = 3n(n - 1) /2  from (7). 
Thus, the theorem follows from Theorem 2.3(i). []  

This bound is further improved by using the technique developed by Yao [20]. We 
first define an Ll-version of Yao's graph (sometimes called the local neighborhood 
graph) introduced by Yao [20]. For a given t and a given point Pi, we divide the 
plane into eight regions relative to Pi. The regions are formed by four lines passing 
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Fig. 4. Local nearest neighbors. 

through Pi and forming angles of 0 ~ 45 ~ 90 ~ and 135 ~ respectively, with the x-axis. 
We number the regions counterclockwise, and use Rt(p~) to denote the set of  points 
in the lth region (including the boundary), for 1 < l < 8. We then have the following 
lemma: 

Lemma 2.5 [20]. If pj and Pk are points in Rt(pi)  for some l, then dl(pj,  Pk) < 
max{dl(Pi, Pj), dl(Pi, Pk)}. 

For each Rl(pi),  let pk be the one such that 

dl(Pi,  Pk) = min{dl(pi ,  &)lj ~ i, pj ~ Rt (p i ) ) .  

The point Pk is called the local nearest neighbor to Pi in Rl(Pi) (Fig. 4). 
An Ll-version of Yao's graph, G = (S, E),  is the one such that S is the set of n 

points in the plane, and (Pi, Pj) ~ E if and only if pj is the nearest neighbor to Pi in 
Rl(pi)  for some l with 1 < l < 8. G = (S, E)  contains at most 8n edges. 

Lemma 2.6 [20]. The edge set E of  G = (S, E) contains a MinST in L 1 metric. 

Figure 5 illustrates the containment of a MinST (bold edges) in the associated 
Yao's graph. 

Fig. 5. Yao's graph and MinST. 
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Since G = (S, E)  depends on the paramete r  t, we write it as G(t) = (V, E(t)). 
How many times does E(t) change as t increases from - ~  to + ~ ?  The lemma 
below follows from the theory of  upper  envelopes of line segments [10], [19]. 

Lemma 2.7. For each Pi and each l with 1 < I < 8, the nearest neighbor to Pi in 
Rt(pi) changes O(na(n) )  times when t moves from -oo to +~,  where the function 
a(n)  is the inverse Ackermann's function. 

Proof. Suppose that a point pj(t)  enters into and goes out of  Rl(pi(t)) at t = t '  
and t = t", respectively. During the t ime interval [ t ' ,  t"], the L 1 distance dl(Pi(t), 
pj(t)) is a linear function in t as is easily shown. Consider  the two-dimensional space 
(t, z). Then z = dl(pi(t), pj(t)) can be thought of as a line segment connecting 
( t ' ,  z ' )  and (t", z"), where z '  and z" are values of  dl(Pi(t), pj(t)) at t '  and t", 
respectively. Since at most n points enter  into and go out of Rt(pi(t)) over the 
entire range of  t, we can get O(n) such line segments. The graph of  the distance 
between pi(t) and the nearest  neighbor to pi(t) in Rt(pi(t)) is then the lower 
envelope of such O(n) line segments. Thus, the lemma is immediate from the results 
of  Hart  and Sharir  [10]. [] 

Thus, we have the following lemma: 

Lemma 2.8. The edge set E(t) of  G(t) = (V, E(t)) changes O(n2a(n)) times. 

Letting t l ,  t 2 , . . .  , t r with t 1 < t 2 < "'" < t r be the sequence of t ' s  at which E(t) 
changes, [ - ~ ,  + ~ ]  is divided into O(na(n) )  disjoint intervals 11, 12 . . . . .  In~(n ) SO 
that each interval contains O(n) tk's. Now let us consider the interval I k and define 

G = {(Pi, Pj)[(Pi, Pj) ~ E ( t )  for some t ~ Ik}. (10) 

Then IEkl = O(n) follows. Consider the graph G k = (S, E k) in which the weight of 
each edge Pi, Pj) is equal  to dl(pi(t), pj(t)). Note that  MinST of G k = (S, E k) 
changes at some t ~ I k if and only if MinST for the same point  set in the plane 
changes. From [Ekl = O(n) and Theorem 2.3(i), the number  of transitions of MinST 
of  G k over  the interval I k is O ( n 3 / 2 ) .  Therefore,  we have the following theorem: 

Theorem 2.9. Kl(n) = O(nS/2ct(n)). 

The Eucl idean (i.e., L 2 )  MinST is also contained in the edge set of  Yao's  graph 
(of L 2 norm). W e  can easily show that the number  of  transitions of Yao's  graph is 
nA4(n) = ~(n22 "(n)) for  the L z norm by using the result  of [1], where A4(n) is the 
maximum length of a Davenpor t -Sch inze l  sequence of  order  4. Thus, by applying an 
argument  similar to the  one given af ter  Lemma 2.8, we immediately obtain the 
following: 

Proposit ion 2.10. r2(n)  = O(n32"(")). 
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The main reason we have not succeeded in obtaining a subcubic upper  bound 
complexity for the L 2 case is the lack of a good counterpart  of Theorem 2.1. Instead 
of a family of  linear functions, we should consider a family of quadratic functions. As 
we remarked  before, Theorem 2.1 is a generalization of an upper-bound theorem of 
the complexity of a level of an arrangement of  lines. Thus, a straightforward 
counterpart  of Theorem 2.1 for the L 2 case should involve a nontrivial upper-bound 
result on the complexity of  a level of an arrangement  of quadratic curves, which 
seems to be a hard open problem in computational geometry. 

2.4. Number of Transitions of  MaxST 

As a direct consequence of Theorem 2.3(ii), we get ~ l ( n )  = O(n 5/2) by the same 
argument as in the proof  of Theorem 2.4. This upper  bound is further improved to 
O(n2). We also prove that ~ ( n ) =  ~ ( n 2 ) .  Thus we establish the tight bound 
~(l(n) = O(n2). 

Theorem 2.11. ~ l ( n )  = O(n2) .  

Proof. First,  we give the lower bound. In the one-dimensional  case the MaxST 
coincides with the furthest neighbor graph, which is a graph obtaining by connect- 
ing each point  to the point (one of  the points) furthest from it. Let  S(t) = So(t) u 
S+(t)  u S ( t)  be a set of 3n moving points on the real number line. So(t )= 
{0, 1 / n  3, 2 / n  3 . . . .  , (n  - 1) /n  3} is a set of n stable points. S+(t) = {pl( t)  . . . . .  p,(t)}, 
where pi(t) = 2i - 1 + (1 + (2 i  - 1)Z/nZ)t. S ( t )  = {ql(t) . . . . .  q,(t)}, where qi(t) = 
- 2 i  - (1 - (2i)2/n2)t.  The point pg(t) is the furthest neighbor of the point j / n  3 of 
S O if and only if (n 3 - 2 j ) / (4 i  - 3)n < t _< (n 3 + 2 j ) / ( 4 i  - 4)n. Hence, transitions 
of the MaxST of S(t)  occur at no less than n 2 t's. 

Next, we show the O(n 2) upper  bound for the planar  case. It is straightforward to 
generalize it for any fixed-dimensional case. As shown in [14], MaxST contains the 
furthest neighbor graph (FNG). The  L 1 hull of S is the set of points which 
maximizes one of the  linear form x + y, x - y, - x  + y, and - x  - y. F rom the 
definition, the  L 1 furthest neighbor of a point  of S is located on the L 1 hull. It is 
easy to see that  the number  of transitions of  the L 1 hull is O(n). We can assume 
that there a re  only a constant number  of points on the L 1 hull at an arbitrary t (we 
can apply the  perturbation method otherwise), and hence the number  of transitions 
of the  FNG is O(n2). 

The  F N G  contains at most two (in the higher-dimensional case, 2 a -  1) connected 
components.  Let l be  the longest distance between the connected components.  Then 
l is the distance between a point  in the  L 1 hull of one component  and a point  in the 
L 1 hull of the  other. MaxST of S is the union of the F N G  and l. The number  of 
transitions o f  the L 1 hull of each connected component  is O(n2). Since at most four 
points are located on the L 1 hull if the points are in general position, the edge l is 
changed O(1) times for a fixed topology of  the L 1 hulls of components.  Thus, we 
obtain the O(n  2) upper  bound. [ ]  
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2.5. Restricted Cases 

We consider in this section two restricted cases: the c-oriented case and the case 
where only k points move. We are interested in the case where c and k are small 
compared with n. In order to deal with the c-oriented case, we first give the 
following lemma, which is a counterpart of Theorem 2.1 for the c-oriented case. 

Lemma 2.12. Let M(E,  ~q~) be a matroid with m elements in which the weight of each 
element is linear in t, and suppose that there are only c' distinct slopes among all weight 
functions. Then the number of changes of the minimum (resp. maximum) weight base is 
O((c'mp) 1/2 + c'p), where p denotes the number of elements in a base. 

Proof. We consider only the case of the minimum weight base. Let 1, 2 , . . . ,  m be 
the indices of elements of a matroid rearranged in nonincreasing order of the slopes 
of the weight functions wi(t) = ai(t) + br To be precise, if i < j, then either a i > aj, 
or a i = aj and b i < bj. Since there are c '  distinct slopes, the sequence of 1, 2 . . . . .  m 
is divided into c '  clusters, C1, Cz , . . . ,Cc , ,  each of which contains elements with 
weights of the same slope. 

An element is called active at t o if it is in the current matroid base when t = t 0. 
Otherwise, it is called inactive (at to). We make each cluster size at least [m/c ' l ,  by 
adding (at most m) dummy elements which never become active. The total number 
m'  of  matroid elements after the above modification is at most 2m. 

We use similar notation to that used in the proof of Theorem 2.1. Particularly, 
the same potential is used. The total change of the potential is at most p(m'  - p ) /2 .  
In the analysis we use the fact that, when B k is transformed into Bk+ 1 by an 
exchange (i, j ) ,  i and j belong to different clusters. 

As in the proof of  Theorem 2.1, we consider the case where the number of N of 
changes becomes as large as possible. This occurs when the potential increase due to 
each change of the minimum weight base is as small as possible. Let Sq be the size of 
the cluster C o. The ith element of  Cq is denoted by f ( i ,  q) and the (Sq - j ) t h  
element of Cq is denoted by l(j, q). 

If h < m / 2 c ' ,  an exchange that increases the potential by h is the form (l(j ,  q), 
f (h  - j + 1, q + 1)), and j must be smaller than h. 

Let  us assume j < m / 2 c '  from now on. The h '  > h, suppose that (l(j ,  q), 
f (h  - j  + 1, q + 1)) and ( l ( j ,  q), f (h '  - j  + 1, q + 1)) both appear in the se- 
quence. The exchange (l(j ,  q), f (h  - j + 1, q + 1)) makes l(j, q) inactive. Before 
( l( j ,  q), f (h '  - j + 1, q + 1)) takes place, l(j,  q) must be activated again. In order 
to activate l(j,  q), there must be an exchange ( f ( i ,  q'), l(j ,  q)) for some q '  with 
q ' <  q -  1 and a suitable i. This exchange increases the potential by at least 
Sq - j  > m / 2 c ' .  

We charge m/rc '  of the cost of  ( f ( i ,  q'), l(j,  q)) to (l(j ,  q), f (h '  - j  + 1, 
q + 1)). We call this new cost the amortized cost. That the same ( f ( i ,  q'), l(j, q)) is 
charged more than once does not occur; thus the amortized cost of ( f ( i ,  q') ,  l(j, q)) 
is at least m / 4 c ' .  

Then, for each index l(j ,  q) (q = 1, 2 , . . . ,  c' - 1, j + O, 1 . . . . .  Sq - 1), only one 
(if any)index x exists such that the exchange (l(i, q), x )  increases the potential less 
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than m / 4 c '  (with respect to the amortized cost). Moreover, the increase of the 
potential is at least j for the exchange. 

Under the above condition, N is maximized when there are exactly c '  - 1 
exchanges which increase the amortized potential j for each j = 1, 2 . . . . .  rain 
{m/4c ' ,  X/p(m' - p ) / ( c '  - 1)}, and all other exchanges increase the amortized 
potential at least m / 4 c ' .  Since the total increases of  the potential is at most 
p(m'  - p ) / 2  < pm, there are less than 4 c ' p  exchanges which increase the potential 
more than or equal to m / 4 c ' .  Thus, we have N = O((c'mp) 1/2 + c'p). [] 

Now the number of transitions of MinST in the c-oriented case, where only c 
distinct velocity vectors exists, can be analyzed in the same fashion as in Section 2.2. 
It is easy to show that the number of  transitions of Yao's graph is O(min{a(n), c}n 2) 
for the c-oriented case. There are at most c 2 distinct slopes among the weight 
functions. Thus we establish the following theorem from Lemma 2.12: 

Theorem 2.13. Kl(n) = O(min{c, ot(n)}c2n 2) holds in the c-oriented case. 

Proof. We consider the time interval in which O(n) change occurs on Yao's graph. 
In this interval, m = O ( n ) ,  p = m - ( n - 1 ) = O ( n ) ,  and c ' = c  2. Thus, the 
number of transitions in the interval is 0((c2n2)1/2+ c2n)= O(c2n). Since 
there are O(min{c, a(n)}n) such intervals, the total number of  transitions is 
O(min(c, c~(n)}c2n2). [] 

The above bound is tight for fixed c, since it is easy to show the l I (n  2) lower 
bound for the 2-oriented case. 

Now let us analyze the number of transitions of MaxST in the c-oriented case. 
Consider the complete graph G = (S, S • S) defined in the proof of Theorem 2.4, 
and the corresponding multigraph B '  introduced in Section 2.1. It is easy to see that 
there are O(c 2) distinct slopes among O(n 2) edge weights. Thus, from Lemma 2.12, 
we have the following theorem: 

Theorem 2.14. ~a(n) = O(cn 3/2) holds in the c-oriented case. 

Proof. In the corresponding matroid, m = O(n2), p = n - 1, and c '  = c 2. Thus, 
the number of  transitions is O((c2n2n) 1/2 + c2n) = O(cn 3/2 + c2n). On the 
other hand, an O((n 2) bound has been already given (Theorem 2.11), and 
min{n 2, cn 3/2 + c2n) = O(crl3/2). [] 

We now consider the case where there are only k moving points. Other points 
are called fixed. Let S' and S" be the sets of k moving points and n - k fixed 
points, respectively. Let MaxST(S") (resp. MinST(S")) be the MaxST (resp. MinST) 
for the point set S". This does not change with time, since the points in S" are fixed. 
MaxST (resp. MinST) for any t is contained in the set of  the union of MaxST(S") 
(resp. MinST(S")) and edges connecting the points in S '  and S ( =  S' U S"). There 
are O(kn) edges in this set. Furthermore, since the situation can be regarded as the 
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(k + 1)-oriented case. We have the following theorems: 

Theorem 2.15. ~ ( n )  = O(k2n) holds when only k points move linearly. 

Proof. In the corresponding matroid, m = O(kn), p = O(n), and c ' =  k 2. We 

apply Lemma 2.12, and obtain aT(l(n) = O( kv/k~n 2 + k2n) = O(k2n). [] 

Remark. The above upper bound has been improved to O(kn + k2x/~ -) recently [17]. 

Theorem 2.16. Kl(n) = O(k3n) holds when only k points move linearly. 

Proof. In the corresponding matroid, m = O(kn), p = O(kn), and c '  = k 2. Thus, 
we obtain the theorem. []  

3. Finding the Smallest MaxST 

It is an interesting problem to find the value of  t when the MaxST of linearly moving 
points satisfies some minimality condition. In this section we give efficient algorithms 
for finding the value of t when the total edge length of planar MaxST becomes 
minimum. 

Theorem 3.1. We can find the value of t when the total edge length of MaxST in 
two-dimensional space becomes minimum in O( n log 2 n) time and O( n log 4 n) time for 
the L 1 and L 2 metrics, respectively. 

Proof. First, note that the length of a given spanning tree is a convex function in t. 
Thus, the total length of MaxST is also convex in t, since it is an upper envelope of 
convex functions each of which corresponds to the total length of a spanning tree. 
Therefore, the optimal value t* can be found as the supremum of t such that the 
slope of  the function representing the total length of MaxST at t is negative. Thus, 
for a given t, we can tell whether t* < t, t* > t, or t* = t in O(n log n) time by 
computing the MaxST at t by using the algorithm given by [14] (for the L 2 metric). 
The time complexity can be reduced to O(n) for the L 1 c a s e .  

Next, by directly parallelizing the algorithm of [14], we obtain an O(log n)-time 
and an O(n)-processor algorithm to compute the L 1 MaxST, and an O(log 2 n)-time 
and an O(n)-processor algorithm to compute the L 2 MaxST (for computing the L 2 
FNG we use an O(log 2 n)-time and O(n)-processor three-dimensional convex hull 
algorithm [2]). 

From the above observations, it is now an easy exercise to apply Megiddo's 
parametric search [13] in order to obtain the results. [ ]  

Notice that these results are valid only for d = 2, since no parallel algorithm with 
the above running time is known for the general d-dimensional case. 
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4. Concluding Remarks 

We have investigated the upper  bounds on the number  of transitions of dynamic 
MinST and MaxST of points moving linearly in a fixed-dimensional space. 

For  linear metrics, we have obtained a tight bound O(n 2) for the MaxST case. On 
the other  hand, for the MinST case, there is still a gap of vrnc~(n) factor between the 
lower and upper  bounds. We conjecture that the bound for the MinST is also O(n2). 
These results can be extended to any convex polyhedral  metric, provided that the 
distance function, which is a piecewise-linear convex function, has a constant 
number  of break points. 

It is important  to investigate the problem for the Euclidean L 2 metric. So far, we 
have only been able to show an 0(n32 ~(n)) bound for MinST, and a trivial O(n 4) 
bound for MaxST. However, we believe that these bounds will be significantly 
improved in future. 

We also investigated the problem of finding the minimum length of MaxST for 
moving points, and proposed an efficient algorithm with O(n log 4 n) running time 
for the L 2 metric. The MinST version of this problem is quite important  in practical 
applications, since a point  set whose MST is small is usually well-clustered. Thus, it 
may be applied to, for example, elimination of linear noise from two-dimensional 
data (such as an automatic-focus system), and estimation of time of explosion or 
other  critical events in chemical or physical experiments from observed current 
movement  of data. However, the total length of MinST is neither concave nor 
convex in t, and it is left for future research to design subquadratic algorithms for 
finding the value of t minimizing the total edge length of the dynamic MinST. 
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