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Abstract. If g~l and g~2 are two families of pairwise disjoint simple closed curves 
in the plane such that each curve in ~1 intersects each curve in g~2, then the total 
number of points of intersection in ~J1 u g~2 is at least 2(m - 1)n, where m = ]~11 
-< l~2[ = n, and this bound is best possible. We use this to show that the cartesian 
product of two 5-cycles has crossing number 15. 

1. Introduction 

The crossing number  cr(G) of a graph G is the minimum number of pairwise 
crossings of edges among all drawings of G in the plane. There are very few classes 
of  graphs for which the crossing numbers are known exactly. 

The cycle of length n is denoted  C n. Harary et al. [H] conjectured that the 
crossing number of the cartesian product  C m x C,, is (m - 2)n, for 3 _< m < n. 
(The cartesian product of C m and C,, is a 4-regular graph on vertices vi,;, 1 < i < m, 
1 _< j _< n, with vi, j being adjacent  to each of v i + 1,j and Ui, j + 1, with the first index 
being read modulo m and the second modulo n. The m + n cycles obtained by 
fixing one of the coordinates are the principal cycles.) 

To date, this conjecture has been verified only for m = 3, 4 [B], [R]. Beineke and 
Ringeisen wrote in 1980, " . . .  it appears  to be quite difficult to determine even the 
crossing number  of C 5 x C5." 

As an alternative approach to investigating c r ( ~  m x g~n), we consider intersection 
proper t ies  of curve systems in the Euclidean plane. If  ~ is a collection of  simple 
closed curves, then we denote by i (g  ~) the number  of points of  intersection. The 
general  result ment ioned in the abstract says that if ~ = ~1 U ~2, where ~ l  and ~2 
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consist of m and n, respectively, pairwise disjoint curves and every curve in ~1 
intersects every curve in ~2, then i (~ ' )  > 2(m - l ) n ,  if m < n. 

This conclusion is not true if we drop the condition that the members  of ~1 and 
~'2, respectively, are pairwise disjoint, even in the case m = 3. (Thus, the complete 
conjecture of Harary  et al. cannot  be proved by these methods.)  However,  in special 
cases of interest,  such as m = n = 4 and m = n = 5, this condition can be dropped,  
and thereby obtain the corollaries that cr(C 4 X C4) = 8 and cr(C 5 X C 5) = 15. 

2. Intersections of Two Pairwise Disjoint Curve Systems 

In this section we prove the result ment ioned in the abstract about the number  of 
intersections of two families of  pairwise disjoint simple closed curves. To be more 
specific, a disjoint (m,  n)-mesh is a pair  (~1, "~2) of families, each consisting of 
pairwise disjoint simple closed curves, with I~11 = m and l~2l = n, such that every 
curve in ~1 intersects every curve in ~2. Further,  we assume that no point  in the 
plane is in more than two of  the curves in ~'1 U ~2. 

To simplify the notation, for a disjoint (m, n)-mesh (~'i,  ~2), let i(~1, ~2) denote  
the number  of points of intersection in ~1 U ~2 and let i(m, n) denote  the 
minimum of  i ( ~  1, ~2), with (~'1, ~'2) ranging over all disjoint (m, n)-meshes. We 
have the following result. 

Theoreml.  Let 2 < m < n. Then 

i(n,  m)  = i (m ,  n) = 2(m - 1)n. 

Proof. That  i(m, n ) <  2 ( m -  1)n is seen by providing an appropr ia te  figure, 
which is left to the reader.  The interesting part  of the proof  is showing that 
i(m, n) > 2(m - 1)n. This is done by induction on m + n. We can use as a base 
the case m = 2, which is trivial, as there are obviously at least 2n intersections. 

Lemma 2. Let (~1, ~2) be a disjoint (m,  n)-mesh. Suppose there are distinct curves 
C1, C2, C3 ~ ~1 with C 1 and C 2 in different regions o f  ~ 2 \ C3" Then 

i ( f f l ,  ~2) > 2n + i (m  - 1, n).  

Proof. Since every curve in c~ 2 has a point  in each of C 1 and C 2, each curve in ~2 
must m e e t  C 3 in at least two points. Dele te  C 3 from ~1 to get the result. []  

Obviously, the symmetric conclusion holds in Lemma 2 with the roles of ~a and 
~2 interchanged. It is easy to see that if a disjoint (m, n)-mesh has a curve that 
separates two in the same class, then Lemma 2 and the inductive assumption show 
that this mesh has at least 2(m - 1)n intersections. Therefore,  the rest of the proof  
is devoted to dealing with the case that  the disjoint (m, n)-mesh (~'1, ~2) is 
separation-free, i.e., for i = 1, 2, ~ has that  proper ty  that, for each C ~ ~,,, no two 
curves in ~i lie in different components  of  ~ 2 \ C. We prove the following, which 
completes  the proof  of  Theorem 1. 
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Proposition 3. Let (~1, g~2) be a separation-free disjoint (m, n)-mesh, with 3 <_<_ m < 
n. Then i(~1, ~2) >- 2m(n  - 1). 

We require some preliminary facts, the first of which is a simple consequence of 
the Jordan Curve Theorem. 

Lemma 4. Let (~ l ,  ~2) be a (separation-free) disjoint (m, n)-mesh. I f  C ~ ~1 and 
C '  ~ ~2 are such that [C n C'I > 1, then either tC A C'I is even or there is a 
(separation-free) disjoint (m, n)-mesh (g~'l, g~) such that i ( ~ ,  ~ )  < i(~1, ~2). 

1.emma 5. Let (g~l, g~2) be a separation-free disjoint (m, n)-mesh and suppose 
C r_ g~l and C' ~ ~2 exist such that [C (q C'] > 1. Then either [C 0 C'[ > 4 or there 
is a separation-free disjoint (m, n)-mesh ( ~ ,  ~ )  such that i(~'~, ~'~) < i(~1, g~2). 

Proof. By Lemma 4, the only other possibility is that IC n C'[ = 2. Let A 1 and A 2 

be the two components of C \ C' .  Only one of these, say A1, is in the component of 
R 2 \  C' that contains all the other curves in ~2- Therefore, A 2 is disjoint from all 
the curves in both families (except, of course, C and C'). Similarly, there is an arc 
A' 2 of C'  that is disjoint from all the curves in both families. 

Now replace C by (C \ A  2) U A' 2 and C'  by (C'  \ A '  2) u A 2 and remove one of 
the two tangential intersections. The resulting separation-free disjoint (m, n)-mesh 
has fewer intersections than (~1' ~2 )" [] 

Proof of  Proposition 3. Choose (~1, ~ )  to be a separation-free disjoint (m, n)-mesh 
having fewest intersections. (We remark that it may be that i(~1, ~2) > i (m, n).) Let 
C1, C2, C3 ~ ~1 and let C'1, C~, C~ ~ ~2. If i({C1, C2, Cs}, {C'1, C~, C~}) = 9, then, 
putting a vertex inside each curve and drawing three arcs from the vertex to the 
three intersections would yield a planar drawing of K3, 3. Therefore, i({C 1, C2, C3}, 
{C~, C~, C~}) > 9, so i, j ~ {1, 2, 3} exist such that [C i N C~l > 1. By Lemma 5, 
[C i 0 C}[ ~_~ 4, so that i((C1, C2, C3}, {C~}) _> 6. 

For any C'  ~ ~2, then i({C 1, C 2, C3}, {C'}) is either 3 or at least 6 and, by the 
preceding paragraph, there are at most two elements of ~2 for which this number is 
3. Therefore, i({Cl, C2, C3} , ~2) > 6 + 6(n - 2) = 6(n - 1). 

As there are 3 ways of choosing C 1, C 2, C 3, and each intersection occurs in 

( m - l )  O f t h e m ' t h e r e a r e a t l e a s t 2  

6 , n - ,  
m - l )  

intersections, as required. [] 
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3. Intersections of (3, n) -Meshes  

One of the motivations for considering meshes is that, in any planar drawing of 
Cm X Cn, the principal cycles have the property that each one in one family 
(the m-cycles) intersects each one in the other (the n-cycles). Thus, we generalize 
disjoint meshes to allow more general configurations, which will include drawings 
of C m • Cn. 

An (m,  n)-mesh is any pair (c~1, ~2) of  families of planar closed curves (not 
necessarily simple, but with only finitely many self-intersections), such that 1~1] = m, 
Ic~2] = n, and each curve in ~ intersects each curve in c~ 2 in a non-self-intersection 
point. We let i*(c~1, ~2) denote the total number of intersections and self-inter- 
sections in ffl t3 ~'2- We also let i*(m, n) denote the least i*(~1, ~'2) over all 
(m, n)-meshes (~'1, c~2). 

An  (m, n)-mesh (~'1, ~'2) is optimal if i*(~1, ~2) = i*(m, n). 
We note the following basic facts. 

Lemma 6. 

(1) I f  (~'1, ~2) is an optimal (m,  n)-mesh, then every curve in ~1 U ~2 is simple. 
(2) I f  (~1, ~2) is an optimal (m,  n)-mesh and C ~ ~1, C'  E ~2 are such that 

[C n C'l > 1, then IC n C'I is even. 

In the case m = 3, we have complete information. 

Theorem 7. For n >_ 3, 

t 12, n = 3, 

Proof. To see that the expression is a lower bound for i*(3, n), we proceed by 
induction on n. For the base, we note that any (3, 3)-mesh is a drawing of C 3 x C3, 
which has nine vertices and crossing number 3 [H]. Therefore, i*(3, 3) = 12, as 
required. 

Now assume n > 4. Let (~1, ~2) be any (3, n)-mesh and suppose there is 
some curve C ~ T2 that has at least four intersections. Then (~1, ~2 \ {C}) is a 
(3, n - D-mesh. It follows that i * ( ~  1, ~2) > 4 + i*(3, n - 1) and we are done by 
induction. 

Therefore, we can assume that every curve in ~2 has only the three intersections 
that it must have to meet each curve in ~1. It is easy to see that ~2 is separation-free 
and, viewing (~1, ~2 ) as a 4-regular plane graph, each curve in ~2 is a triangle 
bounding a face. 

Consider ~1 as a 4-regular plane graph H,  having k vertices. Then it has e = 2k 
edges and f = k + 2 faces. If fi denotes the number of faces of length i, then 
Ei ifi = 2e = 4k. 
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Obviously, the n curves of ~2 must go into faces of H and the faces used must 
be incident with all three of the curves in ~1. It is an easy induction to see that we 
cannot put  more than i - 2 curves from ~'2 into a face of length i, so that n < 
Ei (i - 2)f, _< 4k - 2(k + 2) = 2k - 4. (We remark that it may be that T1 is not a 
connected graph. However, it is easy to see that n < k in this case, so that we still 
have 2k - 4 > n.) Note  that k is even, so k > 2[n/41 + 2. Since i * ( ~ ,  ~2) = 3n + 
k, we are done. 

We leave it to the reader  to find the appropria te  drawings (extracted from the 
above proof) to show that the expression is also an upper  bound for i*(m, n). [] 

We point  out that  the number  of intersections that  actually arise from a drawing 
of C 3 x C, is at least 4n [R]. Thus, we cannot hope to use these general  methods to 
obtain the crossing number of C m • C n, for all pairs (m, n). 

For  m > 3, we have a much less detai led picture. For  m < 6, there  is the same 
phenomenon of, for large n, i*(m, n) being smaller than the conjectured number of 
intersections from a drawing of  C m • Cn. Using the methods of Theorem 7 we can 
prove that i*(4, n) = 5n + o(n), but we have not  got an exact formula. For  m = 5, 
6, we do not have even this asymptotic information. 

4. Evaluation of i*(4, 4), i*(4, 5), and i*(5, 5) 

In this section we prove three specific results, namely, i*(4, 4) = 24, i*(4, 5) = 30, 
and i*(5, 5) = 40. These imply, in turn, that c r ( C  4 X C4) = 8, c r ( C  4 X C5) = 10, 
and cr(C 5 x C 5) = 15. The first two are known [D], [B], while the last agrees with 
the conjecture of Harary et al. [H]. Moreover,  Lemma 6 implies that, in any opti- 
mal drawing of C 4 x C4, C 4 x C5, or C 5 • C 5, no principal cycle can have a self- 
intersection. For  C a x C4, every 4-cycle can be taken as a principal cycle, so, in this 
case, no 4-cycle can have a self-intersection. 

In order  to prove these results, we need one more observation. An  (m, n)-mesh 
(~1, ~'2) is really optimal if it is optimal and, for any optimal mesh ( ~ ,  ~ ) ,  
i(C~l ) + i ( ~  2) < i ( ~ )  + i ( ~ ) .  Thus, really optimal means the mesh first minimizes 
the total  number of intersections and, subject to this, it minimizes the total number  
of intersections among pairs of  curves belonging to the same one of  ~ or ~2- 

Lemma 8. Let (~'1, ~2) be a really optimal (m, n)-mesh and suppose C1, C 2 ~ ~1 
exist such that [C 1 r C2I = 2 and there is a C ~ ~1 with C • (C 1 u C 2) = 0. Label 
the regions o f  ~2 \ (C a U C 2) so that C is in the exterior and, for k = 1, 2, let Ak be 
the arc in C~ \ C 3_ k that is not incident with the exterior region. Suppose no curve in ~l  
intersects the interior o f  A 1 U A 2. Then C'1, C'2 ~ ~'2 exist such that, for each j = 1, 2, 
IC~ n (C1 u c01 -> 3. 

Proof. Replacing the curves C 1 and C z by C1 = ( C I \ A 1 ) U A 2  and C2 = 
(C 2 \ A 2 )  U A 1 yields a new family of  curves in the plane with fewer total intersec- 
tions (the tangential intersections can be removed). Therefore,  optimality implies it 
is not a mesh, so that  there is some curve C~ ~ ~z and some j ~ {1, 2} such that  
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C~ n C] = 0. Thus, C i rq Cj c Aj. We note that, since C'  1 n C * O, [C'1 r3 (C, u C2)1 
> 3. If this were the only such curve, then we could simply adjust the curve C' 1 to 
cross Aj twice and meet  A3_j, yielding an (m, n)-mesh with the same number 
of total crossings (so it is optimal) and having fewer intersections among pairs in 
the same one of ~ or ~2, contradicting the assumption that (f~l, ~2) is really 
optimal. [ ]  

We remark that Lemma 8 is also true if the roles of ~1 and ~2 are interchanged. 

Theorem 9. i*(4, 4) = 24. 

Proof. Let (~1, ~2) be a really optimal (4, 4)-mesh. I_emma 2 generalizes, so its 
conclusion still applies. Therefore, we can assume (~1, ~2) is separation-free. More 
generally, if any curve has eight or more intersections, then, because i*(3, 4) = 16, 
i*(~'1, ~2) > 24. It follows that we can assume, for i = 1, 2, if C ~ ~/, then C 
intersects at most one curve from ~,, and if it does meet  such a curve, then it does 
so in exactly two points. 

If (~1, ~2) is a disjoint mesh, then we are done by Theorem 1. Therefore, we can 
assume ~1 is not disjoint. 

For a pair C1, C 2 ~ ~ such that C 1 rq C 2 ~ 0, we apply Lemma 8 to obtain the 
curves C' 1 and C~. If C 1 intersects both in at least two points, then C 1 has at least 
eight intersections and we are done. Thus we can assume both C 1 and C 2 have at 
least seven intersections; if one has eight, then we are done, so we may assume 
exactly seven. 

If  some pair C~, C~ of curves in ~'2 also intersect each other, then the same 
reasoning implies that they both have seven crossings. Deleting C 1 and C~, for 
example, removes at least 12 intersections (seven each, with at most two counted 
twice) and leaves a (3, 3)-mesh, which has at least 12 intersections remaining. 
Therefore, the (4, 4)-mesh has at least 24 intersections, as required. 

Therefore, we can assume ~2 is disjoint. Let C 3 and C 4 be the other two curves 
in ~1. If  C 3 and Ca are disjoint, then we can delete C 1 (removing seven intersec- 
tions) and obtain a separation-free disjoint (3, 4)-mesh, having at least 18 intersec- 
tions, by Proposition 3. This gives at least 25 intersections for the (4, 4)-mesh. 

Finally, if C 3 and C 4 are not disjoint, then each has seven intersections, as for 
C 1 and C 2. We have, then, a total of (4 • 7 ) -  (2 • 2 ) =  24 intersections, as 
required. []  

Theorem 10. i*(4, 5) = 30. 

Proof. Let (~'1, ~2) be a really optimal (4, 5)-mesh. If  some element of ~2 has six 
or more intersections, then we are easily done, as 30 = 24 + 6. Therefore, we can 
assume ~'2 is a disjoint family of  curves and each intersects at most one element of 
~1 in two points. 

Similarly, if any element of ~1 has at least 10 intersections, then we are done, as 
30 = 20 + 10. Therefore, no element in ~'1 has more than four points of  intersec- 
tion with curves in ~1. 
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Step 1. Suppose C 1, C 2 ~ ~'1 are such that [C 1 n C21 = 4. Every element  of  ~2 
meets both of C 1 and C 2 in a single point or we are done. Also, the other  elements 
of ~'a are disjoint from both C~ and C 2. Therefore,  there is a single region of 
~2 \ (C 1 U C 2) whose closure R contains all the curves (except C 1 and C2). 

Both C a and C 2 intersect R in at most two arcs, which make up the boundary of 
R. Every one of the curves in ~2 intersects one arc from each. It follows that there 
are three curves C'  1, C~, C~ ~ c~ 2 such that C~ and C~ are in different regions of 
R \ C~. From this we conclude that the remaining elements of ~1 all intersect C~ in 
at least four points, showing that C~ has at least 10 points of intersection, and 
we are done. Therefore,  we can assume that, for any two curves C1, C 2 e ~a, 
1C1 n C21-< 2. 

Step 2. Now suppose C a, C 2, C 3 E ~1 are such that  C 1 intersects both C 2 and C 3 in 
two points. Then every curve in ~2 intersects C a in exactly one point  and the fourth 
curve in ~1 is disjoint from C 1. Therefore,  this curve and the curves in ~2 all lie in 
the same region of ~2 \ C1" 

Suppose, first, that C 2 n C 3 is also nonempty. Then each of these curves 
could play the role of C 1 in the preceding discussion. Since any two of  C a, C 2, and 
C 3 have exactly two intersections, the five curves in ~2 all lie in the region of 
~2 \ (C 1 t,_.l C2 t.j C3 ) that contains the fourth curve C 4 in c~ a. This region is bound-  
ed by at most four arcs, with at least one from each of C 1, C 2, and C 3. However,  this 
is impossible, since ~2 is a disjoint family. 

Step 3. Thus, we may suppose C 2 c~ C 3 is empty. If  C 4 n C 2 4: ~, then C 1 and C a 
both have nine intersections. All  curves in ~2 lie in a single region of  ~2 \ (C 1 U C2). 
Taking any three of the curves in ~'2, one of them separates the other  two in this 
region. Thus, each of C 3 and C 4 intersects the separator  in at least two points. Thus, 
each intersects at least three of the curves in ~2 in two points, so C 3, for example, 
has at least 10 intersections and we are done. 

Step 4. Therefore,  we can assume C 4 is disjoint from C 1 U C 2 U C 3. Delete  C 1 to 

obtain a separat ion-free disjoint (3, 5)-mesh, which has, by Proposit ion 3, at least 24 
intersections, so that i * ( ~  1, ~'2) > 33. It follows that we can assume that no e lement  
of ~1 has four intersections with other  elements of  ~1. 

Step 5. If  there are no points of intersection among the curves in ~1, then we are 
done: the mesh is disjoint and Theorem 1 applies. Therefore,  we can assume C 1, 
C2 ~ ~1 are such that I f  1 0  C2l = 2 and that the other  two elements, C3, C 4 of ~1, 
are pairwise disjoint from each of C 1 and C 2. 

If C 3 and C 4 do not intersect each other, then delete C1 (and at least seven 
intersections) to obtain a separat ion-free disjoint (3, 5)-mesh, which has, by Proposi- 
tion 3, at least 24 intersections, for a total of at least 31, as required. Therefore,  we 
can assume C 3 and C 4 intersect in two points. 

We claim that this configuration does not exist, i.e., it is impossible to have: 

(1) Separation-free.  
(2) The four curves in ~a part i t ion into two pairs, each intersecting the other  in 

the pair, but  no other  intersections. 
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(3) The five curves in ~2 are pairwise disjoint. 
(4) No curve in ~1 has 10 intersections. 
(5) No curve in ~'2 has six intersections. 

Pick any four of the five curves in ~z to obtain a (4, 4)-mesh. This has at least 24 
intersections, four of which are accounted for in C 1 n C 2 and C 3 n C 4. Therefore,  
there are 20 intersections of  the form C n C ' ,  with C E ~1 and C '  ~ ~2. As no 
e lement  of ~2 has six or more intersections, every e lement  of ~2 must have exactly 
five intersections, all of  which are with elements  of ~1. Thus, for each element  C '  of 
~2, there is a unique element  of C of ~1 such that IC' n C[ = 2; for all other  
elements C" of ~ ,  IC' N C"I = 1. 

Hence,  one of IC' n (C 3 to C4)l and IC' (~ (C 1 to C2)1 is 2 and the other  is 3. 
Therefore,  we can assume there are C~, C'2, C'3 in ~2 such that, for i = 1, 2, 3, 
[Cff n (C 3 to C4)1 is 2. One of C'  1, C; ,  C; (say C~) separates  the other  two in a region 
of ~ 2 ~  (C 3 (,.) Ca). It follows that [Ctl ("1 Cll ~_~ 4, a contradiction. []  

Now we move on to the case of greatest  interest. 

Theorem 11. i*(5, 5) = 40 and, therefore, cr(C 5 • C 5) = 15. 

Proof. Let (~1, ~'2) be a really opt imal  (5, 5)-mesh. 

Claim 1. I f  any curve has 10 or more intersections, then i*(~1, ~2) - 40. 

An  immediate  consequence of Claim 1 and Lemma 2 is the following. 

Claim 2. I f  (~1, ~2) is not separation-free, then i*(~1, ~2) > 40. 

Claim 3. I f  there is a curve in ~1 with nine intersections and two curves in ~2 that 
intersect, then i*(~1, ~2) >-- 40. 

To see this, let C ~ ~1 have nine intersections and let C~ and C~ be intersect- 
ing elements of ~z. If C'  1 has four intersections with curves in ~2, then C'  1 has at 
least nine intersections. Delet ing C and C'  1 removes 17 intersections and leaves a 
(4, 4)-mesh with at least 24 intersections, and we are done. Thus, we can assume C' 1 
and C~ are pairwise disjoint from the remaining curves in ~2. By Lemma 8, either 
one of C'  1 or  C~ has at least nine intersections or they both have two intersections 
with distinct curves from ~1. In the first case, C and the one of C~ and C~ having 
nine intersections combine for a total  of at least 16 intersections, by Lemma 4. 
Delet ing them yields a (4, 4)-mesh, having at least 24 intersections and we are done. 
In the second case, one of C~ and C~ meets C in a single point. Again, this one and 
C account for 16 intersections. 

Claim 4. I f  there is a curve C in ~1 having four or more intersections with curves in 
~1, then i*(~1, ~2) > 40. 
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Note that C has at least nine intersections, so we can assume it has exactly nine 
intersections. By Claim 3, we can assume ~2 is a disjoint family. We are in the same 
setting that we had in the proof  of Theorem 10. Steps 1-3 are handled exactly as in 
the proof  of Theorem 10. Thus, we can assume that no element  of ~1 has four 
points of  intersection with some single element of  ~1 and that if C intersects both 
C 1 and C 2 from ~1, then C1 and C 2 are disjoint and are pairwise disjoint from the 
remaining curves in ~1. 

Step 4. Let C3, C 4 be the remaining curves in ~1. If they are disjoint, then delete C 
to obtain a separation-free disjoint (4, 5)-mesh, which has, by Proposit ion 3, at least 
32 intersections, showing i*(~1, c~ 2) > 41. If C 3 and C 4 intersect, then Lemma 8 
implies that at least one of them, say C 3, has at least eight intersections. Deleting 
C and C 3 removes at least 17 intersections and leaves a separat ion-free disjoint 
(3, 5)-mesh. By Proposit ion 3, i*(~1, ~2) >- 24 + 17 = 41. 

Claim 5. If  there is a curve C in ~1 that intersects another element of ~l and has nine 
intersections, then i * ( ~  1, c~ 2) >_ 40. 

By Claim 4, we can assume no curve in ~'1 has four intersections with curves in 
~ .  Suppose C intersects C 1 E ~'~. If the remaining elements of ~1 are pairwise 
disjoint, then delete C to get a separation-free disjoint (4, 5)-mesh, which, by 
Proposit ion 3, has at least 32 intersections. Together  with the nine in C, we have a 
total  of 41. Thus, we may assume that C 2, C 3 are other  elements of ~1 that 
intersect. By Lemma 8, at least one of them has at least eight intersections. We can 
assume C 2 is such a curve. Delet ing C and C 2 removes 17 intersections and leaves a 
separat ion-free disjoint (3, 5)-mesh, which has, by Proposit ion 3, at least 24 intersec- 
tions, so i*(~ '  1, ~2) > 41, completing the proof  of Claim 5. 

Since a disjoint (5, 5)-mesh has at least 40 intersections, we can assume that some 
pair of curves C1, C 2 in ~1 are not  disjoint. We apply Lemma 8 to C 1 and C 2 to 
obtain the curves C'1, C~ in ~2, each having three intersections with C 1 U C 2. 

Suppose C'  1 and C~ both have two intersections with C 1. This means that C~ has 
at least nine intersections. By Claim 5, we are done. Therefore,  we can assume C'1 
has two intersections with Cl, C~ has two intersections with C 2, and C 1 and C z both 
have exactly eight intersections. 

Let C~, C~, C~ be the remaining three curves in ~2. Each intersects each of C 1 
and C 2 in a single point  and, therefore,  consists of two arcs between these two 
points. If no two of  C~, C~, C~ intersect, then one of them separates the other two in 
a region of [~2 \ (C 1 U C2) and so must have at least 14 intersections. 

Thus, we may suppose C~ n C~ is nonempty. Then C~ and C~ are both disjoint 
from C~. One of the two arcs, say A'3, in C~ \ (C 1 U C2) is disjoint from C~, and one 
of the arcs, say A '  4, in C~ \ (C 1 U C 2) is disjoint from C~. (Otherwise, C~ n C] has 
at least four intersections.) Let  A '  5 be either of the arcs in C~ \ (C 1 U C2). 

One of the three pairwise disjoint arcs A'  3, A'4, A'5 separates the other  two. If it 
were A '  5, then C~ and C~ would be disjoint, a contradiction. Hence,  we can assume 
A'  3 separates  A '  4 from A'  5. 
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It  follows that each of the three curves in ~1 \ {C1, C2} has at least two points of 
intersection with C~. Therefore,  C~ has at least 10 points of intersection, and we are 
done. []  

5. Comments 

We know that, when n is larger than m, the number  of intersections in an 
(rn, n)-mesh need not  be as large as the crossing number  of C m x C n. However, we 
do not know what happens in the case m = n. It would be interesting to have a 
picture of an (n, n)-mesh with fewer than 2(n - 1)n intersections, if such exists. On 
the other  hand, we expect that our techniques can be used to show that  cr(C 6 X C 6) 
= 24. 

I t  should be possible to use cr(C 5 • C 5) = 15 as a base for an induction to show 
that cr(C 5 • Cn) = 3n, for n > 5. One possibility is to use the method of [B]. It is 
necessary to generalize Lemma 2 of that paper ,  but there will be many more than 
the four cases to consider. It would be interesting to generalize it to arbitrary rn 
and n. 

A related problem is to evaluate i(n), the minimum number of intersections in a 
family of n curves in the plane, any two of which intersect. The following are easy 
observations: 

(1) i(5) = 12 and i(6) = 20. 

(2) l i m . ~ j ( n ) / (  2 ) exists. 

(3) i (n)< 2 ( 2  ) . 

(4) F o r m  > 3 ,  i ( 2 m ) > 3 m  2 - 3 m  + 2 a n d i ( 2 m  + 1 ) > 3 m  2 +  1. 

We remark  that (4) is a straightforward induction and that (3) and (4) imply 

< lim i(n <<_ 2. 
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