
Discrete Comput Geom 11:321-350 (1994)
Discrete & Computational Geometry

~) 1994 Springer-Verlag New York Inc.

Iterated Nearest Neighbors and Finding Minimal Polytopes*

David Eppste in t and Jeff Er ickson 2

1 Department of Information and Computer Science, University of California,
Irvine, CA 92717, USA
eppstein @wormwood.ics.uci.edu

2 Computer Science Division, University of California,
Berkeley, CA 94720, USA
jeffe@cs.berkeley.edu

Abstract. We introduce a new method for finding several types of optimal k-point
sets, minimizing perimeter, diameter, circumradius, and related measures, by testing
sets of the O(k) nearest neighbors to each point. We argue that this is better in a
number of ways than previous algorithms, which were based on high-order Voronoi
diagrams. Our technique allows us for the first time to maintain minimal sets
efficiently as new points are inserted, to generalize our algorithms to higher dimen-
sions, to find minimal convex k-vertex polygons and polytopes, and to improve many
previous results. We achieve many of our results via a new algorithm for finding
rectilinear nearest neighbors in the plane in time O(n log n + kn). We also demon-
strate a related technique for finding minimum area k-point sets in the plane, based
on testing sets of nearest vertical neighbors to each line segment determined by a
pair of points. A generalization of this technique also allows us to find minimum
volume and boundary measure sets in arbitrary dimensions.

1. Introduction

A number of recent papers have discussed problems of selecting, from a set of n
points, the k points opt imizing some par t icu la r cr i ter ion [21, [141, [20]. Cr i ter ia
that have been s tudied include d iameter [21 var iance [21, area of the convex hull
[201, convex hull per imeter [14], [20], and rect i l inear d iameter and per imeter [21.

* Portions of this paper were presented at the 3rd and 4th ACM-SIAM Symposia on Discrete
Algorithms [17], [19]. This paper includes work done while Jeff Erickson was at the University of
California at Irvine. David Eppstein's research was partially supported by NSF Grant CCR-9258335.

322 D. Eppstein and J. Erickson

Such problems are useful in clustering, line detection, statistical data analysis, and
other geometric applications.

We study and improve known algorithms for these problems. We also introduce
dynamic versions of these problems, in which the optimum set must be maintained
as new points are inserted. Our methods further generalize to higher-dimensional
versions of these problems. Our techniques apply to all of the problems cited above.

Many of these problems were previously solved using the following method,
originally developed by Dobkin et al. [14]. An ad hoc algorithm was determined,
with time bounded by a polynomial O(nC). Then it was shown that the optimum
k-point set is contained in the set of points labeling a single region of the order-O(k)
Voronoi diagram. Constructing the Voronoi diagram and searching the O(kn) such
regions takes a total time of O(n log n + kC+ln). Aggarwal et al. [2] reduced the
number of regions to be searched from O(kn) to O(n). Thus the time becomes
O(n log n + ken). However, an anomaly remains in these time bounds: if k is |
the time is worse than the original O(nO by a factor of n. Thus at some point the
device of higher-order Voronoi diagrams becomes worthless, and one must use a
simpler algorithm.

We argue that, in this formulation, Voronoi diagrams should be replaced by
sets of the O(k) nearest neighbors to each point. There are several reasons why we
believe this. First, the reduction to O(n) regions to be searched is immediate, and
avoids the complicated analysis of Aggarwal et al. [2].

Second, by finding neighbors of neighbors, we show that the number of regions
can be further reduced to O(n/k), improving the time bounds by a factor of k and
eliminating the anomaly described above.

Third, our time bounds can be improved in a different way. The k nearest
neighbors can be found in time O(kn log n), using Vaidya's algorithm [34]. For
the rectilinear (L1 or L~o) metric, we further improve this to O(n log n + kn) on a
random access machine. Thus we get faster time bounds in the plane, even for
problems such as circumradius for which the reduction to Voronoi diagrams is
immediate.

Fourth, our method lends itself well to dynamization. As points are inserted
one at a time, the neighbors of each new point may be computed quickly using
standard techniques. In contrast, the Voronoi diagram may change by as many
as fl(n) edges at each insertion. Dynamic algorithms have been studied for many
important geometric optimization problems, such as the closest pair, diameter,
minimum spanning tree, and convex hull, but this is the first time that dynamic
algorithms have been described for minimum measure subset problems.

Fifth, our approach generalizes to higher dimensions in a way that does not
work for Voronoi diagrams. In dimension d even first-order Voronoi diagrams
can have complexity D,(nra/27); whereas, the nearest negibhors can still be found
in time O(n log n) using Vaidya's algorithm [34].

Finally, by applying an old combinatorial result of Erdfs and Szekeres [21],
we can generalize our techniques to find minimum measure convex polygons and
polytopes.

A variant of our technique also yields new algorithms for finding minimum
area k-point sets in the plane, or minimum boundary measure or volume k-point
sets in arbitrary dimensions. Our boundary measure algorithm is a natural

Iterated Nearest Neighbors and Finding Minimal Polytopes 323

generalization of our minimum perimeter result. Instead of using the neighbors to
each point, we let each set of r points in the set define a particular polytope, for
some constant r defined by the measure we are trying to minimize, and we examine
the nearest neighbors to each polytope thus defined. In particular, we show that
the minimum area k-point set is contained in the O(k) neares t ver t ical ne ighbors

to a line segment determined by two of its points.

2. New Results

We present algorithms for the following problems:

�9 We find the k nearest rectilinear (L1 or L~) neighbors to each of a set of
n points in the plane, in time O (n l o g n + kn), improving the previous
O(kn log n) bound [34].

�9 We find the k nearest vertical neighbors to each of the O(n 2) line seg-
ments determined by pairs of points in an n-point set, in total time
O(kn 2 + n 2 log n).

�9 Given a set of n points in the plane, we find the k-point set minimizing
perimeter, L~ perimeter, circumradius, diameter, L~ diameter, variance, or
area. Our results are summarized in the first column of Table 1. We improve
all previous results [2], [14], [203, except for variance and area, which we
improve for certain values of k.

�9 We maintain minimal point sets in the plane as points are inserted, under a
variety of "one-dimensional" measures. Our results are summarized in the
second column of Table 1. No previous bounds are known for any of these
problems.

�9 Given a set of n points in Nd, with d > 2, we find the k-point set minimizing
circumradius, diameter, L~ diameter, variance, boundary measure, L~
boundary measure, or volume. Our results are summarized in Table 2. We
improve previous algorithms for circumradius and variance based on Vor-
onoi diagrams, which run in time O(n a+l) [2]. No previous bounds were
known for the other problems.

Table 1. New results for finding minimum measure k-point sets, given n
points in the plane. (e is an arbitrarily small positive constant.)

Measure Static time bound Dynamic time bound

Perimeter O(n log n + k3n) O(k 4 + log 2 n)
L~ perimeter O(n log n + k2n) O(k 3 + log 2 n)
Circumradius O(n log n + kn log k) O(k 2 log k + log 2 n)
Diameter O(n log n + k2n log 2 k) O(k 3 log 2 k + log 2 n)
L~ diameter O(min{n log n + kn, n log 2 n}) O(k log 2 k + log 2 n)
Variance O(k3/2n tog n + ka/2+en) O(k 3+~ + log 2 n)

Area O(n 2 log n + k3n 2) - -

324 D. Eppstein and J. Erickson

Table 2. New results for finding minimum measure k-point
sets, given n points in R 4, for all d > 2.

Measure Time bounds

Circumradius
Diameter
Lo~ diameter
Variance

O(kn log n + k a- in log 2 k)
O(kn log n + 2~
O(kn log n + k a/2- In log 2 k)
O(k ta+ 1)/2n log n + k~ log k)

Boundary measure
Lo~ boundary measure
Volume

O(n d + 2otk)n d- 1)
O(n a + k2a-ln a- l)
O(kn a log d§ n + 2~ e)

�9 We generalize all of our results to k-point convex polygons and polytopes.
We derive time bounds with the same dependence on n as the corresponding
k-point set algorithms, but with an exponential dependence on k. We know
of no previous results for these problems, except for an O(kn 3) time bound
on finding minimum area or perimeter k-gons [20], which we improve for
small k.

3. Rectilinear Nearest Neighbors

We begin by describing a data structure for finding m rectilinear nearest neighbors
in the plane. In the L 1 metric, above and to the right of any point p, points (x, y)
are sorted by distance to p by the values of the function x + y. If we sort all points
by these values, the nearest neighbors above and to the right of each point will
be a subsequence of this sorted list. We combine neighbors from each of the four
directions to find the nearest neighbors overall.

Our data structure is in the form of a balanced binary tree over the points,
sorted by their y-coordinates. The tree root covers all n points, and for each tree
node with i points we split the points into two slabs, consisting of the top i/2 and
the bottom i/2 points. We build a data structure for each slab, and recursively
subdivide slabs until we reach sets of a single point. Each input point will be in
O(log n) slabs, and the points above and to the right of any query point p can be
interpreted as the union of points to the right of p in O(log n) slabs above p.

We assume m is fixed. Without loss of generality m > log n. (Otherwise, we
build our data structure to find log n nearest neighbors, from which we can quickly
choose the nearest m.) In each slab we wish to determine, for a query point p, the
m nearest points to the right of p. If we did this for all slabs, we would generate
O(m log n) neighbors, and queries would be slower than we wish. Instead, we
partition the neighbors into chunks of | n) points. Our data structure
enables us to find each succeeding chunk quickly, and we then combine chunks
from different slabs to give the final set of m neighbors.

Within a single slab, we sweep from left to right, maintaining a list of points

Iterated Nearest Neighbors and Finding Minimal Polytopes 325

ordered by x + y. As we sweep across each point in the slab, we add it to the list.
The positions to add new points into the list can be found in time O(n) if the
points are already sorted by x-coordinate. We would like our data structure to
reconstruct the state of this list at each time in the sweep. This is a persistent offline
data structure problem [18], in which we perform a number of updates (insertions
into a linked list) and must then query different versions of the data structure (the
list at different times in the sweep).

We maintain, at each point in the left to right sweep, a partition of the sorted
list of points into chunks of between m/log n and 2m/log n points each. When a
new point is inserted in the list, it is added to a chunk. When this addition causes
a chunk to have too many points, it is split into smaller chunks. As we only need
remember at most m neighbors to each query point, we only need keep log n
chunks, so as one chunk is split another chunk may be removed from the end of
the list.

To remember these manipulations we store the list of points in each chunk just
before the chunk is split, and the list of all log n chunks at the same time. To find
the neighbors for a query point p, we determine the next time t after our
left-to-right sweep crosses p, at which some chunk is split. We then step through
the sequence of chunks existing at time t. Each chunk contains between m/log n
and 2m/log n points, of which at least m/log n existed at the last time the chunk
was split and hence are to the right of p. We eliminate the other points to the left
ofp. Thus in time O(m/log n) we can find each successive set of fl(m/log n) neighbors
in the slab.

The time and storage for remembering the points in each chunk is O(n).
However, if m is small there are O(n) times at which a chunk may split, and hence
O(n log n) storage for remembering the sequence of chunks at each time. We
remove this unwanted logarithmic factor with a data structure for maintaining
lists of O(log n) elements in a persistent offline manner.

Lemma 3.1. Given a sequence o f n insert and delete operations on a list, such that
the list length is always O(log n), we can construct in time and space O(n) a data
structure such that, for any version of the list, we can step through the list in time
0(1) per step.

Proof. Break the sequence into O(n/log n) subsequences of O(log n) operations
each, and treat each subsequence separately. Within a subsequence, there are
O(log n) items initially, and O(log n) items inserted. List all items by processing all
the insert operations and none of the delete operations. Represent this list as an
array of pointers to items, so that the item in a given position can be found in
O(1) time. Now represent each version of the list by an O(log n)-bit integer, in which
a one bit represents the presence of the item at that position. Each insert or delete
can be performed with O(1) steps of integer arithmetic on a random access machine,
as can the operation of moving from one element to the next in a given version
of the list. []

By analogy to the atomic heaps of Fredman and Willard [23] we call this data

326 D. Eppstein and J. Erickson

structure an atomic list. This completes the description of each slab, which we
summarize below.

Lemma 3.2. Given n points in the plane, sorted from left to right, we can in time
and space O(n) construct a data structure for which, given a value x, we can find the
points with the smallest values of x + y, in chunks of O(m/log n) points at a time, in
time O(m/log n) per chunk.

To finish the description of our data structure, we combine results from the
O(log n) slabs into which space above the query is divided. We use a priority
queue of one chunk from each slab. Each chunk's priority is the largest value
of x + y for any point in the chunk. We remove chunks one by one from
the queue; when we remove a chunk we insert the next chunk from the same
slab. Once we have removed chunks totaling at least m points, any remaining
neighbors will have smaller values of x + y than the priorities of the chunks left
in the queue. Such points must be in chunks already in the queue, and we remove
these chunks as well. This gives us O(log n) chunks and hence O(m) potential
neighbors. We reduce this to m neighbors using a linear-time selection algorithm.
Using a global list of all points, sorted by x + y, we can represent priorities as
O(log n)-bit integers, so we can perform priority queue operations in 0(1) time
using atomic heaps [23].

Lemma 3.3. For any f ixed m, we can preprocess a set of n points in the plane, in
time and space O(n log n), so that the m nearest rectilinear neighbors to any query
point can be found in time O(m + log n).

Proof. The query time is O(m + log n), once we have determined the version of
the chunk list to use in each slab. For each slab we maintain an index from the
left to right order of points into this sequence of versions. We also index, for each
slab, the relation between positions in the left to right order of points in the slab,
and the same positions in the two smaller slabs into which it is divided. The
position of the query point in the root slab can be found by binary search, after
which we can follow the indices to find the list versions for all O(log n) slabs queried
in O(log n) time. The time to construct each slab is O(n) assuming the points are
sorted from left to right. This sorted order can be maintained as slabs are split
recursively, in O(n log n) total time. Each slab requires space O(n). Thus all slabs
can be constructed in time and space O(n log n). []

Theorem 3.1. We can find the m nearest rectilinear neighbors to each of a set of n
points in the plane, in time O(n log n + ran) and space O(n log n).

Remark. Our nearest neighbor algorithm relies on the constant-time manipula-
tion of O(n log n)-but integers, in both the atomic lists and atomic heaps. Thus,
our time bound holds only in the RAM model of computation. In the algebraic
decision tree model our time bound climbs by a factor of O(log log n).

Iterated Nearest Neighbors and Finding Minimal Polytopes 327

4. Iterated Nearest Neighbors

We now show that in any point set, in any dimensions, there is some point for
which there are few neighbors of neighbors. We state the result more generally,
in terms of spheres satisfying certain properties. Given two spheres A and B, we
say that A is entirely within B if the closure of A is contained in the interior of B.

Lemma 4.1. Let 6 a be a set o f spheres, so that no sphere is entirely within another
sphere, and so that no sphere contains more than m centers of spheres. Let S be the
smallest sphere in 6P, and let U be the union of spheres in ~9 ~ having centers in S.
Then U contains O(m) sphere centers.

Proof. Let R denote the radius of S. Because no sphere in U contains S, it follows
that U is contained in a sphere of radius 3R. This larger sphere can be partitioned
into O(1) regions, each with diameter R. If any of these regions contained more
than m centers, any sphere centered in such a region either would contain too
many centers or would be smaller than S. []

This result applies more generally to any family of homothetic convex bodies,
and hence to "spheres" in any metric. We apply this result to sets of m nearest
neighbors as follows. Given a point set, put a sphere around each point at a radius
determined by its ruth nearest neighbor. This sphere will contain exactly the m
nearest neighbors of the point, and the set of all such spheres will satisfy the
conditions of the lemma. Therefore there is some point for which the m nearest
neighbors have O(m) neighbors altogether.

This suggests the following algorithm outline. Suppose we can prove that the
optimal k-point set (according to some specified criterion), if it contains a point,
is contained in the m nearest neighbors of that point. Sort the points by the size
of their neighbor spheres. Collect the neighbors of the points in the smallest
neighbor sphere, search for the optimal set among them, and throw out the m + 1
points in the sphere. Repeat the preceding step until all points are gone, but if a
smallest neighbor sphere ever contains fewer than k points, we throw out its center
immediately, since that point cannot possibly be in the optimal set.

Lemma 4.2. Let p be a measure having the property that the minimum measure
k-point set is contained in the m rectilinear nearest neighbors of each of its points,
and let T(m) (resp. S(m)) be the time (resp. space) required to f ind the optimal k-point
set among m points. Then, given a set of n points in R d, we can find the k-point
subset minimizing it, in time O(mn log n + nT(m)/k) and space O(mn + S(m)), or in
time O(n log n + m n + nT(m)/k) and space O(n log n + m n + S(m)) if d = 2.

Proof. By our results above, the rectilinear nearest neighbors can be found in
time O(n log n + ran) and space O(n log n) in the plane. In higher dimensions we
use Vaidya's algorithm [34]. We only call the ad hoc algorithm when the neighbor
sphere contains k or more points, and those points are immediately discarded.
Thus, the ad hoc algorithm is called at most Fn/k-] times, each time on a set of

328 D. Eppstein and J. Erickson

size O(m) by the previous lemma. These two operations dominate the time and
space bounds.

We claim that at any point in the algorithm, if the minimal set has not yet
been found, it contains only points that have not been thrown out. We prove this
claim by induction; it is clearly true when the algorithm starts. If any point p is
in the set, then by assumption, the set is contained in p's neighbor sphere. If this
sphere contains fewer than k points, p cannot possibly be in the set, and we can
safely discard it. The only other time p could be thrown out is immediately after
we search for the minimal set among p's remaining neighbors. If the minimal set
contains p, then by the inductive hypothesis, this search will find it. []

The same algorithm outline still works if the minimum measure set is contained
in the nearest neighbors of each of its points, under any fixed metric. Thus, in
higher dimensions, we could use Euclidean neighbors instead of rectilinear neigh-
bors without changing the time bounds.

5. Minimizing One-Dimensional Measures

5.1. Perimeter

We first demonstrate our technique on the minimum perimeter k-point set
problem. The problem is to find, given a set of n points in the plane, a set of k
points for which the perimeter of the convex hull is minimized. This was previously
solved in O(kEn log n + kSn) time by Dobkin et al. [14]; this can be improved to
O(n log n + k4n) using the techniques of Aggarwal et al. I-2]. Both algorithms use
a dynamic programming algorithm, requiring time O(kn 3) and space O(kn), as a
subroutine within each region of a certain high-order Voronoi diagram [14]. We
use this algorithm as a subroutine within each set of nearest neighbors.

Lemma 5.1. I f a point p is in the minimum perimeter k-point set, then the set is
contained in the O(k) nearest rectilinear neighbors of p.

Proof Let q be the farthest point from p in the optimal set. Then the entire set
fits in a circle around p, of radius lpql, and the perimeter must be at least 21pql.
However, we can cover the circle with 16 squares of perimeter IPql; if q is not
among the 16k rectilinear nearest neighbors of p, then some square must contain
at least k points, and would supply a k-point set with smaller perimeter. []

We point out that this lemma is also true for Euclidean neighbors, or neighbors
under any fixed metric, with only a change in the constant factor. This is true for
almost all of our nearest-neighbor results.

Theorem 5.1. We can find the minimum perimeter k-point subset of a set of n points
in the plane, in time O(n log n + kan) and space O(n log n + kn + k2).

Iterated Nearest Neighbors and Finding Minimal Polytopes 329

Proof This is a direct application of the two-dimensional case of Lemma 4.2.
We have m = O(k) by the previous lemma, and T(m) = O(km 3) and S(m) = O(km)
from [14]. []

This algorithm generalizes to minimize perimeter in any metric, but we can do
better in L~. The minimum Lo~ perimeter k-point set is the set enclosable in the
minimum perimeter axis-aligned rectangle. Aggarwal et al. [2] solve this problem
in time O(k2n log n). We use their O(na)-time brute-force algorithm as a subroutine.

Theorem 5.2. We can find the minimum L~ perimeter k-point subset of a set of n
points in the plane, in time O(n log n + k2n) and space O(n log n + kn).

5.2. Circumradius

We now describe our algorithms for finding the k-point set contained in
the smallest sphere, given a set of n points in ~d. We improve previous time
bounds, due to Aggarwal et al. [2], of O(n log n + k2n) in the plane and O(n d§
in higher dimensions. Their algorithms are based on higher-order Voronoi
diagrams.

First we develop a new algorithm to use as a subroutine within each neighbor
set. Consider the related problem of placing a fixed-size sphere so that it covers
the maximum number of a given set of points. Once we have a solution to this
problem, we can apply Megiddo's parametric search technique [29] to find the
smallest sphere whose optimal placement covers k (or more) points.

Lemma 5.2. We can find the minimum circumradius k-point subset of a set of n
points in ~d, in time O(n d log 2 n) and space O(n dlog n), or in time and space
O(n 2 log n) / f d = 2.

Proof First consider the sphere placement problem. We fix each set of d - 1
points and rotate a sphere around its affine hull, stopping whenever a point enters
or leaves the sphere. Each sweep requires time O(n log n). Degenerate cases, where
the optimal sphere cannot be forced to be tangent to d points, are handled in total
time O(n d- 1). Thus, the entire sweep algorithm takes time O(n d log n). In the plane
we can solve this problem in time and space O(n2), using a more complicated
algorithm developed by Chazelle and Lee [8].

To find minimum circumradius sets, we apply parametric searching with Cole's
weighted median strategy [10]. Our sweep algorithm can be parallelized to run
in O(log n) steps on O(n d) processors. Thus, the total time is O(n d log 2 n) in general,
and O(n 2 log n) in the plane. The parametric search technique requires the
construction of an AKS sorting network [3] with O(n d) inputs, one for each
processor used by the parallel implementation of the fixed-parameter algorithm.
This network can be built in time and space O(n d log n) [3]. []

330 D. Eppstein and J. Erickson

Lemma 5.3. I f a point p is in the minimum circumradius k-point set, then the set
is contained in the O(k) rectilinear nearest neighbors of p.

Proof Let R be the optimal circumradius. The minimum circumradius set is
contained in an axis-aligned hypercube of width 4R, centered at P. This hyper-
cube can be partitioned into (2x/-d) a = O(1) axis-parallel hypercubes with circum-
radius R, none of which can contain more than k points. []

Theorem 5.3. We can find the minimum circumradius k-point subset of a set of n
points in •d, in time O(kn log n + k d- in log 2 k) and space O(kn + k d log k), or in
time O(n log n + kn log k) and space O(n log n + kn + k 2 log k) / f d = 2.

5.3. Diameter

The diameter of a set is the largest distance between any two points in the set. In
the plane Aggarwal et al. I-2] show how to find the minimum diameter k-point
set in time O(n log n + k2"Sn log k). Unfortunately, we know of no fully polynomial
algorithm for this problem in higher dimensions, so we are forced to use a
brute-force approach.

Lemma 5.4. I f a point p is in the minimum diameter k-point set, then the set is
contained in the O(k) rectilinear nearest neighbors of p.

Proof Let D be the optimal diameter. The minimum diameter set is contained
in an axis-parallel hypercube of width 2D, centered at p. This hypercube can be
partitioned into a constant number of smaller hypercubes with diameter D, none
of which can contain more than k points. []

Theorem 5.4. We can find the minimum diameter k-point subset of a set of n points
in R d, in time O(kn log n + 2~ and space O(kn), for all d > 2.

We can do considerably better than this in the plane. Aggarwal et al. [2] solve
this problem by reducing it to one of finding a maximum independent set in a
certain bipartite graph. For bipartite graphs, the maximum independent set and
maximum matching are closely related (their cardinalities add to the size of the
point set) so matching techniques can be applied to this problem.

We improve on the algorithm of Aggarwal et al. by solving a dynamic matching
problem. Given a point set S, and a distance D, let the graph Go(S) be defined as
follows. The vertices of GD(S) are simply the points in S. An edge (p, q) exists in
the graph exactly when IPql > D; that is, the graph connects points that are
sufficiently far apart.

Lemma 5.~. Given a set S of n points, such that GD(S) is bipartite, and a
maximum matching in GD(S), we can insert or delete a single point in S and update

Iterated Nearest Neighbors and Finding Minimal Polytopes 331

the maximum matching, in time O(n log n) and space O(n), provided GD(S) remains
bipartite.

Proof The update can only change the matching cardinality by one. If the update
is a deletion of a matched point, we remove its edge from the matching and mark
its mate as unmatched. Then whether the update is an insertion or a deletion, the
remaining problem is to find a single alternatin9 path connecting two unmatched
points. If such a path is found, the matching size can be increased by changing
the unmatched edges in it to matched edges, and vice versa.

We go through a process of marking points as odd or even. A point is labeled
odd (even) if it can be reached from an unmatched vertex by an alternating path
of odd (even) length. In each case we remember the last edge on the path, so that
the entire path can be reconstructed quickly. Once we have performed this labeling,
the existence of an alternating path can be tested by testing if any two even points
share an edge. This can be done in O(n log n) time by finding the farthest pair of
even points.

We maintain a data structure for a point set P with the following operations:

(1) Given a point p, find some point in P farther than D from p, or report that
no such point exists.

(2) Delete a given point from P.

As noted by Aggarwal et al. [2], these operations can be performed in O(log n)
amortized time and linear space using the circular hull data structure of Hershber-
ger and Suri [25].

We start the labeling process by marking each unmatched point as even (it has
a zero length path to an unmatched point). We build the data structure above,
letting P consist of all unmarked points (initially, that is simply the matched
points). We then process each marked point in turn, maintaining a queue of points
that require processing. Processing an odd point consists simply of marking its
match even, adding it to the queue, and removing it from P. We process the even
points as follows. While an unmarked point adjacent to the even point exists, we
mark it odd, add it to the queue, and remove it from P. Such a point can be found
using the find operation described above.

Once the queue is empty, all points are either marked or unreachable via an
alternating path. The number of data structure operations is O(n), as each find
operation either discovers a new point to be marked and removed from P, or it
is the last such operation performed in processing a given point. Therefore the
total time used is O(n log n). The circular hull structure and the queue both use
linear space, so the overall space bound is linear. []

Lemma 5.6. We can find the minimum diameter k-point subset of a set of n points
in the plane, in time O(n a log 2 n) and space O(n).

Proof Each point can be the endpoint of O(n) possible diameters; we select
among them using binary search. To test a given diameter D associated with a

332 D. Eppstein and J. Erickson

point p, we want to know whether there is some k-point set with diameter I pql
shorter than D. If so, the set is contained in the lune formed by intersecting two
circles of diameter D, one centered on p and one centered at distance D from p.
We sweep a lune around p, covering in turn O(n) different point sets; we must test
if any of these sets contains a small diameter k-point subset.

As noted by Aggarwal et al. [2], if S is the point set contained in a given lune,
then GD(S) is bipartite, and a subset of S with diameter less than D is exactly an
independent set in Go(S). If M is the maximum matching in GD(S), the size of the
maximum independent set is I SI - I MI. Thus to test if there is a large subset with
small diameter, we may compute this matching. We do this for all O(n) positions
of the lune around p, in time O(n 2 log n), using the dynamic matching algorithm
of Lemma 5.5.

For each point we perform a binary search among its O(n) associated diameters,
and there are O(n) points for which this search must be performed. Thus, the total
time used is O(n 3 log 2 n). []

Combining this algorithm with Lemmas 4.2 and 5.4, we have the following
result.

Theorem 5.5. We can find the minimum diameter k-point subset of a set of n points
in the plane, in time O(n log n + k2n log 2 k) and space O(n log n + kn).

5.4. L~ Diameter

The algorithms in the previous two sections generalize to circumradius and
diameter in any metric, but we can make a significant improvement in L~o. The
minimum Lo~ diameter (equivalently, minimum L~ circumradius) k-point set is
the set enclosable in the smallest axis-aligned hypercube. In the plane Aggarwal
et al. [2] give an algorithm for this problem, based on higher-order L~ Voronoi
diagrams, that takes time O(k2n log n).

Our approach is almost identical to that used to find minimum circumradius
sets. We start with the problem of placing a fixed-size axis-aligned hypercube so
that it covers the maximum number of points. Once we solve this problem, we
can parametrize it to find the smallest axis-parallel hypercube that covers at least
k points. Instead of parametric search, we use a much simpler binary search among
the possible L~ diameters.

Lemma 5.7. We can find the minimum L~o diameter k-point subset of a set of n

points in R d, in time O(n a/2 log 2 n) and space O(nd/2).

Proof Finding the optimal placement of a hypercube is equivalent to finding the
deepest point in an arrangement of hypercubes. We can easily adapt an algorithm
of Overmars and Yap [32], originally applied to Klee's measure problem, to find
the deepest point in an arrangement of axis-aligned boxes in time O(n ~/2 log n) and
space O(nd/2).

Iterated Nearest Neighbors and Finding Minimal Polytopes 333

To find the optimal hypercube size, we search along each coordinate axis as
follows. We sort the points by the appropriate coordinate, and define a triangular
matrix M of coordinate differences. These differences are potential L~ diameters.
We do not actually build M, since that would require time fl(n2), but we can access
any entry in constant time. We binary search through M for the optimal diameter.
Since the rows and columns of M are sorted, we can select any element in time
O(n log n) [22]. Thus, each step of the search is dominated by Overmars and Yap's
algorithm, and the entire search requires time O(n a/2 log 2 n). []

Theorem 5.6. We can find the minimum Lo~ diameter k-point subset of a set of n
points in R d, in time O(kn log n + k d/2- in log 2 k) and space O(kn + kd/2), or in time
and space O(n log n + kn) if d -- 2. []

Our planar algorithm's time and space bounds are dominated by the rectilinear
nearest-neighbors subroutine. For k = ~(log 2 n), the "ad hoe" algorithm of Lemma
5.7 is both faster and more space-efficient.

5.5. Variance

The variance of a set of points is defined as the sum of the squares of the distances
between pairs of points, divided by the number of points in the set. Equivalently,
the variance is the sum of the squares of the distances from each point to the
centroid of the set [2].

Lemma 5.8. I f a point p is in the minimum variance k-point set, then the set is
contained in the O(k a/2 + 1) rectilinear nearest neighbors of p.

Proof Let V and R be the variance and circumradius of the minimum variance
set, and let p be any point in the set. We easily verify that 2R 2 < V < kR 2. The
set is contained in an axis-parallel hypercube centered at p with width 4R. We

can partition this hypercube into O(k d/2) hypercubes of width 2Rv/2/dk , and thus

of circumradius R x / ~ . If any of these spheres contain k points, their variance is
at most 2R 2, which is less than V. []

Aggarwal et al. [2] prove that the minimum variance k-point set corresponds
to one of the cells in the kth-order Voronoi diagram of the original n points and
derive an algorithm that uses time O(n log n + kEn) in the plane. Agarwal and
Matou~ek [1] recently discovered an algorithm for constructing planar order-k
Voronoi diagrams in time O(kn 1 +5).1 Combining their algorithm with our techni-
ques, we can find minimum variance sets in the plane in time O(n log n + k2+~n),
which is slightly worse than the existing bound.

1 Throughout this paper e represents an arbitrarily small positive constant. Multiplieative constants
hidden by the O-notation may depend on e.

334 D. Eppstein and J. Erickson

Lemma 5.9. Let p be a point in the minimum variance k-point set, and let V be the
set's variance. Suppose, for some constant c > O, the distance between p and the set's

centroid is c x / ~ . Then the set is contained in the O(ck ta+ 1)/2) nearest Euclidean
neighbors of p.

Proof Let S be the sphere, centered at the optimal set's centroid, which just
contains the set, and let R be the radius of S. S contains exactly k points [2]. Then

S is contained in a sphere centered at p with radius R + 2 c x / ~ . The space

between the two spheres can be covered by O(ck ~a- 1)/2) spheres of radius x / ~ ,
none of which can contain k points. []

The two previous bounds are tight in the worst case. Consider a sphere S 1 of

radius x/~, containing a smaller sphere $2 of radius x/~/2 tangent to S 1. There is
a cluster of k - 2 points with arbitrarily small variance around the center of $2,
but excluding the center itself. The surface of $2 and the space between the two
spheres are both filled with as many clusters of k/2 points as possible, such that
every two clusters have at least unit distance between them. One of these clusters
contains the center of $1; another contains the tangent point of the two spheres.
The minimum variance set consists of the large cluster, the center of S 1, and the
tangent point. For each point p in this set, every sphere centered at p that contains
the set also contains D(k (a+ 1)/2) other points, and the set contains the I~)(k a/2+ 1)th
neighbor of the center of $1.

To find the minimum variance set quickly, we need to find a center point

within radius cx/V/k of the optimal set's centroid, for some constant c > 0,
so that we can search for the optimal set among its O(ck (a+1)/2) neares t
neighbors. We describe an algorithm the finds a set of O(n/k) points, at least one
of which is a center point.

Theorem 5.7. We can find the minimum variance k-point subset of a set of n points
in the plane, in time O(k3/2n log n + ka/2 +~n) and space O(kn + k5/2).

Proof. We begin by finding the k/2 nearest Euclidean neighbors to every point,
in time O(kn log n) and space O(kn). We repeatedly find the point p with the smallest
neighbor sphere. If neither p nor any of the neighbors of p are already marked
noncentral, we make p as a potential center point and mark its neighbors as
noncentral. Each central point marks k/2 noncentral points, so this process gives
us O(n/k) potential center points. The entire marking process requires time
O(n log n + kn).

Most of the points in the minimal set are within x / ~ / k of the centroid, so

every point within this radius has at least k/2 neighbors within 2 2 x / f ~ . Let p be
one of these points. When the marking algorithm reaches p, one of two things
happens:

Iterated Nearest Neighbors and Finding Minimal Polytopes 335

(1) We could mark p as a potential center point.
(2) We could ignore p because p or one of its neighbors is marked noncentral,

in which case some point within 5x / /~ / k of the centroid is already marked
central.

Thus, at least one of the potential center points is an actual center point.
After we find the potential center points, we find the O(k 3/2) nearest Euclidean

neighbors of each potential center point in time O(k3/2n log n) and space O(n). We
then test each of the O(n/k) neighbor sets in time O(k 5/2 § ~) and space O(k 5/2) using
Agarwal and Matou~ek's Voronoi diagram algorithm [1]. []

This algorithm matches or improves previous time bounds for all k in
O(n ~) c~ f~(log 2 n). For smaller values of k, the O(n log n + k2n)-time algorithm of
Aggarwal et al. is faster. For larger values of k, Agarwal and Matou~ek's Voronoi
diagram algorithm is faster. Finally, for k = ~)(n 1 -'), the fastest algorithm is based
on another Voronoi algorithm of Chazelle and Edelsbrunner [6] and runs in time
O(n 2 log 2 n).

Mulmuley describes an algorithm that constructs the kth-order Voronoi dia-
gram of a set of n points in R a, in time O(k 7td+ 1)/2qnL(d+ 1)/2] log n + kan 2) [30]. To
find minimum variance sets in higher dimensions, we use Mulmuley's algorithm
as a subroutine within each neighbor set. We improve the previous time bound
of O(n d* i) [2].

Theorem 5.8. We can find the minimum variance k-point subset of a set of n points
in ~ , in time O(k~d+l)/Enlogn + kVtd)-lnlogk) and space O(n + kVCd)), where
v(d) = (d E + 3d + 4)/4 i fd is even, and (d 2 + 4d + 3)/4 i fd is odd.

6. Dynamization

We now show how to turn our planar algorithms into dynamic data structures,
that can maintain the minimum measure k-point set as points are inserted. Our
algorithm is simply to maintain a data structure that can determine, for each new
point, its O(k) nearest neighbors. Then if that point is part of a set improving the
previous optimum, that set will be a subset of these neighbors, and can be found
using the methods already described.

Lemma 6.1. Let l~ be a measure having the property that the minimum measure
k-point set is contained in the m nearest neighbors of each of its points, and let
T(m) (resp. S(m)) be the time (resp. space) required to find the optimal k-point set
among m points. Then, in the plane we can maintain the k-point set minimizing p as
points are inserted in time O(T(m) + log2n + m log n) per insertion and space
O(n log n + S(m)).

336 D. Eppstein and J. Erickson

Proof We apply a standard dynamic-to-static reduction technique for decompos-
able searching problems [4] to the rectilinear nearest neighbor data structure of
Lemma 3.3. []

Theorem 6.1. We can maintain the minimum measure k-point set in the plane
as points are inserted, with the following insertion times: O(k 4 + log 2 n) for peri-
meter, O(k 3 q- log 2 n) for L~o perimeter, O(k 2 log k + log 2 n) for circumradius,
O(k 3 log 2 k + log 2 n) for diameter, O(k log 2 k + log 2 n) for L~ diameter, and
O(k 3 +~ + log 2 n) for variance.

We can dynamize our higher-dimensional results in a similar manner, using a
dynamic nearest-neighbor data structure of Agarwal and Matou~ek [1], with
results that are just slightly better than brute force.

7. Nearest Vertical Neighbors

We now consider the problem nearest vertical neighbors for points and line
segments; we use this as a subroutine in our minimum area algorithm.

Given a point p and a nonvertical line l, the vertical distance d(p, l) is simply
the length of a vertical line segment connecting p and I. The nearest vertical
neighbor to I from a point set P is the point p E P minimizing the vertical distance
to I.

The connection between this concept and minimum area polygons is as follows.
If a triangle is formed by connecting point p to the endpoints of a line segment
s, where s is contained in line l, the area of the triangle is c. d(p, l), where c is half
the length of the projection of s onto the x-axis. Therefore the point in P forming
the minimum area triangle with s is the nearest vertical neighbor of l. This
observation was used to develop O(n 2) algorithms for the minimum area triangle
problem [7], [16], [15].

We can tighten this characterization as follows. Let Apqr be the minimum area
triangle, and assume that the vertical projection of r is between those of p and q.
Then, as before, r is the nearest neighbor of line pq, but the vertical segment
connecting r and line pq actually touches segment pq. In other words, r is within
the slab defined by vertical lines through p and q. In general we say p is a neighbor
of segment s if it appears vertically above or below s, as in this case r appears
above or below segment pq. Then the triangle problem can be solved by finding, for
each segment pq, the nearest neighbors above and below pq. Computing nearest
neighbors to segments is harder than the original problem of nearest neighbors
to lines but it generalizes to minimum area k-gons in a way that does not work
for nearest neighbors to lines.

Given a set of n points and a segment s (which may not be determined by two
of the points) we say that the k nearest vertical neighbors above (below) s are those
k points above (below) the line through s, and within the slab defined by vertical
lines through the endpoints of s, such that no other point with the same restrictions
is closer to s. We compute these k nearest neighbors as follows.

Iterated Nearest Neighbors and Finding Minimal Polytopes 337

(a) (b)

Fig. 1. Finding nearest neighbors between lines and points: (a) primal, nearest point neighbor to a
line; (b) dual, vertical ray shooting in a line arrangement.

First, suppose we only care about the restriction that the points be above or
below the line l through s; this is the earlier problem of nearest neighbors to a
line. By geometric duality, we can transform the line to a point and the point set
to a line arrangement; Fig. l(a) and (b) illustrates this transformation. Point-line
vertical distances are the same in the dual as they were in the primal. Therefore
the dual nearest neighbor is the first line encountered by a vertical ray sent from
the dual point I. The k nearest neighbors are the first k lines encountered. Thus
we can find these neighbors by ray shooting in the dual arrangement.

This does not quite solve the problem we posed, because we have not dealt
with the requirement that points be above or below the segment s, only that they
be above or below the line containing s. To solve this we sort the points by their
horizontal projections. As well as building an arrangement and ray-shooting data
structure for the entire point set, we also build structures for the first and second
halves of the sorted lists of points, and so on recursively. Each data structure
corresponds to a vertical slab of the points; for each such structure there are two
smaller structures corresponding to slabs containing half as many points.

Then, for each query segment s, we can find a set of O(log n) slabs that contain
exactly those points above and below s. We can solve the k nearest vertical
neighbors problem by performing ray-shooting queries within each slab, and
selecting the best k points found.

We now describe the data structures which allow us to perform these ray-
shooting operations and therefore find the nearest vertical neighbors. Rather than
build a data structure that allows line segments to be tested in arbitrary order,
we test the segments in left-to-right order of the points dual to the lines containing
them. This allows us to perform our algorithm as a plane sweep of the dual-line
arrangement; that is, we sweep a vertical line from left to right across the dual
plane, and perform line segment neighbor finding queries and data structure
updates as the vertical line crosses appropriate features in the arrangement.

At any point in the algorithm, the sweep line will cross all of the n dual lines,

338 D. Eppstein and J. Erickson

Our data structure for a single slab (corresponding to a single dual-line arrange-
ment) simply consists of an array of n elements, listing those lines in the vertical
order of their points of intersection with the sweep line. Then a vertical ray-
shooting query along the sweep line could be performed by a binary search in the
array, to locate the starting point among the dual lines. Successive queries would
then take O(1) time by simply moving up to the next element in the array. The order
of the dual lines changes exactly when the sweep line crosses an intersection
between two dual lines. The change consists simply of swapping two adjacent
elements in the array. The rays at which we wish to shoot correspond to segments
pq, which are also found as the intersection of two lines dual to p and q. Each
successive intersection can be found in O(log n) time, by keeping a priority queue
of the n - 1 possible intersections between adjacent elements in the array.

Now let us consider putting several slabs together again. Starting each ray-
shooting query by binary searching in each slab separately would take O(log 2 n)
time per segment. We can reduce this time, by using another data structure to
relate locations in different slabs to each other. Recall that for each slab,
corresponding to an arrangement of some m dual lines, there are two smaller slabs
with m/2 dual lines each. The sweep line in the large slab is divided into m + 1
regions by the m lines crossing it. Each region in the large slab corresponds to
part of a region in each of the smaller slabs. We keep another array, of m + 1
elements, listing the correspondence between regions of the large and small slabs.
This correspondence only changes when an intersection occurs in the large slab;
other intersections will rearrange the correspondence of lines to regions but will
not change the numbering of the regions. For each intersection of two lines, we
only need to update the correspondence for the region between the lines. Thus
again each update takes 0(1) time per slab.

Now we can use these arrays to locate the point dual to each segment in the
O(log n) slabs we wish to search. The point is an intersection in the outer slab
containing all n points, and its location will already be known when the sweep
line crosses that intersection. Then, while we have a location within a slab that
contains points not above or below the queried segment, we need to move to
locations in the two child slabs. This can be done simply by looking in the
appropriate arrays, in constant time per move. In this way it takes O(log n) time
to find the initial locations for ray shooting in each of the O(log n) appropriate
slabs.

Once we have found the initial locations for vertical ray shooting, we can
find each successive vertical neighbor of the segment simply by moving from
element to adjacent element in the appropriate array. However, we must somehow
combine the neighbors found in different slabs. To do this, we use a final array,
which tells us for each line the position of that line as it crosses the sweep
line in the root slab of all n points. This array is updated as before by swapping
two elements per intersection encountered. Using the array, we can compare
neighbors from different slabs, by examining their positions in the sweep line.
Each vertical neighbor for the line segment must be found by selecting among
O(log n) candidates, one from each slab, each of which can be thought of
as an integer having O(log n) bits, representing the position in the sweep line.

Iterated Nearest Neighbors and Finding Minimal Polytopes 339

This section can be performed in constant time per operation, using atomic
heaps [23].

Theorem 7.1. Given n points, we can enumerate all point sets found as the k nearest
vertical neighbors of each segment formed by a pair of points, in total time
O(n 2 log n + kn 2) and space O(n log n).

Proof. Each intersection of two dual lines, causing a search from the correspond-
ing segment as well as updates to the data structures, can be selected in time
O(log n) from a priority queue of possible intersections. Each search for k nearest
neighbors takes time O(log n) to find the initial positions for the ray shooting, and
O(1) time per neighbor found. Each update takes constant time per slab, and
involves changes in O(log n) slabs (only those slabs containing both dual lines that
intersect to cause the update). Therefore the total time for searches and updates
in O(n2(log n + k)). Each dual line is involved in O(log n) slabs, and uses constant
space per slab, so the total space is O(n log n). []

Remark. Again, since our algorithm uses atomic heaps, our time bound holds
only in the RAM model of computation. In the algebraic decision tree model the
time bound increases by a factor of O(log log n).

8. Minimizing Area

We now describe how to use the data structure of the previous section to find
k-point sets with minimum area convex hulls. The problem was previously solved
by Eppstein et al. [20] in time O(kn 3) and space O(kn2).

Lemma 8.1. I f p L and PR are the leftmost and rightmost points of the minimum area
k-point set, respectively, then every other point in the set is one of the 2k - 4 nearest
neighbors above or below the segment PLPR.

Proof Let q be the point farthest from PLPR in the optimal set. Then the area of
the set is at least that of /kPLqPR. Consider the parallelogram with two vertical
sides through PL and PR, one side equal to PLPr~, and the remaining side
parallel to PLPR and through q. We can divide this parallelogram vertically into
two smaller parallelograms, each with area equal to that of APLqPR. If either
parallelogram contains k points, they would supply a k-point set with smaller
area. Thus, the large parallelogram contains at most 2k - 2 points, including PL
and PR. []

For example, Fig. 2(a) shows a set of five points, with ApLqp R outlined. Figure
2(b) shows 7 = 2 . 5 - 3 points above PLPR, five of which are in one small
parallelogram.

This immediately gives us our algorithm for finding the minimum area k-point

340 D. Eppstein and J. Erickson

0 �9 - " -

i '"."44"'-4"
. -

0 0 Or'z- i
4

0 " " 4 " i o ' !

(a) (b)

Fig. 2. Nearest neighbors to PLPR: (a) five-point set with triangle to furthest point; (b) seven nearest
neighbors have a five-point subset in one parallelogram.

set. We simply examine each possible segment PLPR, and find the 2k - 4 neighbors
above and below it. That gives us a set of 4k - 6 points, in which we can find the
minimum k-point set in time O(k 4) using the algorithm of Eppstein et al. [20].
Thus we achieve a total time of O(n 2 log n + k4n2).

The O(k 4) term in this bound can be improved. First note that the convex hull
of the minimum k-point set is the union of the convex hulls above and below
PLPR, and the area of the convex hull is the sum of the areas above and below
PLPR. Each of these two hulls must be a minimum j-point set, among those sets
containing both PL and PR, for j equal to the number of points in the respective
sets. So if we can compute all minimum such j-point sets, for j < k, we can combine
the possible top and bot tom sets in a further step taking time O(k). In fact the
algorithm of Eppstein et al. computes all these sets. Further, it works by trying
all possible choices of the bot tommost point in the set; for each such choice the
algorithm takes O(k 3) time. However, in our situation we know the bot tommost
point: it is either PL or PR. Therefore we can compute the opt imum k-point set
among the neighbors of segment PLPR in time O(k3).

Theorem 8.1. We can find the minimum area k-point subset of a set of n points in
the plane, in time O(n 2 log n + k3n 2) and space O(n log n + k3).

This improves the previous time bound of O(kn 3) [20] whenever k = O(x//n).
Our space bound is always an improvement over the previous O(kn 2) [20].

9. Minimiz ing Volume and Boundary Measure

In this section we demonstrate a natural generalization of our minimum area
algorithm to arbitrary dimensions. We also generalize our results for finding
minimum perimeter sets in the plane.

Iterated Nearest Neighbors and Finding Minimal Polytopes 341

Let T be some r-dimensional polytope in ~ , with r < d. Given a point p, we
define the orthogonal distance from p to T to be the Euclidean distance from p to
its orthogonal projection onto aft(T), which we denote p'. We call p an orthogonal
neighbor of T if and only if p ' e T. We can compute the nearest orthogonal
neighbors to any polytope with fixed complexity in linear time.

Given a set of points A in ~d, and an arbitrary point Po ~ A, we define the series
of extremal points, extremal simplices, and bounding boxes of A with respect to Po,
denoted Pt, St, and B~, respectively. While these sequences depend on the initial
point P0, the properties we derive hold for all initial points.

We define B o = So = P0. For each 1 < i < d, Pt is the point in A farthest from
the affine hull of St- 1. St = conv(St- 1, Pi). Bt is the convex hull of two copies of
B~-I, one containing Pl and one an equal distance from Bt-1 in the opposite
direction, situated so that B t_ 1 c Bt, and adjacent facets of Bi meet at right angles.
For any set A, we have Sa(A) c conv(A) c Bd(A). See Fig. 3 for an example.

Volume and boundary measure share the following property. For some con-
stant r, the minimum measure k-point set is contained in the m nearest orthogonal
neighbors to the bounding box of its first r extremal points (with respect to any
point in the set). For measures with this property, we have the following algorithm
outline for finding minimum measure sets. For each set of r points, there are r
possible bounding boxes. For each box, we find its m nearest orthogonal neighbors,
and search for the minimum measure set among them.

Lemma 9.1. Let # be a measure having the property that the minimum measure
k-point set A is contained in the m nearest orthogonal neighbors of B,(A), and let
f(m) be the time required to find the optimal k-point set among m points. Then, given
a set of n points in ~d, we can find the k-point subset minimizing #, in time
O(n.+ 1 + n,f(m)).

We know of no fully polynomial-time algorithm to find minimum volume or
boundary measure sets, except in the plane [2], [14], [20]. A naive algorithm runs

/ / \ k

in time O((~)kLd/2J), by explicitly computing the convex hull of every k-point
\ \ . - j /

subset [5]. We use this algorithm as a subroutine.

Fig. 3. Extremal points, extremal simplices, and bounding boxes in R 3.

342 D. Eppstein and J. Erickson

Throughout this section we let I AI and IdA[denote the volume and boundary
measure of the convex hull of A. The following lemma relates the volumes of
bounding boxes and extremal simplices.

Lemma 9.2. For all A c R d, I Ba(a) l = 2dd! I Sa(A) I.

Proof. The volume of a d-dimensional cone is bh/d, where b is the (d - 1)-
dimensional measure of the base and h is the distance between the apex and the
affine hull of the base. The volume of a d-dimensional box with the same base
measure and height is bh.

We prove the lemma by induction. The lemma holds (trivially) when d = 0. Let
h d denote the distance between Pa and aff(Sa_~). Using the volume formulae
above, we have ISal = halSa-ll/d and IBal = 2halBa-ll. Therefore, Inal/ISal =
2dlBd-x I/lad-xl. The closed form follows directly from the inductive hypothesis.

[]

9.1. Boundary Measure

Given a set A in ~d, we define its bounding cylinder C(A) as the set of points no
farther orthogonally from Bd-2(A) than p~_ I(A), and we define B'(A) as the smallest
box containing C(A). We have Sd-I(A) c conv(A) c C(A) c B'(A). See Fig. 4.

The following lemma relates the boundary measure of any set A with the
boundary measure of B'(A).

Lemma 9.3. For all A c R a, J0B'(A)[< 2a-ld! IdAJ.

Proof. B' has 2d facets. Four of the facets have measure equal to [Bd- 1 I. Let hl
denote the distance between Pi and aff(Si_ 1)- Since h a_ 1 < hl for all i < d - 1, the

Fig. 4. A bounding cylinder and its box in R a

Iterated Nearest Neighbors and Finding Minimal Polytopes 343

rest of the facets of B' have measure smaller than [Bd-l[. Therefore, 10B'[<
2dlBa-l[= 2ddlSd-l[, by Lemma 9.2. The lemma follows from the observation
that IOAI > 2ISd-I(A)I. []

Lemma 9.4. The minimum boundary measure set A is contained in the O(k) nearest
orthogonal neighbors of B d_ 2(A).

Proof Let s(d) denote I-2" d! 1/(a- 1)'7. We divide B'(A) into s(d) a congruent pieces
by slicing parallel to each opposite pair of facets s(d) times. Each piece has
boundary measure IOB'(A)J/s(cOd-I< IOB'(A)I/2d-ld!. By the previous lemma,
this is less than [0AI, so no piece can contain more than k - 1 points. Thus,
B'(A) contains at most s(d)d(k - 1) = O(k) points. Since C(A) ~ B'(A), C(A) also
contains O(k) points. The points in C(A) are the nearest orthogonal neighbors
of B a_ 2(A). []

Theorem 9.1. We can find the minimum boundary measure k-point subset of a set
of n points in ~d, in time O(n d + 20tk~n d- 1) and space O(n).

We can generalize L~ perimeter into higher dimensions as follows. We define
the L~ boundary measure of a set A as the boundary measure of the smallest
axis-parallel hyperrectangle enclosing A. Using techniques similar to those used
to prove the previous theorem, we have the following result.

Theorem 9.2. We can find the minimum L~ boundary measure k-point subset of a
set of n points in ~d, in time O(n d + kEd- ln d-l) and space O(n).

9.2. Volume

While it is possible to derive a relatively efficient minimum volume algorithm
using orthogonal neighbors, we can do better if we use vertical neighbors, as in
our minimum-area algorithm. We say that a point p is a vertical neighbor of a
polytope T if the line through p parallel to the dth coordinate axis intersects T.

Given a set A in ~d and an arbitrary point p~ e A, we define a series of vertical
extremal points, extremal simplices, and bounding boxes, which we denote p~, $7,
and By, respectively. As before, we define S~ = B~ = p~. For all 1 < i < d, p7 is the
point in A farthest along the ith coordinate axis from aff(S~_ 1). S~ = conv(S~'_ 1, P~).
B]' is the convex hull of two copies of B~'_ x, displaced equal distances in opposite
directions along the ith coordinate axis, one containing pT. For any set A, we have
S~A) c A ~ B~A). Clearly, Lemma 9.1 still holds if we consider vertical neighbors
to B~(A) instead of orthogonal neighbors to B,(A), and Lemma 9.2 also applies to
vertical bounding boxes and extremal simplices.

Lemma 9.5. The minimum volume set A is contained in the O(k) nearest vertical
neighbors of B]_ I(A).

344 D. Eppstein and J. Erickson

Proof We divide B~d(A) into 2dd! congruent convex pieces. By Lemma 9.2,
each piece has the same volume as S](A). Since I AI > I S](A)[, no piece can contain
more than k points. The points in B~A) are the nearest vertical neighbors
of B~_ I(A). []

We now describe an efficient algorithm for finding nearest vertical neighbors
to (d - l)-dimensional boxes. First consider the simpler problem of finding
nearest neighbors to hyperplanes. As we did in our planar algorithm, we use
geometric duality to transform the problem into finding, in an arrangement of
hyperplanes, the k closest hyperplanes above some query point. Vertical point-
hyperplane distances in the dual space are the same as the corresponding vertical
hyperplane-point distances in the primal space. Thus, we can solve this problem
by vertical ray shooting in the dual space. We use the following result of Matou~ek
[283.

Lemma 9.6 [28]. We can preprocess a set o f n points in ~d, in time and space
o(na/log d- in), so that the k nearest neighbors to a query hyperplane can be found
in time O(k log n).

We make use of a technique developed by Chazelle et al. [9] for answering
simplex range queries. Given a data structure used to answer some arbitrary
geometric query, they build on top of it another structure, called a partition tree,
that limits the query to the points within an arbitrary half-space. The resulting
data structure can be built in time O(n a+~ + P(n)), where P(n) is the preprocessing
time required for the original structure; and queries are answered in time
O(Q(n) log n), where Q(n) is the original query time. By building several levels of
partition trees, it is possible to limit queries to the intersection of several
half-spaces.

Lemma 9.7. We can preprocess a set o f n points in ~d, in time and space
O(nd/logd - 1 n), so that the k nearest vertical neighbors to a query (d - 1)-dimensional
box can be found in time O(k logd+Xn).

Proof It suffices to find vertical neighbors to simplices, since every box can
be split into a constant number of simplices, and neighbors can be merged
in time O(k). We build a d-level partition tree, one level for each (d - 2)-face
of the query simplex, on top of Matou~ek's vertical ray-shooting data structure.
Since the hyperplanes bounding the query region are all vertical, we actually
build the partition trees in R ~-1, by ignoring the dth coordinate of every
point. []

Theorem 9.3. We can find the minimum volume k-point subset o f a set o f n points
in R ~, in time O(kn ~ log d+l n + 2~ d) and space O(n d- 1 +~).

Iterated Nearest Neighbors and Finding Minimal Polytopes 345

10. Finding Minimal Convex Sets

We wish to extend our results to the problem of finding minimal convex k-point
sets, that is, sets of k points which are the vertices of some convex polygon or
polytope. Our previous results were based on the fact that, if some k points are
contained in a small convex body, we can find a k-point set with smaller perimeter
(circumradius, diameter, convex hull volume, etc.) than that body. We cannot apply
this technique directly, since k points contained in some convex body obviously
do not necessarily form a convex set. Hence we need a result of the form that, if
enough points are given, some k-point subset will be convex. Such results are
given by Ramsey theory [24]; indeed, the following was one of the seminal results
in the development of both Ramsey theory and combinatorial geometry.

Lemma 10.1 [21]. Given a set of

2k - 4~
ES2(k) <- \ k - 2 J + 1

points in general position in the plane, some k points form the vertices of a

convex polygon.

Lemma 10.2. Given a set of

2k - 4~
gSa(k) <- \ k - 2 J + 1

points in general position in ~a, some k points form the vertices of a convex polytope.

Proof Project any set of ES2(k) points in R a down to any plane. By the previous
lemma, some k points in the projection form a convex polygon. The preimage of
those k points forms a convex polytope in ~a. []

This gives us an upper bound of ESa(k)= o(4k). Erd6s and Szekeres also
conjecture that ES2(k) = 2 k- 2 + 1 and prove that this is a lower bound. Tightening
the bounds on this function remains one of the outstanding open problems in
combinatorial geometry [11]. We know of no bounds on ES~(k) other than those
stated here, but it is clear that the function decreases with increasing d. Clearly,
any reduction of the upper bound on ESa(k) would speed up our algorithms.

Using the previous lemma, we can generalize all of our results, both static and
dynamic, to find minimum measure convex sets. The resulting time bounds have
the same dependence on n as the corresponding k-point set results, but with an
exponential dependence on k.

For each of the measures we consider, if the minimum measure set is contained
in the m nearest neighbors of each of its points, then the minimum measure convex

346 D. Eppstein and J. Erickson

set is contained in the O(m4k/k) nearest neighbors of each of its points. Our proof
technique is identical to the one used for our earfier neighbor-counting lemmas.
We describe a convex body, typically a hypercube, that contains the minimum
measure set. We then divide the body into small pieces, such that if any piece
contains O(4 k) points, then it necessarily contains a k-point convex set with smaller
measure than the original minimum measure set.

Theorem 10.1. Given a set of n points in the plane, we can find the convex k-gon
with minimum perimeter or L~o perimeter, in time O(n log n + 26kn) and space
O(n log n + 4kn -t- 24k). We can maintain the convex k-gon with minimum perimeter
or Lo~ perimeter as points are inserted, in time O(26kk q- log 2 n) per insertion and
space O(n log n + 24k).

Proof. The minimum perimeter convex k-gon is contained in the O(4 k) nearest
neighbors to each of its points. We can use the dynamic programming algorithm
of Eppstein et al. [20] to find minimum perimeter convex k-gons in time O(kn 3)
and space O(n2). Using their algorithm as a subroutine, we achieve a static time
bound of O(n log n + k(4k)an/k) = O(n log n + 26kn). The dynamic time bound
follows directly from Lemma 6.1. Our algorithms work under any metric. []

Theorem 10.2. Given a set of n points in the plane, we can find the convex k-gon
with minimum circumradius or Lo~ diameter, in time O(n log n + 21~ and space
O(n log n + 4kn). We can maintain the convex k-gon with minimum circumradius
or Lo~ diameter as points are inserted, in time 0(2 l~ q- log 2 n) per insertion and
space O(n log n + 4k).

Proof. The minimum circumradius convex k-point set is contained in the O(4 k)
nearest neighbors to each of its points. Edelsbrunner and Guibas [15] describe an
algorithm that finds, given a set of n points, the largest (cardinality) convex subset
that includes a given leftmost point, in time O(n 2) and space O(n). For each point
p and each circumcircle containing it, rotate the points within the circle so
that p is leftmost, and find the largest convex subset containing p. Since each
point is on O(n 2) circumcircles, the resulting algorithm finds the minimum
circumradius convex k-gon in time O(n 5) and space O(n). We use this algorithm
as a subroutine. []

Theorem 10.3. Given a set of n points in the plane, we can find the convex k-gon
with minimum area, in time O(n 2 log n + 26kn 2) and space O(n log n + 24k).

Proof. The minimum area convex k-point sets is contained in the O(4 k) nearest
vertical neighbors to the segment joining its leftmost and rightmost points. We
can use the dynamic programming algorithm of Eppstein et al. [20] to find
minimum area convex k-gons in time O(kn 3) and space O(n2). As in the k-point
set problem, we can reduce the time complexity by combining j-gons, j < k, from
each side of each segment PLPR. As in the k-point set problem, all minimumj-gons

Iterated Nearest Neighbors and Finding Minimal Polytopes

Table 3. New results for finding minimum measure convex k-gons, given
n points in the plane. (Compare Table 1.)

Measure Static time bound Dynamic time bound

Perimeter O(n log n + 26kn) O(26kk + log 2 n)
L| perimeter O(n log n + 26kn) O(26kk + log 2 n)
Circumradius O(n log n + 21~ O(2 l~ + log 2 rl)
L~ diameter O(n log n + 21~ O(2 l~ + log 2 n)
Diameter O(n log n + 22k:+o(k)n) 0(22k2+O(k) + log 2 n)
Variance O(n log n + 22k2+kl~k +o(~)n) 0(22k2+klgk+~ + log 2 n)

Area O(n 2 log n + 26krl 2) - -

347

can be computed in time O((4k) 3) = 0(26k), and the results can be combined in
time O(k). Therefore the total time is O(/12 log n + 26kn2). []

We are unable to generalize our planar diameter and variance algorithms, or
any of our algorithms in higher dimensions, to find minimal convex sets. Con-
sequently, we must use brute force within the neighbor sets, and our resulting time
bounds are heavily exponential in k. Nevertheless, for sufficiently small k, our
algorithms are faster than brute force. We summarize our planar results in Table
3, and our higher-dimensional results in Table 4.

II. Conclusions and Open Problems

We have presented several algorithms for finding minimum measure k-point sets
under a variety of measures, both in the plane and in higher dimensions. Our
results are based on a common method. Given a set of points, we compute the
nearest neighbors to each subset of r points, where r is a small constant determined
by the relevant measure, and then search within each neighbor set using another
algorithm. For most of the measures we have examined, r = 1. For these measures,

Table 4. New results for finding minimum measure k-vertex convex
polytopes, given n points in R ~, for all d > 2. (Compare Table 2.)

Measure Time bound

Circumradius
Diameter
L~ diameter
Variance

O(22kn log n + 22k2+O(k)n)

O(22kn log n + 22k2+~
O(22kn log n + 22k2+Otk)n)
O(4kkta - 1)/2 n log n + 22k2 + (<d- 1)/2)k lg k + O(ku

Boundary measure
L~ boundary measure
Volume

O(n d + 22k2+otk)n,t-1)
O(n ~ + 2~k2 +o~%~-~)
O(kn a loga+ 1 n + 22k2+o(k)n a)

348 Eppstein and J. Erickson

we can reduce the number of neighbor sets to search down to O(n/k) by finding
neighbors of neighbors. Our planar results were achieved through the use of a
new algorithm that finds the m nearest rectilinear neighbors of each of a given set
of n points, in time O(n log n + mn) on a random access machine. We have also
presented versions of our algorithms which maintain minimum measure sets
as points are inserted and versions which find, or dynamically maintain, minimum
measure convex sets.

Eppstein et al. [20] also consider the problem of finding minimal empty convex
polygons. Unfortunately, our methods do not suffice to solve this problem,
except for a few special cases. In the plane every set of five points contains an
empty convex quadrilateral, and every set of ten points contains an empty convex
pentagon; our techniques can be applied to these cases. However, it is open
whether there is a largest set with no empty convex hexagon (see, for example,
[31]), and there are arbitrarily large point sets that contain no empty convex
heptagons [26]. We know of no similar results in higher dimensions.

Our results suggest several open problems. None of our results is known to be
optimal. Faster algorithms, or matching lower bounds, would be interesting. In
particular, is it possible to find higher-dimensional k-point sets with minimum
diameter, volume, or boundary measure without resorting to brute force? Dobkin
et al. [14] and Eppstein et al. [20] present dynamic programming algorithms
which can be used to solve a variety of minimum and maximum measure problems
in the plane, but it seems highly unlikely that their approach can be adapted
to higher-dimensional problems. Similarly, we have been unable to generalize our
minimum-diameter algorithm, or the earlier algorithms of Aggarwal et al. [2], into
higher dimensions.

Are there faster algorithms for finding nearest neighbors? An efficient technique
for finding neighbors of (d - 2)-flats might also lead to a faster mimimum-boun-
dary-measure algorithm. Finally, is it possible to find rectilinear neighbors of
points in higher dimensions in o(mn log n) time?

12. Recent Results

Dickerson et al. [13] describe an algorithm for finding k nearest neighbors in the
plane, under any metric, in time O(n log n + kn log k) and space O(n). Except for
L~ diameter, we can replace our neighbor algorithm with theirs in each of the
algorithms in Section 5, without decreasing the time. The resulting algorithms all
follow the algebraic decision-tree model of computation. In fact, we can im-
prove the performance of our variance algorithm by substituting the new neighbor
algorithm for Vaidya's. The new algorithm is faster than the one described by
Aggarwal et al. [2] for all values of k.

Theorem 12.1. We can f ind the minimum variance k-point subset o f a set o f n points
in the plane, in time O(n log n + k3/2 +~n) and space O(kn + k5/2).

Iterated Nearest Neighbors and Finding Minimal Polytopes 349

Very recently, Datta e t al. [12] developed new algorithms for each of the
problems we discuss in Section 5, except variance, using a search technique
developed by Lenhof and Smid [27] that does not require the computation of
nearest neighbors and follows the algebraic decision-tree model. In the plane their
algorithms use the same time and less space than the solutions we present
here; in higher dimensions they improve both both time and space bounds. They
also present faster algorithms for maintaining the optimal set as points are inserted,
and new algorithms for maintaining the optimal set as points are inserted and
deleted, using techniques developed by Smid 1-33]. Their dynamic algorithms work
efficiently in all dimensions.

References

1. P. K. Agarwal and J. Matougek. Ray shooting and parametric search. In Proc. 24th ACM Symp.
Theory Comput., pp. 517 526, 1992.

2. A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter and related
problems. J. Algorithms, 12:38-56, 1991.

3. M. Ajtai, J. Komlrs, and E. Szemerrdi. Sorting in c log n parallel steps. Combinatorica, 3 : 1-19, 1983.
4. J. L. Bentley and J. B. Saxe. Decomposable searching problems, I: Static-to-dynamic transforma-

tion. J. Algorithms, 1:301-358, 1980.
5. B. Chazelle. An optimal convex hull algorithm and new results on cuttings. In Proc. 32nd 1EEE

Syrup. Found Comput. Sci., pp. 29-38, 1991.
6. B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing kth-order Voronoi

diagrams. IEEE Trans. Comput., 36:1349-1354, 1987.
7. B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25:76-90, 1985.
8. B. M. Chazelle and D. T. Lee. On a circle placement problem. Computing, 36:1-16, 1986.
9. B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range searching

and new zone theorems. In Proc. 6th ACM Syrup. Comput. Geom., pp. 23-33, 1990.
10. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc. Comput.

Mach., 34:20(L208, 1987.
11. H. P. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry. Springer-Verlag, New

York, 1990.
12. A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-point

clustering problems. In Proc. 3rd Workshop Algorithms Data Struct., pp. 265-276. Lecture Notes
in Computer Science, vol. 709. Springer-Verlag, New York, 1993.

13. M. T. Dickerson, R. L. Drysdale, and J. R. Sack. Simple algorithm for enumerating interpoint
distances and finding k nearest neighbors, lnternat. J. Comput. Geom. Appl., 2:221-239, 1993.

14. D. P. Dobkin, R. L. Drysdale, and L. J. Guibas. Finding smallest polygons. In F. P. Preparata,
ed., Computational Geometry, pp. 181-214. Advances in Computing Research, vol. 1. JAI Press,
Greenwich, CT, 1983.

15. H. Edetsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput. System.
ScL, 38:165-194, 1989.

16. H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes
with applications. SlAM J. Comput., 15:341-363, 1986.

17. D. Eppstein. New algorithms for minimum area k-gons. In Proc. 3rd ACM-SIAM Syrup. Discrete
Algorithms, pp. 83-88, 1992.

18. D. Eppstein. Persistence, otfline algorithms, and space compaction. Technical Report 91-54, Dept.
Information and Computer Science, University of California, Irvine, 1991.

19. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. In Proc.
4th ACM-SIAM Syrup. Discrete Algorithms, pp. 64-73, 1993.

350 D. Eppstein and J. Erickson

20. D. Eppstein, M. Overmars, G. Rote, and G. Woeginer. Finding minimum area k-gons. Discrete
Comput. Geom., 7:45-58, 1992.

21. P. ErdtSs and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463~,70,
1935.

22. G. N. Frederickson and D. B. Johnson. The complexity of selection and raking in X + Y and
matrices with sorted rows and columns. J. Comput. System Sci.. 24:197-208, 1982.

23. F. W. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. In Proc. 31st IEEE Symp. Found Comput. Sci., pp. 719-725, 1990.

24. R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory, 2nd edn. Wiley, New York,
1990.

25. J. Hershberger and S. Suri. Finding tailored paritions. In Proc. 5th ACM Symp. Comput. Geom.,
pp. 255-265, 1989.

26. J. D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482~484, 1983.
27. H.-P. Lenhof and M. Smid. Enumerating the k closest pairs optimally. In Proc. 33rd IEEE Syrup.

Found Comput. Sci., pp. 380-386, 1992.
28. J. Matou~ek. On vertical ray-shooting in arrangements. Comput. Geom. Theory. Appl., 2:279-285,

1993.
29. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Jr. ,4ssoc.

Comput. Mach., 30:852-865, 1983.
30. K. Mulmuley. Output sensitive construction of levels and Voronoi diagrams in R a of order 1 to

k. In Proc. 22nd ACM Syrup. Theory Comput., pp. 322-330, 1990.
31. M. H. Overmars, B. Scholten, and I. Vincent. Sets without empty convex 6-gons. Bull. EATCS,

37:160, 1989.
32. M. H. Overmars and C.-K. Yap. New upper bounds in Klee's measure problem. SlAM J. Comput.,

20:1034-1045, 1991.
33. M. Staid. Maintaining the minimal distance of a point set in polylogarithmic time. Discrete Comput.

Geom., 7:415-431, 1992.
34. P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem. Discrete Comput.

Geom., 4:101-115, 1989.

Receioed July 9, 1992, and in reoised form July 28, 1993.

