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Abstract. We obtain near-quadratic upper bounds on the maximum combinatorial 
complexity of a single cell in certain arrangements of n surfaces in 3-space where the 
lower bound for this quantity is ~(n 2) or slightly larger. We prove a theorem that 
identifies a collection of topological and combinatorial conditions for a set of surface 
patches in space, which make the complexity of a single cell in an arrangement 
induced by these surface patches near-quadratic. We apply this result to arrangements 
related to motion-planning problems of two types of robot systems with three degrees 
of freedom and also to a special type of arrangements of triangles in space. The 
complexity of the entire arrangement in each case that we study can be | 3) in the 
worst case, and our single-cell bounds are of the form O(n2ct(n)), O(n 2 log n), or 
O(n2ct(n) log n). The only previously known similar bounds are for the considerably 
simpler arrangements of planes or of spheres in space, where the bounds are | 
and | respectively. For some of the arrangements that we study we derive 
near-quadratic-time algorithms to compute a single cell. 

1. Introduction 

In this paper  we s tudy certain a r rangements  of  surfaces in three-d imensional  space. 
Some of the a r rangements  that  we s tudy relate to mot ion  p lanning  of certain 
moving  systems with three degrees of freedom. We also s tudy a special arrange-  
ment  of tr iangles in space. We derive several combina to r i a l  and a lgor i thmic  results 
for these a r rangements  and  in par t icu la r  we obta in  near -quadra t i c  upper  bounds  
on the max imum combina to r i a l  complexi ty  of any  single cell in these arrange-  
ments. 

* A preliminary version of this paper has appeared in Proc. 7th ACM Symposium on Computational 
Geometry, North Conway, NH, 1991, pp. 314-323. 

t Current address: Robotics Laboratory, Department of Computer Science, Stanford University, 
Stanford, CA 94305, USA. 
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1.1. Background 

The connection between motion planning and arrangements of curves or surfaces 
has been noted in many recent studies; see, e.g., [Ca], [AS90], and [SS]. For a 
detailed discussion on this issue see [GS]. Here, we briefly exemplify this connec- 
tion. Consider, for example, a motion-planning problem for a system with two 
degrees of freedom moving among obstacles. The problem can be transformed 
into a two-dimensional configuration space where every point represents a possible 
placement of the system. In the configuration space, contacts with the obstacles 
are represented by "constraint curves" and the moving "robot"  is shrunk to a 
moving point. The point robot cannot cross these constraint curves transversally 
and so, given an initial free placement z of the robot, it is sufficient to compute 
the single face of the arrangement of constraint curves, which contains z--this is 
the set of all the free placements of the robot reachable from z via a collision-free 
motion. For systems with three degrees of freedom, like the ones that we study 
here, the configuration space is three dimensional and the obstacles are represented 
by constraint surfaces. Therefore, we are interested in the complexity and computa- 
tion of a single cell in such three-dimensional arrangements of constraint surfaces. 

It was shown by Guibas et al. [GSS] (see also lEGS] and [PSS]) that the 
combinatorial complexity of a single face in an arrangement of n low-degree 
algebraic curves in the plane is only O(2,(n)) for some constant parameter s that 
depends on the degree of the curves; here 2s(n ) is the nearly linear maximum length 
of (n, s) Davenport-Schinzel sequences. Guibas et al. [GSS] also provide a 
near-linear-time algorithm to compute a single face (see [GSS-] for more details), 
which has recently been slightly improved in [CEG+].  Thus the general motion- 
planning problem with two degrees of freedom can be considered settled to a 
satisfactory extent. 

This is far from being the case for motion-planning problems with three degrees 
of freedom and their induced arrangements of constraint surfaces in space, as there 
are no analogous sharp bounds, in general, on the maximum possible complexity 
of a single cell in arrangements of low-degree algebraic surfaces in three-dimen- 
sional space. Such arrangements may have | 3) total combinatorial complexity 
in the worst case. There are, however, arrangements for which subcubic bounds 
on the complexity of a single cell are known. A tight bound | is obvious for 
arrangements of n planes in space. For arrangements of n spheres in space a tight 
bound O(n z) was obtained, employing two different methods, in [Au] and in 
[KLPS].  In all other arrangements where a subcubic upper bound is known, the 
gap between the lower and upper bounds is wider. Aronov and Sharir [AS90] 
(see also [AA]) have obtained a bound O(n 7/3) on the complexity of a single cell 
(actually on the complexity of all nonconvex cells) in arrangements of n triangles 
in space. The known lower bound on the complexity of a single cell in an 
arrangement of triangles is ~(n2~(n)). In [HS] we have previously obtained similar 
bounds (O(nS/2), 0(n7/3)) on the complexity of all "interesting" cells (see Definition 
4.1 below) for several types of arrangements of surfaces related to the motion 
planning of certain systems with three degrees of freedom. The known lower bound 
for the complexity of a single cell in such arrangements is f~(n2). 
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Note that, throughout our discussion, we are only interested in the free portions 
of the configuration space, that is, only in those cells of the arrangement of 
constraint surfaces that represent placements of the moving system where it does 
not intersect any obstacle. 

It has been a prevalent conjecture in recent years that, in analogy with the 
two-dimensional case, the actual complexity of a single cell in three-dimensional 
arrangements of surfaces is near quadratic. The only support for this conjecture 
so far has come from the result for spheres mentioned above, and from a bound 
O(nZa(n)) on the complexity of the lower envelope of triangles in space [PS]. In 
this paper we further substantiate this conjecture by proving near-quadratic upper 
bounds on the complexity of a single cell in the arrangements that we study.1 

1.2. Summary of Results 

We identify a set of topological and combinatorial conditions for a collection of 
m "blue" surface patches and n "red" surface patches. We show that, when these 
conditions are satisfied, the complexity of any single cell in the arrangement 
induced by these surface patches is O(mn log n + n2). We show that several types 
of arrangements, some of them related to motion-planning problems, fulfill these 
conditions. In a few restricted cases we also obtain near-quadratic-time algorithms 
to compute a single cell. 

The bound that we obtain on the complexity of a single cell in the special 
arrangements of triangles that we study shows that our technique, unlike all the 
previous approaches to this problem, distinguishes a single cell from all the 
"interesting" (nonconvex, for triangles) cells. Our bound in this case is O(n 2 log n) 
whereas the complexity of all the nonconvex cells in this arrangement can be 
~(n7/3). 

From the motion-planning point of view, we study two moving systems. One 
is the so-called telescopic arm, first studied by Aronov and O'Dfinlaing [AO], 
which has three degrees of freedom and is moving among obstacles in the plane. 
We continue the study of the arrangements related to this arm initiated in [HS] 
and obtain an upper bound O(n 2 log n) on the complexity of a single cell in these 
arrangements. We devise a deterministic algorithm with running time O(n 2 log 2 n) 
to compute a single cell, which is also a "find-path" algorithm for the original 
motion-planning problem. In this paper we restrict our discussion to the case of 
point obstacles, which already poses a considerable challenge. We remark on the 
extension of our result to the case of polygonal obstacles below, at the end of 
Section 2. 

The second system that we study is a robot arm with three rotating links and 
a fixed base point, moving among point obstacles in the plane. We remark that 
this three-link arm is a prevailing kinematic substructure of existing robot 

1 Slightly after the results reported in this paper had been established, Aronov and Sharir [AS92] 
obtained a near-quadratic bound on the complexity of a single cell in arrangements of triangles. See 
Section 6 below. 



4 D. Halperin 

manipulators and is therefore a natural problem to study in the framework of 
algorithmic motion planning. The three-link arm has been recently studied by Cox 
and Yap [CY] in a variant of the motion-planning problem where the obstacles 
are not known in advance. 

In both systems the entire free configuration space can have ~'-~(n 3) complexity. 
Our  results are the first nontrivial near-quadratic bounds on the complexity of a 
single cell in such a three-dimensional configuration space, where the entire free 
space can be cubic in size. (This is in contrast with "favorable" motion-planning 
problems, where the entire free configuration space can be shown to have 
near-quadratic complexity, as in [LS] and [KS].) 

In Section 2 we demonstrate our approach on the arrangement related to the 
motion planning for a telescopic arm. In Section 3 we state a theorem identifying 
the conditions under which the new bounds can be obtained more generally and 
then we apply this theorem to a few more types of arrangements. Algorithms for 
two types of arrangements are presented in Section 4. In Section 5 we obtain a 
sharper bound on the complexity of a single cell in the arrangement related to 
the motion planning for a telescopic arm. Finally, some concluding remarks and 
open problems are given in Section 6. 

2. Exposition of the Method--The Telescopic-Arm Arrangement 

We present our technique by an example. For  simplicity of exposition, we start 
with an arrangement induced by a telescopic arm moving among point obstacles 
in the plane (TA-arrangement, for short). We obtain an upper bound on the 
maximum combinatorial complexity of any single cell in that arrangement. At the 
end of this section we remark on the extension of this result to the arrangement 
induced by the motion planning of this arm moving among polygonal obstacles 
in the plane. 

The telescopic arm (TA, for short) consists of two links, ~ and ~'-~; see Fig. 1. 
0 is an anchor point. The first link b-~ is a telescopic link which can rotate around 
o, and extend or shrink along its length. The second link ~ has a fixed length d, 
and can rotate around p. This system was studied by Aronov and 0 'Dtinlaing 
[AO] who showed that the configuration space of this arm moving among 
polygonal obstacles has | 3) connected components in the worst case, and 
obtained an O(n 3 log n)-time and O(n3)-space algorithm to compute it. 

Let 0 denote the angle between ~ and the positive x-axis. We assume a fixed 
reference Cartesian coordinate system such that the anchor point 0 of the arm 

. . . . . . . . .  

Fig. 1. The telescopic arm. 
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The Li's of a TA-arrangement. 

coincides with the origin. In order to construct a cross section of the configur- 
ation space at a fixed 0 we choose p as a reference point on the telescopic arm. 
Each position of  the arm can be specified as Z = (X, O) where X is the posi- 
tion of p. For the purpose of our analysis, we always present X in a rotated 
coordinate flame within which 0 becomes an upward vertical direction. 2 Let 
O = {o+: i = 1, 2 . . . . .  n} be a set of point  obstacles in the plane. Each ol induces 
a contact  surface or+, whose cross section at any fixed 0, Li(O), consists of two 
elements (see Fig. 2): 

(i) A vertical line segment p~q+ of length d, which we denote by V~, emanating 
from the point  obstacle o~ downward.  

(ii) The half-line lying on the line defined by the origin and by o i, which starts 
at oi and does not contain the origin, which we denote by R~. 

At any fixed 0, Li(O) represents the forbidden placement of the reference point  p 
due to the obstacle ol. This can be viewed as a natural generalization of the 
Minkowski  difference to the case of hinged robots,  namely, Li(O) is the generalized 
Minkowski  difference of  the point obstacle o~ and the robot  arm at a fixed 0. 

As 0 varies, the R~'s, the rays of the L~'s, rotate a round the origin while at the 
same time the vertical bars, the V~'s, remain vertical (as if they were hanging loosely 
from the o~'s under  gravity). Each L~ traces a surface r in R 2 • S 1, and we denote 
the arrangement  of these n surfaces by d .  We partition each tri into two 
subsurfaces: the red surface S~ traced by Vii and the blue surface T~ traced by R~. 
The cross section of  d at a fixed 0 is denoted by d o. Without  loss of  generality, 
we restrict our discussion to the quadrant  {(x, y, O)[x > 0, 0 e l 0 ,  n]).  

H o w  does the two-dimensional cross section d 0 of d change as 0 varies? As 
the coordinate system rotates, ~r changes continuously,  but its combinatorial  
structure remains unchanged, unless one of the following two types of critical 
events occurs at 0: 

I. A vertex of  one V~ meets the vertical bar or  the ray of  another L? 
II. Two  vertical bars of  two L~'s overlap. 

2 Instead of using the parametrization (x, y, 0) we use a transformed representation (x sin 0 - y  
cos 0, x cos 0 + y sin 0, 0). For any 0, the first two transformed parameters represent rotating the 
plane by lt/2 - 0 that creates the desired effect of  making the second link point in an upward vertical 
direction. 
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It can easily be shown that the overall number of events of either type in the 
0-range [0, rt] is O(n2). For  more details see [HS-]. 

In I-HS] we have obtained an upper bound O(n 7/3) on the complexity of all the 
three-dimensional cells in d that contain a portion of the one-dimensional 
boundary of a surface in their closure, which clearly serves as an upper bound on 
the maximum combinatorial complexity of any single cell in the arrangement (cells 
that do not meet such a boundary have much lower complexity). Our goal here 
is to obtain an improved bound on the complexity of a single cell. 

We assume that the point obstacles are in general position. In particular this 
means that no three point obstacles are collinear and no two points are coradial 
(i.e., no two points lie on the same ray from the origin). Under this assumption, 
we can make the following simple observations: 

Observation 2.1. The blue surfaces in the arrangement d are pairwise disjoint. 

Observation 2.2. Each pair o f  red surfaces may intersect in at most one connected 
curve and no triple o f  red surfaces meet at a point. 

Observation 2.1 follows from the fact that the rays R~ do not change their 
relative position as 0 changes, so it suffices to show that the rays do not intersect 
in one specific cross section do. However, this is true because we assumed no two 
point obstacles lie on the same ray from the origin. 

For two red surfaces to intersect, their generating vertical bars must overlap 
at some 0, and such an overlap implies that they become collinear. Since 0 is 
restricted to the range [0, rc] this can happen at most once (assuming that no 
critical event occurs at 0 -- 0) and the resulting intersection is clearly connected. 
For  three red surfaces to meet at a point, the three corresponding vertical bars 
should become collinear, meaning that the three corresponding point obstacles 
must be collinear, contradicting our assumption. This implies Observation 2.2. 

Let d i  be the two-dimensional arrangement on the red surface Si traced by Vii, 
consisting of red and blue curves corresponding to the intersection of S~ with the 
other red and blue surfaces. Let r i (bi) be the number of red (blue) curves in di .  
We claim that 

Lemma 2.3. The maximum complexity o f  k distinct faces in d i is O(ri + bi + k). 

Proof  Since no three red surfaces meet at a point, the r i red curves in d~ are 
pairwise disjoint. Also, since the blue surfaces are pairwise disjoint, clearly their 
intersections with Si are also disjoint. (See Fig. 3; for a fixed 0, the coordinate 
measures the distance of the intersection of V~ and another bar or ray from the 
bot tommost  point of V~). Therefore, the complexity of k faces in the red (blue) 
subarrangement of d i  is at most O(ri) (O(b~)). Overlaying the two subarrangements 
and using the combination lemma for planar arrangements of curves (see Lemma 
4.1 [GSS]), we obtain the stated bound. [] 
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The external zone of d~, that is, all the faces bordering on the relative boundary 
of S~, can be regarded as the single outer face of the arrangement; thus we 
have 

Corollary 2.4. The complexity o f  the external zone of  ~r is O(r i + bi). 

By Observation 2.2 there are at most n - 1 (connected) red curves in d i. It is 
also not difficult to see that a blue surface and a red surface meet along at most 
one connected simple curve, therefore there are at most n blue curves in d~. 
Plugging these values into the bound of Lemma 2.3, it follows that the complexity 
of k faces in d i  is O(n + k). Moreover, since this analysis is true for the 
two-dimensional arrangement on any red surface we have 

Corollary 2.5. The complexity o f  any t distinct faces in all the arrangements ~ 
together is O(n 2 + t). 

Corollary 2.5 distills the major distinctive feature of the arrangements for which 
we obtain an improved bound and enables us to apply the proof technique that 
we use below, namely, the so-called "combination lemma." It is not true for 
three-dimensional arrangements of surfaces in general. Indeed, an arrangement of 
n triangles in space where the complexity of n 2 distinct faces (of the two- 
dimensional arrangements formed by intersecting each triangle with all the other 
triangles) is ~(n W3) can be constructed; see, e.g., [AS90]. 

Next, we bound the number of exposed vertices in a TA-arrangement d .  An 
exposed vertex is an intersection point of the relative boundary of one surface 
with another surface. An exposed vertex is necessarily an endpoint of the intersec- 
tion curve of a pair of surfaces. Since, as already noted, any pair of surfaces in d 
meets along at most one simple curve, there are at most O(n 2) such curves in d 
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and therefore 

Observation 2.6. The total number of  exposed vertices in a TA-arrangement d is 
O(n2). 

We are now ready to prove the following: 

Theorem 2.1. The maximum combinatorial complexity of  any single cell in the 
arrangement ~r related to the motion planning for a telescopic arm moving among 
n points in the plane is O(n 2 log n). 

Proof Let us assume that the cell C whose complexity we wish to bound is 
designated by a point r~ in space contained in its interior. In a three-dimensional 
arrangement the number of vertices in any cell is evidently a good measure for 
the asymptotic complexity of that cell. There are two types of vertices in our 
arrangement: the exposed vertices and the nonexposed vertices that we refer to 
as internal vertices. Observation 2.6 implies that we can ignore the contribution 
of exposed vertices. As to internal vertices, note that each such vertex is the meeting 
point of two red surfaces and one blue surface. This means that each internal 
vertex appears both on a red surface and on a blue surface. Consequently we can 
restrict our discussion to the vertices on a monochromatic  collection of surfaces. 
We choose the red surfaces which enable us to exploit the special property 
mentioned in Corollary 2.5, stating that, in order to count the number of vertices 
on the boundary of the cell C it suffices to bound the number of red faces on the 
boundary of C. 

To bound the number of red faces in C, we apply a "combination lemma" in 
the following way. (For other "combination lemmas" see, e.g., [EGS], [GSS], and 
[AS90].) Assume we have m blue surfaces and n red surfaces. 

Let us recolor, for a moment,  half of our red surfaces green and the other half 
orange. We start with an arrangement of all the blue surfaces and all the green 
surfaces and then add the orange surfaces one by one, and bound the maximum 
possible total increase W in the number of green faces in C after we add the orange 
surfaces; we do not count the newly added orange faces of C. Then we do the 
symmetric operation of starting with all the blue and all the orange surfaces, adding 
the green surfaces and bounding the increase in the number of orange faces of C 
after adding the green surfaces; by symmetry, its maximum possible value will also 
beW.  

Let K(m, n) be the number of red (now green or orange) faces bounding a cell 
C in an arrangement of m blue and n red surfaces. Clearly, 

K(m, 1) = O(m) 

and the combination process yields the following recurrence 
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Various types of increase in the number of green faces. 

How large can W be? Suppose we add an orange surface Si and wish to bound 
the increase in the number of green faces that belong to t3C (the boundary of C) 
due to the addition of Si. Every green face f that is cut by Sg is represented by 
an edge (or edges) on the arrangement ~r of S~ (namely, the connected components 
of f n  Si). An increase in the number of green faces can occur in one of the 
following cases: 

1. The edge e of~r splitting the green face is an edge of the external zone of ~i. 
2. e is an edge of an internal face of d~ that cuts a green face f such that both 

parts of f, in the vicinity of e, still belong to OC (as in the left-hand side of 
Fig. 4). 

3. The intersection of the surface S~ with a green face f consists of several edges, 
cutting f into several subfaces such that some of these subfaces do not belong 
to t3C any more but more than one subface still belongs to dC (as sketched in 
the right-hand side of Fig. 4 - - f l  and f3 still belong to t~C but f2 no longer 
belongs to OC). 

The number of edges causing increase of the first type, over all orange surfaces 
Si, is clearly at most O(mn + n2), by applying Corollary 2.4 to all the arrangements 
~r on the surfaces Si. 

Internal faces that induce an increase of the second type are called in [AS90] 
cuttiny-but-not-splitting. Aronov and Sharir prove the following topological lem- 
ma. They prove it for triangles, but their proof is topological and does not exploit 
any special property of triangles (beyond those stated below), and so we rephrase 
the lemma in a more general setting. 

Lemma 2.7 (adapted from [AS90]). Given n surface patches in general position 
in 3-space, each of  which is a simply connected orientable 2-manifold (with 
boundary), such that each pair of surface patches intersect in at most some fixed 
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constant number of connected, simple, open curves, any three surface patches meet 
in at most one point, and the total number of curves (pairwise intersections of surface 
patches) is t, then the maximum number o f  faces that cut-but-do-not-split in an 
incremental construction of  the three-dimensional arrangement of  the surfaces is at 
most O(t). 

By our discussion so far, the number of pairwise intersection curves, i.e., the 
total number of curves in all the arrangements sr is at most O(mn + n2). Hence 
this is also a bound on the number of cutting-but-not-splitting faces. (Note that 
Lemma 2.7 refers to the number of faces that cut-but-do-not-split in the entire 
arrangement, whereas we only need the bound for a single cell.) By Corollary 2.5 
this is also a bound on the number of edges bounding these faces, which is thus 
an upper bound on the number of increases of type 2. 

Remark 2.8. As a matter of fact, in Corollary 2.5 and in Observation 2.6 we 
have not distinguished between the number of blue surfaces and the number of 
red surfaces. It can be easily verified that if we denote the number of blue (resp. 
red) surfaces by m (resp. n) there, then the bound of Corollary 2.5 is O(mn + n 2 + t) 
and the bound in Observation 2.6 is O(mn + n2). Consequently, the increase W in 
the number of red faces of types 1 and 2 is at most O(mn + hE). 

Consider next the third type of increase in more detail. We show: 

Lemma 2.9. The maximum increase of  type 3 in the number of  green faces is O(mn). 

Proof Let f be a green face that undergoes an increase of type 3 when the new 
orange surface Si is added. Let Sj be the green surface containing f and let y be 
the curve of intersection between Si and Sj. In a type 3 increase we are concerned 
with a face f that is split by the curve 7 into three or more subfaces such that 
some of them no longer belong to the cell C but at least two subfaces still do. See 
Fig. 4. 

A green surface Sj has a two-dimensional arrangement of green and blue curves 
on it, formed by intersecting S i with the other green and blue surfaces. Before 
inserting the orange surfaces, we preprocess each green surface as follows: We 
extend a horizontal line (a line parallel to the p-axis) from each endpoint of a blue 
curve until it either reaches the boundary of the green surface or it hits another 
blue curve. See Fig. 5. Note that some of the extensions already exist, when they 
are colored green. Note also that, as we add orange surfaces, the horizontal 
extensions are not split further-- the intersection of a green surface and an orange 
surface is horizontal and we assumed that no three (originally) red surfaces meet 
at a point. By this preprocessing we have increased the overall number of green 
faces by at most O(mn), as there are most O(mn) blue curves on green surfaces. 
Since the blue curves on any green surface are 0-monotone it follows that any 
green face (after the addition of the horizontal extensions) is 0-monotone, i.e., the 
intersection of any horizontal line (parallel to the ~ axis) and a green face consists 
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"Horizontal" decomposition through the endpoints of blue curves. 

of at most one segment. This in turn implies that the addition of an orange surface, 
whose intersection with the green surface Sj is a horizontal line segment, cannot 
split a face into more than two subfaces. Hence, beyond the potential increase in 
the number of green faces due to the preprocessing step, there can be no more 
increase of the third type. [] 

Thus the total increase W of types 1, 2, and 3 is O(mn + n2). 
Finally, we solve the recurrence 

K(m, 1) = O(m) (1) 

and 

K(m, n) < 2K(m, ~) + O(mn + n2), (2) 

to obtain 

K(m, n) = O(mn log n + n2). (31 

Originally, we have m = n, so the number of red faces bounding the cell C in the 
whole arrangement is O(n 2 log n). By Corollary 2.5, this is also a bound on their 
total complexity, which, by the arguments given above, completes the proof. [] 

Remarks. (1) In [Ha]  we extend this result to the case of a telescopic arm moving 
among polygonal obstacles having n corners in total, and obtain the same 
asymptotic bound for this case as well. The proof for the polygonal obstacles 
requires a series of technical lemmas taking advantage of the special geometry of 
the TA-arrangement and therefore we have chosen to omit it in this paper and 
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concentrate on the characteristics of a TA-arrangement that are of more general 
nature as expressed in the main theorem of the paper, Theorem 3.1. 

Briefly, the proof for the case of polygonal obstacles in [Ha]  proceeds as follows. 
We start with the arrangement d induced by the problem of moving the arm 
among the corners (vertices) of the polygons, which can be viewed as point 
obstacles and therefore we can use the bound on the complexity of a single cell 
which is obtained in Theorem 2.1 above. We then insert into the arrangement d 
the extra surfaces induced by the "walls" of the polygonal obstacles (the edges of 
the polygons), and bound the maximum possible increase in the complexity of a 
single cell due to this insertion. Exploiting the special structure of these additional 
surfaces, we show that the overall number of new features showing up on the 
boundary of a cell due to their insertion is O(n 2 + f(n)), where f(n) is the maximum 
complexity of any cell in d .  Hence, the maximum complexity of a single cell in 
the final arrangement is O(n 2 log n) as well. 

(2) In Section 5 we improve the bound obtained in Theorem 2.1 for a 
TA-arrangement. The proof  there relies heavily on the specific geometric structure 
of the TA-arrangement, is much more complex than the proof of Theorem 2.1, 
and does not seem to generalize easily. 

3. Generalization and More Applications 

The main result of this paper  is stated as Theorem 3.1 in Section 3.1, which 
abstracts and generalizes the proof of Theorem 2.1. We then present two more 
applications of this result. In Section 3.2 we analyze the complexity of a single cell 
in the arrangement related to the motion planning of a three-link planar arm, and 
in Section 3.3 we consider special arrangements of triangles in space. 

3.1. Generalization 

Before stating the theorem we define a certain property of a two-dimensional 
arrangement defined on one surface with respect to a collection of other surfaces. 
We use the term surface here to refer to a simply connected orientable 2-manifold 
in 3-space with boundary. 

Definition 3.1. Let S i be a surface in 3-space. Let R be a collection of surfaces 
in 3-space. Let ds, be a two-dimensional arrangement of curves on Si. We say 
that ~s, is a monotone subdivision with respect to R if the intersection of any face 
in ds, with any surface in R consists of at most one connected component  (curve). 

This definition, as employed in Theorem 3.1 below, captures the conditions that 
enable us to bound face increases of the third type. In all the applications in this 
paper it is almost immediate to show "monotonici ty"  when necessary. We remark 
that there is an alternative way to bound face increases of the third type, devised 
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by Huttenlocher et aL [HKS, Proposition 1], when the surfaces are convex 
polygons in space. 

Theorem 3.1. Let R be a set of  n red surfaces and let B be a set of  m blue surfaces 
in space, forming a three-dimensional arrangement d ,  such that." 

(i) The blue surfaces are pairwise disjoint. 
(ii) The intersection between a pair of  red surfaces, or between one red and one 

blue surface, consists of  at most some fixed constant number of  connected, 
simple, open curves. 

(iii) No three red surfaces meet at a common point. 
(iv) For every red surface Si ~ R, the arrangement ~s, of blue curves on S~ 

(formed by intersecting Si with all the blue surfaces) can be made into a 
monotone subdivision with respect to R\{SI} by adding at most O(m) edges 
to the arrangement ~r (see Definition 3.1 above) and any surface in R\(Si} 
does not meet more than one added edge (of the O(m) edges that refined the 
arrangement). 

Then the maximum combinatorial complexity of any single cell in d is at most 
O(mn log n + nZ). 

Proof Most of the proof ingredients have already appeared in the proof of 
Theorem 2.1. Indeed, let R = {$1, $2 . . . . .  S,} be a collection of red surfaces and 
for each Si let sgl be the two-dimensional arrangement of curves formed by 
intersecting S~ with all the other surfaces in R and B (the collection of blue surfaces). 
Let r~ be the number of red curves in ~r i.e., intersection curves between S~ and 
other red surfaces, and let bl be the number of blue curves in d~. Then, 
Observations, Lemmas, and Corollaries 2.3-2.7 of Section 2 still hold (almost) 
verbatim (see also Remark 2.8). Consequently, the increase W in the number of 
red faces of types 1 and 2 is at most O(mn + n2). 

To bound the increase of type 3 consider condition (iv) and Definition 3.1 above. 
Condition (iv) allows us to generalize Lemma 2.9 of Section 2 in the following 
way. Consider a red surface S~ ~ R and the two-dimensional arrangement ~r of 
blue curves formed by intersecting S~ with all the blue surfaces in B. Add O(m) 
edges to ds, to make it monotone with respect to R\{S~}; this is possible by 
condition (iv) of the theorem. Repeat this process for every surface in R. Since no 
three red surfaces meet at a point, the addition of the intersection curves of S~ 
with any subset/~ c R to the arrangement ~r does not violate the monotonicity 
of the "refined" arrangement with respect to R\/~, because a pair of red curves 
cannot meet on S~ which is itself a red surface. 

The fact that any surface in R\{Si} does not meet more than one added edge 
assures us that the overall increase in the number of faces in the two-dimensional 
arrangement on Si due to the additional O(m) edges is at most O(m). (We allow a 
surface in R\{S~} to cross one added edge because in the arrangements induced 
by the motion of robot arms any red surface is connected to a matching blue 
surface along a curve and an added edge incident to the endpoint of a blue curve 
on S~ may partially overlap with the intersection of the corresponding red surface.) 
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Hence, the overall increase in the number of red faces on all the red surfaces, due 
to the partitioning that made them monotone, is O(mn). 

Once we have partitioned all the green surfaces (i.e., half of the red surfaces in 
one recursive step) in this manner, the intersection of any orange surface with a 
green face consists of at most one connected component and hence a type 3 
increase can no longer occur. Thus, the maximum possible increase of type 3 in 
the number of green faces in the incremental process is bounded by O(mn). 

Consequently, the recurrence relation (1), (2) and its solution (3) are exactly as 
in the proof of Theorem 2.1. []  

We will show that several naturally defined arrangements of surfaces in space 
comply with the conditions of the theorem. It is worth noting that the theorem 
does not impose any constraints on the exact geometry of the surfaces; this is 
especially useful in the next section where some of the surfaces are obtained by 
rotating "circular conchoids" in space. 

3.2. The Three-Link Arm Arrangement 

In this section we consider a standard three-link anchored arm in the plane, which 
has three rotational degrees of freedom: 01, 02, and 03 (see Fig. 6). We number 
the links according to their order in the kinematic chain beginning from the anchor 
point. This anchor point is denoted by o; p is the joint between link 1 and link 
2; q connects links 2 and 3; r is the free endpoint of the last link. The length of 
link i is denoted by dl. We analyze the arrangement related to the motion planning 
for this arm moving among point obstacles. 

We designate a possible placement of the three-link arm by (X, 03) where X is 
the placement of the joint q in the plane and 03 is the angle between link 3 and 
the positive x-axis. This still falls a little short of a complete specification of the 
arm configuration (because there can be two distinct placements of the arm with 
the same (X, 03) parametrization) but we overcome this problem below. We fix 03 
and select the point q connecting links 2 and 3 to be a reference point. For each 
point obstacle we compute the "generalized Minkowski difference" of the point 
obstacle and the arm, that is, the locus of all forbidden placements of q due to 
that point obstacle, for the fixed 03. The Minkowski difference consists of three 
"constraint" curves, one for each link. We rotate the coordinate axes, using the 

r 

S 
o 

Fig. 6. The three-link arm. 
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(a) (b) ~c} 

Fig. 7. The kinematics of the two-link arm. 

same transformation as in Section 2, to make 0 3 always an upward vertical 
direction; thus the constraint curve induced by the third link is, as before, a vertical 
segment emanating from the point obstacle downward. 

To understand the curves induced by the first two links, we review the 
kinematics of the two-link planar arm, considering only the case where d2 < dl 
(the case d2 > dl can be treated similarly). The workspace of this arm (that is, the 
locus of all reachable placements of the free endpoint q of the second link) is a 
closed ring of radii d 1 - d2 and dl + d2 about the origin o (see Fig. 7(a)). Every 
point on the boundary of the ring (either on the inner or the outer circle) is 
attainable by exactly one configuration of the arm in which the links become 
coUinear (Fig. 7(b)). Inside the ring, on the other hand, every point is attainable 
by two configurations of the arm. When o, p, and q are oriented counterclockwise 
we call this configuration an elbow-right configuration (the solid line configuration 
in Fig. 7(c)) while an elbow-left configuration denotes a configuration where o, p, 
and q are oriented clockwise (the dashed line configuration in Fig. 7(c)). The 
degenerate configuration in which o, p, and q are on the same line is arbitrarily 
considered elbow-right. 

Our analysis concentrates on the surfaces induced by elbow-right configura- 
tions, so from this point on we ignore the other type of configurations. The analysis 
of the elbow-left surfaces is completely symmetric. These two sets of surfaces clearly 
do not interact. Note that for the motion-planning problem, if we are given the 
initial placement of the arm in say, elbow-right configuration, we may also have 
to consider the outer cell of the elbow-left arrangement. This, however, does not 
affect the asymptotic complexity results, because, in any case, we need to consider 
at most one cell in each arrangement. 

Assuming that a point obstacle oi is at distance > d~ (and < dl + d2) from the 
origin (the anchor point), then the constraint curve due to ol and link 2 of the arm 
is the "circular conchoid" traced by q as p rotates about o and pq passes through 
ol (Fig. 8). This curve starts at o~ and ends on the outer circle of the workspace of 

Fig. 8. A conchoidal constraint curve. 
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Fig. 9. Close-to-origin point obstacles and their induced semicircular constraint curves. 

the first two links. The curve lies on one side of the line segment that connects its 
endpoints. 

Consider next, point obstacles whose distance from the anchor point of the arm 
is < d  1. Each such point induces a constraint semicircle (traced as the second 
link rotates around a fixed position of p, in which the first link is fixed and touches 
the obstacle) that stretches from the inner circle of the workspace ring to the outer 
circle of that ring, as in Fig. 9. Such a point obstacle may also induce another 
constraint curve, if it is at least Idl - d21 away from the origin. This curve is also 
a "circular conchoid" that starts at the point obstacle and ends on the inner circle 
of the workspace. 

In summary, under the assumptions we have made so far, the generalized 
Minkowski difference of a point obstacle ol and the three-link ann, for a fixed 03, 
consists of at most three curves: a vertical segment, a circular conchoidal curve, 
and a circular arc. We denote this combination by Li = L~(03). In addition, for 
every 03 , the cross-section of constraint surfaces is the arrangement formed by the 
set {Li(O3)li = I . . . . .  n}, where L,~03) is the generalized difference of oi(03) and the 
arm, and o~(03) is an upward vertical direction. Finally, as 03 varies, the two- 
dimensional arrangement of the conchoidal curves and circular arcs rotates rigidly 
around the origin whereas the vertical segments remain vertical, and may occasion- 
ally swap their horizontal ordering and intersect the other rotating curves. 

Back to the two-dimensional arrangement induced by the 2-1ink arm, there are 
three families of curves in it: conchoidal curves that end on the outer circle, 
conchoidal curves that end on the inner circle, and circular arcs. We wish to bound 
the complexity of a single face in this arrangement, using the following idea by 
Sifrony [Si]: 

Lemma 3.2 [Si]. Let C be a collection of  n Jordan arcs, each pair of  which 
intersect in a constant number o f  points, and suppose that C can be divided into 
k = 0(1) subsets C1 . . . . .  Ck such that each pair o f  curves within the subset Ci 
intersect at most si times. Then the maximum complexity of  a single face in the 
arrangement induced by C is O(2s+2(n)), where s = max{s1 . . . . .  Sk}. 

In order to obtain a sharp bound on the complexity of a single face in the 
2-1ink-arm arrangement we take an additional precaution and we partition the 
family of conchoidal curves that end on the outer circle into two subfamilies. For 
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Fig. I0. A pair of point obstacles inducing conchoidal curves that intersect twice. 
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a point obstacle oi that is more than d~ away from the origin and that induces a 
conchoidal curve that ends on the outer circle, we mark on the circle of radius dl 
around the origin, the point ~ where the tangent to the circle through oi touches 
the circle. We split the conchoidal curve induced by oi, at the point for which the 
endpoint p of the generating segment (the second link) touches ~. This way we 
have split the conchoidal curve into two: one portion is generated when the angle 
/ o p q  of the arm opq is acute and the other portion is generated when the angle 
l__ opq is obtuse. We repeat the process for each point obstacle oj that is farther 
than d 1 away from the origin. Thus we have split the conchoidal curves that 
end on the outer circle into subcurves that fall into two families: the "acute" and 
the "obtuse." The purpose of the above process is to ensure that a pair of curves 
within one family intersect at most once. Indeed, a pair of conchoidal curves that 
end on the outer circle may meet at most  twice, but if this is the case then one 
meeting point is of two acute portions and one meeting point is of two obtuse 
portions, as is illustrated in Fig. 10. 

Next, we employ Lemma 3.2 with the four resulting families of curves and with 
s = 1, to deduce that the maximum complexity of a single face in the 2-1ink-arm 
arrangement is O(n~(n)) (and that it can be constructed in time O(n~(n)log z n) 
[GSS], or in expected time O(no~(n) log n) by a randomized incremental algorithm 
[-CEG+]). Consider the two-dimensional cross section of the three-dimensional 
arrangement, which contains the point n designating the desired cell C and let g 
be the face containing n of the subarrangement of this cross section which is 
induced by the first two links; g has O(n~(n)) arcs. 

Suppose n represents the initial placement of the a rm in, say elbow-right 
configuration. Then we have to consider not only the face g in the two-dimensional 
arrangement of the elbow-right configuration but also the two external faces h~ 
and h2 of the elbow-left two-dimensional arrangement bordering respectively on 
the internal and external circles that determine the boundary of the workspace of 
the 2-1ink arm. Here also we are interested in the portion of each external face 
bounded by at most two circular arcs, those arcs that are induced by the same 
point obstacles that induced the circular arcs in the elbow-right two-dimensional 
arrangement. It is obvious that the complexity of  each of the faces hi and h2 
(possibly restricted by one or two circular arcs) is O(n~(n)) as well. We restrict our 
description to handling the portion of the three-dimensional arrangement whose 
cross section is g. The other relevant parts are handled similarly. 
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We let g rotate around the origin a s  0 3 changes. During this sweep we split 
each arc into two subarcs at its point of vertical tangency, if it exists (that point 
depends on 03). Let B be the collection of surfaces traced by the arcs of g as 03 
changes. Now B will play the role of the set of blue surfaces in Theorem 3.1 and 
the surfaces traced by the vertical bars will be the red surfaces (the collection R) 
in the theorem. To comply completely with the conditions of the theorem we 
should make a gap between each pair of blue surfaces created by arcs of g sharing 
a vertex of 9. Note that splitting the arcs of g along points of vertical tangency 
was necessary to obtain condition (iv) of the theorem. Indeed, the splitting causes 
the blue intersection curves on any red surface to become 0 - m o n o t o n ~ b e c a u s e  
a red surface is generated by "sweeping" a vertical segment. Therefore, the 
argument about a type 3 increase is the same as for a telescopic arm (see Lemma 
2.9). In this application we have m = I BI = O(n~(n)). Thus we can state 

Theorem 3.2. The complexity o f  a sinole cell in the three-dimensional arrangement 
related to the motion-planning problem of  a three-link arm moving among n point 
obstacles in the plane is O(nZct(n) log n). 

3.3. Special Arrangement of  Triangles in Space 

In [AS90] Aronov and Sharir consider an arrangement of n vertical rectangles 
with two sides parallel to the z-axis, and horizontal convex plates with a total of 
q vertices. They show that the complexity of a single cell in such an arrangement 
is O(n2ct(n) + q). We consider a variant of this problem where the horizontal plates 
are replaced by an arbitrary collection of m pairwise disjoint triangles, and the 
vertical rectangles are replaced by a collection of n (possibly intersecting) triangles 
parallel to the z-axis. Otherwise, the triangles are in general position, e.g., no three 
triangles meet at a segment (in particular, no three vertical triangles intersect), a 
vertex of one triangle does not lie on another triangle, etc. 

Note that in this arrangement d of n vertical triangles and m other pairwise 
disjoint triangles, the lower bound on the complexity of a single cell is f~(mmt(n) + 
n2). Simply construct a collection of n/2 segments in the plane whose lower 
envelope has complexity f~(mt(n)) [WS], erect a vertical very long triangle from 
every segment, and then cut this structure by m horizontal triangles. The second 
term, fl(n2), can be obtained by adding another collection of n/2 vertical triangles, 
each pair of which intersect, outside the preceding structure. It can also be shown 
that the complexity of all the nonconvex cells of an arrangement of n/2 triangles 
of each type can be ~)(n7/3). 

We claim that the two sets of triangles comply with the conditions of Theorem 
3.1. Let the pairwise disjoint triangles be the blue surfaces in that theorem and 
let the triangles parallel to the z-axis be the red ones there. Conditions (i)-(iii) are 
immediately verified. As for condition (iv), consider a red triangle T (parallel to 
the z-axis) and the arrangement of blue segments formed on T by intersecting it 
with all the blue triangles. Extend a line segment parallel to the z-axis from either 
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endpoint of any blue segment on T until it either reaches an edge of T or hits 
another blue segment. This results in a refinement of the arrangement on Ttha t  
is evidently monotone with respect to all the other red triangles and no other red 
triangle would meet any of the extensions (such a meeting point would imply a 
degenerate case--an edge of one triangle meets the intersection edge of two other 
triangles). 

Therefore, we have: 

Theorem 3.3. The maximum complexity o f  a single cell & an arrangement of  m 
pairwise disjoint triangles and n vertical (possibly intersecting) triangles is at most 
O(mn log n + n2). 

If we let m = n in the above Theorem 3.3, then the bound stated in it is 
O(n 2 log n). As mentioned earlier, the complexity of all the "interesting" (non- 
convex) cells in such an arrangement can be ~")(n 7/3) in the worst case. This shows 
that, unlike previous attacks on the single component problem [AS90], [HS], our 
new approach distinguishes a single cell from all the interesting cells in the 
arrangement. (The latter technique of [AS92] also distinguishes a single cell from 
all the interesting cells in the arrangement.) 

In the following section we mention a randomized algorithm to compute a 
single cell in such an arrangement. 

4. Algorithms 

In this section we present algorithms for computing a single cell for two of the 
arrangements studied so far in this paper. In Section 4.1 we describe a deterministic 
algorithm to compute a single cell in the telescopic-arm arrangement described in 
Section 2. In Section 4.2 we mention a randomized algorithm to compute a single 
cell in the special arrangement of triangles discussed in Section 3.3. In either case 
we adapt  an existing algorithm to solve our problem of computing a single cell. 
We therefore omit a detailed description of either algorithm and refer the reader 
to the original description of these algorithms. Nevertheless, since the adaptation 
of the algorithm for a TA-arrangement is more involved, we briefly review the 
main ideas underlying the technique. 

4.1. Computing a Single Cell in a TA-Arrangement 

We describe a deterministic algorithm for computing a single cell in a TA- 
arrangement which runs in worst-case O(n 2 log 2 n) time. In the motion-planning 
context this algorithm can be viewed as a "find-path" algorithm, i.e., an algorithm 
that can produce a sequence of elementary motions from the start to the goal 
placements of the arm, if such a motion is possible. Once the cell is computed, 
producing the sequence of motions is a fairly standard technique in motion 



20 D. Halperin 

planning. This algorithm is an adaptation of an existing algorithm for solving 
related problems. In order to describe the evolution of this algorithm we first 
provide a couple of necessary definitions. 

Definition 4.1. The interest&g cells o f  an arrangement are those three-dimen- 
sional cells of the arrangement whose boundary contains a portion of the 
one-dimensional boundary of any surface of the arrangement. For example, 
as mentioned earlier, the interesting cells in an arrangement of triangles in 
space are the nonconvex cells in the arrangement. The term is borrowed from 
[AS90]. 

Definition 4.2. A decision algorithm for an arrangement of  surfaces in 3-space is 
an algorithm that decides whether two given points in 3-space lie in the same 
connected component (cell) of the given arrangement. If the arrangement consists 
of"constraint  surfaces" of some motion-planning problem (see Section 1), then we 
call the decision algorithm a reachability algorithm as it determines whether there 
is a continuous collision-free motion between two placements of the " robot"  
(without necessarily having to produce such a motion). 

In [HS] we have presented a decision algorithm for a TA-arrangement (which 
is based on the reachability algorithm of [HOS]). It was also elaborated there 
into an algorithm to compute all the interesting cells in a TA-arrangement. The 
algorithm we present here is a simple modification of the latter. We first give a 
brief informal description of the previous versions of the algorithm and then 
describe the necessary modifications so that it will efficiently compute a single cell 
in a TA-arrangement (for details see [HOS] and [HS]). 

The decision algorithm proceeds by sweeping a TA-arrangement d (in the 
configuration space as described in Section 2) in the 0 direction with a plane 
parallel to the xy-plane. Throughout the sweep it builds a compact representation 
of the arrangement as a discrete graph called the connectivity graph, CG, where 
each node represents a certain subcell of ~r and two nodes are connected by an 
edge of CG if there is a direct crossing in ~r (not through a surface of ~r between 
the subcells they represent. The size of the connectivity graph CG is O(n2). After 
constructing CG, when given two points, we locate the nodes of CG that represent 
the subcells containing the points and we look for a path in CG between these 
nodes. Such a path exists if and only if the given points are contained in the same 
three-dimensional cell of ~.  

However, the information gathered by the decision algorithm is insufficient for 
computing any cell. To enhance the algorithm into an algorithm to compute all 
the interesting cells [HS, Section 5.2], we sweep through ~r more carefully and 
whenever we are in an interesting cell we record more information than we did 
in the original, decision version. The result of this sweep is an enhanced con- 
nectivity graph, ECG, containing detailed information about the structure of 
the interesting cells. If we denote the complexity of all the interesting cells in ~r 
by g(n), then it is shown in [HS] that the algorithm requires 0(0 2 log 2 n + g(n)) 
time and O(n 2 + g(n)) space. 
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We follow the same idea here, namely, we sweep d as in the decision algorithm 
but this time we record more information on all the subcells of our single cell C 
of interest which is designated by some point rc in its interior. In order to detect 
the relevant subcells we have to carry out some preparatory processing. Following 
is a sketch of the entire algorithm: 

1. Run the decision algorithm to produce the succinct connectivity graph CG. 
Attach to each node of CG information including the smallest 0 where the 
corresponding subcell was detected and the exact geometric data (x, y 
coordinates) of the event that started the subcell. 

2. Exhaustively search CG for the node v representing the subcell which 
contains the designating point ~. Using a breadth-first-search procedure, 
collect all the nodes of CG that belong to the connected component of v and 
arrange them in a queue Q by increasing 0 order (the same 0 value we have 
attached to any node in step 1). 

3. Sweep ~r again as in step 1 but for every item in Q enhance CG with more 
detailed information pertaining to the subcell referred to in the item. (This 
is done in a way similar to recording the interesting cells in [HS].) This step 
still leaves some portions of relevant subcells unattended because they exist 
for a smaller 0 than the 0 in which the relevance of the subcell is detected. 
Thus we need one additional step. 

4. Reverse the order of the items in Q into a new queue QR and run a sweep 
similar to the previous step, but running backward in 0 so that portions 
of subcells that were not followed by the previous step can be traced 
now. 

The complexity analysis of the above algorithm is similar to that in [HS] and 
so we omit it. If we denote the maximum complexity of any single cell in d by 
h(n) then the algorithm requires O(n 2 log 2 n + h(n)) time and O(n 2 + h(n)) space. 
Thus, by Theorem 2.1 we have 

Theorem 4.1. A single cell in an arrangement ~r of  surfaces induced by the motion 
planning for a telescopic arm among n point obstacles in the plane can be computed 
in O(n 2 log z n) time and O(n 2 log n) space. 

4.2. An Algorithm for Special Arrangements of  Triangles in Space 

We apply a randomized algorithm for computing a single cell in an arrangement 
of triangles in space, devised by Aronov and Sharir in [AS90], to the special 
arrangement of triangles described in Section 3.3. In [AS90] the authors express 
the running time of the algorithm as a function of the maximum combinatorial 
complexity of a single cell in the arrangement. By Theorem 3.3, the bound on this 
quantity is O(n 2 log n) in our special case. The application of the algorithm is 
straightfoward, and we only state the final result here (for details, see [AS90] and 
Section 5.4 of [Ha]). 
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Theorem 4.2. Given a fixed 5 > 0 and two sets of  triangles in space T1 and T 2, T 1 
consisting of  pairwise disjoint triangles and T2 consisting of  triangles all parallel to 
a common line in space, I TI I + I T21 = n. A single cell in the arrangement d ( T  1 u T2) 
can be computed in randomized expected time O(n2+~), where the constant of  
proportionality depends on 5. 

5. A Sharper Bound for a TA-Arrangement 

In this section we derive an improved bound O(n2ot(n)) on the complexity of a 
single cell in a TA-arrangement. The proof of this bound relies heavily on the 
specific geometric structure of the TA-arrangement, and is much more complex 
than the proof of Theorem 2.1. The bound obtained here suggests that the log 
factor showing up in the results in this paper is an artifact of the proof technique 
rather than describing the inherent complexity of a single cell in the arrangements 
that we study. 

Theorem 5.1. The maximum combinatorial complexity of  a single cell in a TA- 
arrangement d is O(n2at(n)). 

Proof. Without loss of generality we restrict our discussion to the quadrant 
{(x, y, O)lx > O, Oe [0, n]}. To bound the complexity of a single cell in d ,  it suffices 
to bound the complexity of the "zone" of the plane 0 = 0o in ~r For convenience 
we assume that 0 o = 0 (we can always rearrange the coordinate frame so that 
0 o = 0), and denote the plane 0 = 0 by Po= o. The zone of Po= o is the collection 
of cells of zero to three dimensions which are reachable from (the free portion of} 
Po=o. We concentrate on one side of P0=o; the arguments for the other side are 
symmetric. 

As before, we denote the vertical bar of L i by Vii, its upper vertex by Pi, and its 
lower vertex by qi. The length of V~ (that is, the length of the second link of the 
TA) is denoted by d. 

For each Li we define the following planar arrangement. For every L j, including 
j = i, we define the function Fj(O) to be the x-coordinate of the intersection point 
between the vertical bar of Lj and the ray of Li. The collection of the graphs of the 
functions Fj(O) is easily seen to be an arrangement of pseudosegments in the XO 
plane, which we denote by ~r 

We wish to count the number of edges and vertices in the zone of Po = o- The 
only features of ~r that do not appear as features of the d i s  are those involving 
the spatial curves traced by the lower endpoints q~ of the vertical bars of the Li's. 
However, these are exposed edges and vertices and we have argued before 
(Observation 2.6) that the maximum number of all these features in the entire 
arrangement ~r is O(n2). Therefore, the overall complexity of the collection 
{~r i = 1, 2 . . . . .  n} dominates the complexity of sO. 

Our plan is to modify each arrangement ~r into an arrangement ~ so that ~ 
will have the following properties: 
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P1. Every face of a subcell in d whose "ceiling" is L i is represented by an edge 
of ~i  unless it is accounted for during the modification process. 

P2. Given a face in ~i  that is not in the (planar) zone of the line 0 = 0 in ~i, 
the three-dimensional subcell of d whose ceiling is this face is inaccessible 
from the plane Po = o in d .  (We define the subcell of d whose ceiling 
is an inner face f of ~ to be the collection of points in 3-space that can 
be connected by a segment parallel to the y-axis and directed in the positive 
y-direction to a point in f, without crossing any other surface. In other 
words, the subcell associated with a ceiling f, is the collection of points that 
can be seen from f when looking in the negative y-direction.) Note that 
the zone of the line 0 = 0 is actually the outer face of 9~ (in the infinite XO 
plane) since we restrict N~ to the 0-interval [0, n] and to x > 0. 

The first property assures us that every element we have to count appears in 
one of the ~i's, or is accounted for separately in the modification process. The 
second property enables us to ignore parts of the planar arrangements as we 
count. 

How do we build 9~? Let us go back to d~ and color each point on every 
pseudosegment of d~ as either blue or red according to the following rule. At a 
fixed 0, a point on a pseudosegment of d~ denotes the intersection between the 
ray of Li and the vertical bar of some Lj at that 0. If, when we look from the 
intersection point in the negative y-direction, we see the endpoint of the vertical 
bar of L; (i.e., it is not crossed by the ray of another Lk in that direction), then the 
corresponding point of d~ is colored blue, otherwise it is colored red. (See Fig. 
11 for an illustration.) This rule applies to the vertical bar V~ of L~ as well. The 
blue points are "weaker" than the red points, in the following sense (to be 
formalized below): if two faces f l ,  f2 of di  have a common blue boundary point, 
then it is possible, in the three-dimensional arrangement d ,  to cross from points 
whose ceiling is in f l  to points whose ceiling is in f2 by passing below the lower 
endpoint of the vertical bar that created the blue point (see Fig. 11). 

As a first step toward producing ~ ,  we simply eliminate the blue portions of 
the pseudosegments of the colored d~. Let us denote the resulting arrangement 
by ~'i. We refer to this elimination of blue portions as Step 1. We later show, in 

01 

l red ] 
blue 

\\ 

L I 

Fig. 11. The coloring of ~i. 
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Zz 
Lj 

Fig. 12. Exposed vertical edge. 

Lemma 5.5, that at most  O(n 2) features (edges and vertices) of all the arrangements 
~r together were eliminated at Step 1. 

Now it is our purpose to show that, roughly speaking, most inner faces of d'i  
represent subcells of ~r with ceiling Li which are inaccessible from any other subcell 
of ~r that has a different L i as ceiling. As a matter of fact, the only way in which 
one can cross between two subcells with different ceilings is to pass below the 
lower endpoint of some Vj which is not intersected by any ray (we call such a Vj 
an exposed vertical bar), and such that V~ has the other ceiling right above it. See 
Fig. 12, where V i is an exposed vertical bar enabling crossing between two 
subcells, one having L~ as the ceiling and the other having L~ as the ceiling. The 
difficulty in handling such a crossing is that the new ceiling (L~ in Fig. 12) has no 
record of this crossing in its associated arrangement d'i. 

In what follows we show that such crossings may occur only in faces of 0 cross 
sections whose corresponding face in ~r is the outer face of d'~ or that it may 
happen in a special set of faces of ~r that we are going to connect to the outer 
face by creating thin passages between some faces of ~r There are three cases 
of crossings that need to be considered: 

Case 1: The "Upper" Case. In this case the (exposed) vertical bar Vj of some Lj is 
fully contained in a 0 cross section of a cell whose ceiling is L i and the ray from 
the origin through qj (the lower vertex of Vj) has positive slope. We will show that 
the corresponding face of ~r is actually the outer face. 

Consider the face f of the 0 cross section of the three-dimensional arrangement 
where this happens at, say 0~. Let R be the ray through the origin and qj(O~) and 
suppose, without loss of generality, that the floor of f is a portion of R (see Fig. 
13); we explain below why this assumption does not impair our proof. Denote by 
Vthe vertical line that contains V i and let v denote its intersection point with L~. 
It is easily verified that there cannot exist any internal vertex Pm of some Lm inside 
f which is to the left of V. Next draw the path of v = v(0) inside ~r for 0 between 
0~ and the minimum of ~o i and n, where ~Pi is the orientation in which L~ becomes 
vertical. Since Li has a positive slope and since v is on L~ this path is well defined. 
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LE 
V L, 

F �9 
Fig. 13. Case 1, cross section at 01. 

We claim that this path does not meet any pseudosegment of d' i  and con- 
sequently the face f of d ' i  that contains the path and corresponds to the face f 
is indeed the outer face. Suppose, to the contrary, that at some 02 > 01 the path 
of v crosses a pseudosegment s of M'~. The pseudosegment s corresponds to the 
intersection of some Vk with L~. AS can easily be checked, this V k must have the 
following properties: 

(i) At 01 the upper vertex Pk of Vk is to the right of V.. 
(ii) During the entire 0 interval (01, 02), Pk is above L i. 

(iii) At Oz the vertical bar V k intersects the floor of f (otherwise s would not 
have participated in d'~). 

However, this combination of properties is impossible. At 01 the depth of the face 
f below v is at least d (the length of a vertical bar). Since at 01 there are no internal 
vertices of the Lm's to the left of V, the floor o f f  below v will never become "higher" 
than it was at 01 and so the depth of f below v increases as 0 increases (here we 
use the fact that the slopes of Li and R are positive). Thus it is impossible that at 
02 the upper vertex Pk of Vk will be above L~ and Vk will at the same time reach 
the floor of f. This contradiction proves that f is the outer face of~r 

The actual slope of f ' s  floor at 01 might be smaller than that of R; it clearly 
cannot be larger. Now, if the slope is indeed smaller, then, if no vertical bar whose 
upper vertex is above Li and crosses V~ could reach R, of course it cannot reach 
the actual floor of f. 

Case 2: The "Lower" Case. In this case the exposed vertical bar Vj of some Lj is 
fully contained in a 0 cross section of a cell whose ceiling is Li and the slope of 
the ray of Li is negative. (See Fig. 14.) We use most of the notation of Case 1, 
namely, we denote the 0 of the event by 01; denote the vertical line containing Vj 
by V; and let f be the face of the cross section containing V~. As in Case 1 we let 
R be the ray through the origin and qj(01) and suppose, without loss of generality, 
that the floor of f is a portion of R. Next we denote the fixed point of R below 
Vj at 01 by u (u = qj(01) ). Let w = w(O) be the point of L~ that is vertically above 
u at every 0. (Note that u is a fixed point on R and therefore u is rotating as R 
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t l  ' - . . . . . .  - . .  

' " "  ' . .  R 

Fig. 14. Case 2, cross section at 0~. 

Lj 

rotates). We will show that the graph of w(O) drawn in ~'i never does meet any 
pseudosegment of d'~ as 0 decreases from 01 to 0 - - 0  and thus, by arguments 
similar to those in Case 1, the face f of d'~ corresponding to f is the outer face. 
More precisely, w(O) might not be defined all the way down to 0 = 0, it might be 
defined only until w(O) reaches the endpoint Pl of L~. At every 0 in its domain, 
w(O) is on L~, therefore its graph can be drawn in d'i. Suppose w(O) meets a 
pseudosegment s of d I at some 02 < 01 in its domain of definition. This means 
that some vertical bar Vk, namely, the one corresponding to s, whose upper 
endpoint is above L~, reaches the floor of the subcell at 02 vertically below w(02). 
However, it is easily checked that the floor below w(02) cannot intersect the vertical 
segment w(O2)u because then, rotating back to 01, the ray constituting the floor 
would have to cross w(OJu, contrary to the assumption the V i is exposed (see Fig. 
14). Since the vertical "depth"  below w(O) for 0 = 01 is at least d and it increases 
as 0 decreases (here we use the fact that the slope of Li at 01 is negative), we obtain 
a contradiction, as in Case 1. Thus f is indeed the outer face of d'~. 

Case 3: The "Middle" Case. So far we have dealt with cases where the exposed 
vertical bar was fully above the x-axis (Case 1) or fully below the x-axis (Case 2). 
Next we analyze the case in which the exposed vertical bar crosses the x-axis. (See 
Fig. 15.) The analysis of this case is a bit more intricate as we can no longer 
ascertain that the relevant face of d ' i  is the outer face; instead we connect these 
faces o f ~  to the outer face o fd ' i  by making small holes in certain pseudosegments 
of d'i. Let us start the analysis of this case by making some simple observations. 

L I  

Fig. 15. Case 3. 
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Observation 5.1. At  any given 0 there can be at most one exposed vertical bar Vj 
that is ful ly  contained in a face  f o f  the 0 cross section o f  ~ with ceiling Li and 
crosses the x-axis. 

Indeed, let Vj be the leftmost such vertical bar  and suppose V k is another  vertical 
bar fully contained in f However,  Vk is to the right of  Vj and the floor of f has 
positive slope there (it is at least as high as the ray of L j), thus V k cannot  be fully 
contained within f Thus  at any 0 there is at most  one exposed vertical bar  under 
ceiling L~ that  crosses the x-axis. 

Denote  by xj(O) the x-coordinate  of the intersection point  between Vj and the 
x-axis, when it is defined. 

Observation 5.2. I f  at 01 the vertical bar V k is exposed under L i and crosses the 
x-axis, and at 02 another vertical bar V t is exposed under the same L i and crosses 
the x-axis, and 02 > 01, then xt(02) < XR(01). 

Indeed, at 01 the floor under  Li f rom Vk to the right is at least as high as the 
ray of L k which has positive slope and keeps moving leftward and up as 0 increases. 
Hence a later exposed vertical bar  that  has L~ as the ceiling and crosses the x-axis 
will have to appear  to the left of Xk(01). 

Our  plan is to fix Li and trace all the exposed vertical bars that  cross the x-axis 
under the ray of L~. At any 0 in which there exists such an exposed vertical bar  Vj 
under L i we define w(O) to be the point of L~ vertically above Vj. By Observat ion  5.1 
there is at most  one such point for any 0. Again, since w(O) is always on the ray 
of L~ it can also be regarded as tracing a curve C~ in d' i .  This curve is 0 -monotone  
but not  necessarily connected. We next describe how to extend C~ into a connected 
curve. 

Let 01 be the smallest 0 for which there is an exposed vertical bar  Vj that  crosses 
the x-axis under Li. Our  function w(O) traces Vj th roughout  its exposure, that  is, 
w(O) is the point  on L~ vertically above Vj throughout  the corresponding 0 interval. 
When Vj stops being exposed and as long as no other vertical bar  becomes exposed, 
w(O) is defined as follows: 

(i) if Vj can still see L i above it, we define w(O) to be the point on L~ directly 
above Vj; 

(ii) if at some stage Vj is bypassed from above by some Vk and V k can see L i 
above it we switch to tracing Vk (SO now w(O) is the point on Li directly 
above Vk); if Vk is bypassed in the same way, we switch to tracing the new 
vertical bar  and so on. 

Vk might  have become an exposed vertical bar, so its tracing now " jo ins"  a new 
port ion of the original curve C~. 

So far the function w(O) is defined continuously. A problem arises when the 
next exposed vertical bar  appears  somewhere to the left (recall Observat ion  5.2) 
of the current  vertical bar  that  we trace (which is not  necessarily exposed, but can 
see Li). In this case the function w(O) makes  a " j u m p "  in the x-coordinate.  In d'~ we 
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Table 1. Summary of notation for the arrangements related with ceiling L b. 

Description Symbol Number of pseudosegments 

Original arrangement ~ O(n) 
After Step 1 .~r n; 
After Step 2 d"  i n"~ 
After Step 3 ~ m~ 

simply connect the two endpoints of the graph of w(O) by a segment parallel to 
the x-axis. In terms of w(O) we can view this connecting segment as if we let the 
tracing point on L~ move along Li in an infinite speed from where it is currently 
to the point above the newly exposed vertical bar. 

The tracing ends when either the ray of L~ becomes vertical or when 0 reaches 
n. Correspondingly, the curve C~ ends in the outer face of all. Note that by 
definition (and recalling Observation 5.2), w(O) is x-monotone. 

This construction is repeated for the ray of each L i. 
To be able to handle Case 3 successfully, we have to alter each arrangement d'~ 

still further, in the following two additional steps (refer to Table 1 for a summary 
of notation): 

Step 2. Whenever a vertical bar Vk, whose upper endpoint is above Li and whose 
lower endpoint is below L~ and does not see L~ (that is, V k crosses the floor of a 
face whose ceiling is Li), changes the floor that it crosses (in which case Vk partially 
overlaps the vertical bar Vt corresponding to that floor, as in Fig. 16), make a 
small gap in the corresponding pseudosegment of all. This ensures that pseudoseg- 
ments of ~r that involve different floors will be treated as separate entities. Denote 
the arrangement d~ after the changes of Steps 1 and 2 by d'[, and let n'~ denote 
the number of its pseudosegments. 

Step 3. For  every intersection of the curve Ci with a pseudosegment of d ' i  make 
a small gap in the pseudosegment such that, in the resulting arrangement, Ci does 

Fig. 16. Change of floors. 
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not cross any pseudosegment. In the new arrangement, Ci is fully contained in the 
outer face. 

We denote the final arrangement by ~'~, and let m~ denote the number of its 
pseudosegments. 

By our discussion so far, an internal face of ~ represents a three-dimensional 
cell of~r whose ceiling is L~ and which is inaccessible from other three-dimensional 
cells that have another Lj as a ceiling. Hence, to get an upper bound on the 
complexity of a single cell, it suffices to bound the overall complexity of the outer 
faces in all arrangements ~i. Of course, now we have to show that the price we 
have paid for this simplification is not too high~ It will actually suffice to show 
that the overall number, ~',7= 1 m~, of pseudosegments that we have created, is still 
not too large. Indeed, we proceed to show this. 

We define a blue arc to be a maximal blue connected portion of a pseudoseg- 
ment in an arrangement ~1~. When producing d'~ from d~ (Step 1), we eliminate 
the blue arcs of d~. Each elimination of a blue arc may possibly increase by one 
the number of pseudosegments in d'~ over their number in d~. The following 
lemma guarantees that the overall increase in pseudosegments is under control. 

L e m m a  5.3. There are at most O(n 2) blue arcs in aH the arrangements ~r together. 

Proof  Either endpoint of a blue arc in d~ is related to a critical event of type I 
or type II (see Section 2 and [HS-]) as follows: A blue arc in ~r may start at the 
beginning of a pseudosegment, which is a type I event. It may also start when L~ 
witnesses a type II  event in which the lower vertex of the vertical bar generating 
the blue arc also participates. Similarly, it may start when the lower vertex of the 
vertical bar generating the blue arc meets a ray of another L? Likewise, the arc 
must end in a similar event of either type. There is no other way in which a blue 
arc can start or end. Each critical event may influence the beginning or end of 
blue arcs in only a constant number of arrangements d~ (at most two blue arcs 
in each). Consequently there are at most O(n 2) blue arcs in all the arrangements 
~r together. [] 

Let n' i denote the number of pseudosegments in d'~. 

Corol lary  5.4. ~]7= 1 n'i = O(na). 

Proof  Originally, there are O(n) pseudosegments in each ~r because the begin- 
ning and end of each pseudosegment is associated with a unique critical event in 
which L~ participates, and L~ participates in at most O(n) critical events. By Lemma 
5.3 the total increase in the number of pseudosegments when transforming the 
arrangements d i  into the arrangements d~ is O(n2), and the corollary follows. []  
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Moreover, it is easy to show, using similar arguments, that the following holds: 

Lemma 5.5. The maximum number of vertices of  all the arrangements d l  incident 
to all the blue arcs is O(n2). 

It is easily verified that Step 2 has a similar effect on the number of pseudoseg- 
ments, that is, we create at most O(n 2) additional gaps in the existing pseudoseg- 
ments and so we increase their overall number by 0(n2), making the resulting 
number still O(n2). 

Next we show that Step 3 also does not cause too much damage. We show this 
by proving that the curve Ci does not meet a pseudosegment of ~r more than 
once. The curve Ci, which contains the graph of the function w(O). consists of two 
types of arcs, one type is where w(O) traces vertical bars under Li, and the other 
type is the "jumps," the x-parallel portions of C~. Note that the portions of the 
curve C~ of the first type do not cross any pseudosegments of d'~ because if a 
vertical bar that generates a red pseudosegrnent e of ~r meets w(O), then it 
necessarily changes the floor below Li (because e is red and in these portions w(O) 
is always above a vertical bar of another L j) and in Step 2 we split those 
pseudosegments at exactly such points, so there are small holes through which C~ 
passes without meeting a pseudosegment of d'~. 

As for portions of Ci of the second type, we will show that two different "jumps" 
cannot share the same floor below them. If we show this, then Step 2 implies that 
no pseudosegment of d'~ can be crossed by both these C~ portions. (It is evident 
that within a single jump, C~ cannot cross the same pseudosegment twice, because 
the pseudosegments are 0-monotone.) Byfloors we mean all the rays (of some Lfs)  
that lie immediately below L~ when the tracing-point moves along L~ during a jump 
at a given 0 to a point above the next exposed vertical bar VR. Suppose two jumps 
occur at 01 and 0 2 for 01 < 02. Denote by J1 (resp. J2) the portion of L i passed 
by the tracing-point at the jump of 01 (resp. 02). Clearly, the floors below J1 at 01 
have positive slope (because we are moving left toward a vertical bar whose 
matching ray has positive slope). We claim that rays that have positive slope at 
01 cannot appear as floors below J2 at 02. Note that at 01 all the rays that have 
positive slope must be to the right of the newly exposed vertical bar V k. If they 
have a slope smaller than that of Lk at 01, then they cannot show up at all at 02. 
If the ray of a certain L,, has a positive slope at 01 which is larger than that of L k, 
then in order to appear as a floor at a later jump, the corresponding vertical bar 
V~, will have to bypass the traced vertical bar at some stage but when it does so 
we will switch to tracing it (V,,) and its floor will never be seen below the tracing 
point. To clarify this issue further, we note that if Lm contributes to the floor under 
J1, then the portion of L,, that constitutes part of this floor is necessarily a 
contiguous portion of L,, including the terminus of the ray of L,,, i.e., the upper 
vertex Pm of Fro. Moreover, in order for Lm to contribute to the floor under J2, Pm 
must see Li for every 0 between 01 and 02, because once a floor vanishes it cannot 
reappear in the 0 range of our concern. Therefore, there is some 0', 01 -< 0' _< 02, 
for which w(O') is right above Pm and the function w will stop tracing Pm only for 
an exposed vertical bar that crosses the x-axis and is to the left of xm. However, 
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recalling that w(O) is x-monotone, this is a contradiction because at 02, before 
executing the "jump," the function w traces a vertical bar to the right of Vs. 

Consequently, we are allowed to cut through all the pseudosegments of ~/'~ that 
C~ traverses, over all arrangements d'~, and still increase the overall number of 
pseudosegments by only O(n2). Hence, our discussion so far implies 

Lemma 5.6. ~7:1 mi = O(n2) �9 

Property P2 of ~i  implies that the complexity of the outer face of Mi is an 
upper bound on the complexity of the subcells of d whose ceiling is Li and are 
accessible from Po = o. From [GSS] we know that the complexity of a single face 
in an arrangement of n pseudosegments is O(nct(n)). Therefore the complexity 
of the outer face of ~'~ is O(mi~(mi)). Summing over all the arrangements Mi and 
using Lemma 5.6, we get that the total combinatorial complexity of all the sub- 
cells of d in the zone of the plane Po = o is O(n2~(n)). This completes the proof of 
Theorem 5.1. [] 

6. Conclusion 

In this paper we have obtained near-quadratic upper bounds on the complexity 
of a single cell in certain types of arrangements of surface patches in space, most 
of which arise in the context of motion planning for certain systems with three 
degrees of freedom, namely, the telescopic arm and the 3-1ink arm. These were the 
first results of this kind for motion-planning problems with three degrees of 
freedom where the entire free configuration space could be cubic in size. 

In Section 5 we have derived an improved bound O(n2o~(n)) on the complexity 
of a single cell in a TA-arrangement. The proof there relies heavily on the specific 
geometric structure of the TA-arrangement, is much more complex than the proof 
of Theorem 3.1, and does not seem to generalize easily. Still, it implies that the 
log factor showing up in the main result of this paper (Theorem 3.1) is an artifact 
of the proof technique rather than describing the inherent complexity of a single 
cell in the arrangements that we study. We continue to support the conjecture 
that the complexity of a single cell in arrangements of more general "well- 
behaving" surfaces is O(n2fl(n)), where fl(n) is some function of ~(n), determined by 
the intersection properties of the given surfaces. 

The paper raises several open problems. The main open problem is to extend 
the result to more general arrangements of surfaces. A major step in this direction 
has been recently made by Aronov and Sharir [AS92] who obtain a bound 
O(n 2 log n) on the complexity of a single cell in an arrangement of triangles in 
space. Another candidate system for obtaining a near-quadratic bound has been 
the one generated by the motion of an L-shaped object in the plane (see [HOS-]). 
Indeed in [Ha] we derive a bound O(n 2 log 2 n) on the maximum complexity of a 
single cell in the arrangement corresponding to this system. 

Another open problem is to develop general techniques for constructing a single 
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cell in arrangements that conform to the conditions of Theorem 3.1, which run in 
close to quadratic time. 

Given a collection G of n surfaces, the zone of an additional surface s in the 
arrangement sg(G) is the collection of cells that are incident to s in d ( G  ~ {s}). 
In many cases the problem of bounding the zone complexity of an object in an 
arrangement ,~r of the same type of objects is closely related to that of bounding 
the complexity of a single cell in ~r (see, e.g., [EGP+])  and we believe that the 
results presented in this paper can be extended to give similar bounds for the zone 
complexity of "well-behaving" surfaces in the arrangements studied here. 

One of the robot  arms that we have studied, the three-link arm, is a common 
kinematic substructure in existing robot manipulators. It is an interesting problem 
to exploit the analysis in this paper to derive bounds on the complexity of a single 
cell in the configuration space of spatial robot manipulators that contain the 3-1ink 
arm as a substructure, like the four degrees-of-freedom SCARA type robot or the 
six degrees-of-freedom "Elbow" manipulator (see [Pa]). 
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