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Abstract. This paper defines a "connected sum" operation on oriented matroids of 
the same rank. This construction is used for three different applications in rank 4. 
First it provides nonrealizable pseudoplane arrangements with a low number of 
simplicial regions. This contrasts the case of realizable hyperplane arrangements: by 
a classical theorem of Shannon every arrangement of n projective planes in I~P d- 1 
contains at least n simplicial regions and every plane is adjacent to at least d simplicial 
regions [17], [18]. We construct a class of uniform pseudoarrangements of 4n 
pseudoplanes in •p3 with only 3n + 1 simplicial regions. Furthermore, we construct 
an arrangement of 20 pseudoplanes where one plane is not adjacent to any simplicial 
region. 

Finally we disprove the "strong-map conjecture" of Las Vergnas [1]. We describe 
an arrangement of 12 pseudoplanes containing two points that cannot be simul- 
taneously contained in an extending hyperplane. 

O. Introduction 

An arrangement of hyperplanes of rank d is a collection X of n hyperplanes in ~d 
all passing through the origin 0 and satisfying ~) X = 0. Without  loss of informa- 
tion we can intersect the arrangement with the unit sphere S d- 1 and obtain an 
arrangement of  ( d -  2)-spheres embedded in S d-1. An arrangement is called 
uniform if no d hyperplanes meet in a line (equivalently no d spheres meet in an 
antipodal pair of points.) In a natural way every arrangement of hyperplanes 
decomposes the S d- 1 into a ( d -  1)-dimensional cell complex ~x.  The cells of 
maximal dimension in c~ x are called the regions or topes of X. Topes bounded by 
exactly d hyperplanes are the simplicial regions of X. Throughout  this paper we 
only consider arrangements where no point in S d- 1 is incident to more than n - 2 
of the hyperplanes. For  the rest of  this paper we assume that all arrangements are 
of this type. 
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Simplicial regions in uniform arrangements correspond to possibilities of local 
deformations. Intuitively, at every simplicial region one of the involved hyper- 
planes can be "pushed" over the vertex obtained by intersecting the remaining 
d - 1 hyperplanes. Only the orientation of the corresponding antipodal pair of 
simplices changes, without influencing the structure of the rest of the arrangement. 
By this "switching of a simplex" a new, in general nonisomorphic, cell complex 
is obtained. We refer to such an antipodal pair of simplicial regions as a mutation 
of the arrangement [3], [16]. A local perturbation performed at a mutation also 
makes sense on a purely topological (or combinatorial) level. The "switching- 
operation" can be completely described on the level of the cell complex. Restricting 
to the combinatorial data of the face lattice of ~fx we obtain cell complexes 
corresponding to purely combinatorial descriptions of arrangements of pseudo- 
planes through the origin (see [3] and [8]). When later we consider pseudoplane 
arrangements we always mean the equivalence classes of all arrangements having 
isomorphic cell complexes. An arrangement of pseudoplanes is called realizable if 
there is an arrangement of (straight) hyperplanes providing an isomorphic cell 
complex. It was conjectured by Las Vergnas [12] that every uniform pseudoplane 
arrangement can be obtained by starting with a uniform arrangement of realizable 
hyperplanes and performing a finite sequence of local perturbations as described 
above. Up to now it is not even known whether every arrangement of pseudoplanes 
possesses at least one mutation. 

For realizable arrangements of hyperplanes Shannon [17], [18] proved the 
following, now classical, result concerning the number of mutations: 

Theorem 0.1 (Shannon). Let X be an arrangement of  n hyperplanes of rank d and 
let H be any hyperplane in X.  Then there exist at least d mutations incident to H 
and at least n - d mutations not incident to H. 

This especially implies the existence of at least n mutations in such arrangements. 
The situation changes if arrangements of pseudoplanes rather than arrangements 
of hyperplanes are considered. The following was proved in [16]: 

Theorem 0.2 (Roundneff and Sturmfels). There exists a uniform arrangement X(8) 
of  eight pseudoplanes in rank 4 having exactly seven mutations) 

Bokowski and Richter-Gebert [6] showed that no other uniform arrangement 
on eight planes shares this property. Iteratively enlarging X(8) by lexicographic 
extensions Bokowski proved (personal communication): 

Theorem 0.3 (Bokowski). For every n >_ 8 there exists a uniform arrangement of 
n pseudoplanes in rank 4 having exactly n - 1 mutations. 

1 A throe-dimensional model of this arrangement was built by Bokowski and Richtvr-Gebert. It 
can be seen in the r of the ZIF-Bieldeld (Germany). 
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In this paper we provide geometric constructions which improve this upper bound 
on the minimal number of mutations. We prove: 

Theorem 2.2. For every n >_ 2 there exists a uniform rank 4 arrangement of 4n 
pseudoplanes having exactly 3n + 1 mutations. 

Moreover we prove the following result that contrasts Shannon's theorem of 
mutations adjacent to a hyperplane: 

Theorem 2.3. There is a rank 4 uniform arrangement R(20) of 20 pseudoplanes 
containing one plane p not adjacent to any mutation. 

The arrangement R(20)\p was used in [14] as an example where the space of all 
one-element extensions, considered as a simplicial complex [19], contains an 
isolated element. The result there depends on the constructions of this paper. 

For our purposes it is convenient to use the language of oriented matroids 
instead of the language of pseudoplane arrangements. For an introduction to 
oriented matroid theory the reader is referred to [3], [5], and [7]. The topological 
representation theorem of Folkman and Lawrence states that (oriented) pseudo- 
arrangements with n planes in rank d are in one-to-one correspondence to the 
rank d oriented matroids on the ground set E.'= { 1 . . . . .  n} (here we have to allow 
the pseudoarrangement also to contain repeated copies of the same pseudoplane 
and a copy of I/~ d itself to cover also the cases of parallel elements and loops in 
oriented matroids) [3], [8]. In this picture the antipodal pairs of simplicial cells 
of a uniform pseudoarrangement are mapped to the mutations of the correspond- 
ing oriented matroid. If a uniform oriented matroid ~r is given by its basis 
orientations X~: A(E, d ) ~  { - 1 ,  + 1}, a mutation corresponds to a basis whose 
orientation can be reversed without violating the oriented matroid axioms. We 
denote the set of all mutations of Jr' by Mut(Jr �9 A(E, d). All mutations containing 
a certain element e �9 E are denoted by Mute(Jr 

The associated cell complex of the arrangement translates into the set of 
all covectors .L~'(J[) of the corresponding oriented matroid d /  (see [3]). For 
this, each cell of the complex is represented by a sign-vector C �9 { - ,  0, + }r 
describing its relative position with respect to every hyperplane. The face lattice 
of the cell complex is the poset of all covectors where the order relation is induced 
by the relations "0 < + "  and "0 < - . "  An oriented matroid is completely 
described by its covectors. For an element gEE the affine oriented matroid 
(~' ,g):= {C�9162 = +} can be considered as an affine arrangement of 
pseudoplanes in R a- 1 where g plays the role of a plane at infinity (see [3], [91 
[13], and [14]). 

For an element e � 9  E the contraction JC/e is the oriented matroid on E\{e} 
obtained by taking all covectors {C �9 Aa(Jt')l Ce = 0} and deleting the eth compo- 
nent. In the corresponding pseudoarrangement a contraction JC/e corresponds to 
the arrangement induced on the pseudoplane e by intersecting with all other 
pseudoplanes. 
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Finally, we disprove a conjecture of Las Vergnas concerning strong maps. A 
strong map is a pair (~r ~r of oriented matroids such that every covector of 
~'2 is also a covector of ~'1, that is, ~e(Jt'2)~ L,a(Jt'l) (see [1] and [3]). If 
(J/l ,  "//2) is a strong map we write J/x --' -//2. Clearly, in this case the rank d 2 
of -'//2 cannot exceed the rank dl of Jr Geometrically a strong map corresponds 
to an embedding of a d2-dimensional pseudosubspace ~//2 through the origin in 
the dl-dimensional pseudoarrangement of v/C:. If, for instance, we consider a 
concrete hyperplane arrangement X~ with oriented matroid ~'~ and a new linear 
d2-dimensional subspace X 2, intersecting X1 arbitrarily, every covector on X 2 is 
also a covector of X~. Therefore v~'~--* ~'2, where JCz is the induced oriented 
matroid on X 2, forms a strong map. Las Vergnas conjectured in 1975 (see [1]) 
that for every strong map ~/r ---, J//2 the oriented matroid -'//2 can be obtained 
from J//~ by taking a suitable extension followed by a contraction. This is especially 
true for the realizable case and the cases d2 = dl - 1, d2 = 1 [15]. We prove: 

Corollary 3.5. There is a strong map -/fl ~ ~r from a rank 4 oriented matroid 
J[1 on 12 elements to a rank 2 oriented matroid Jr such that no one-element 
extension o f  ~/r meets all covectors o f  . t f  2 . 

This especially implies that the strong map v/r Jr' 2 does not factor in an 
extension followed by a contraction. We even prove the stronger result that J//1 
contains two points that cannot simultaneously lie in an extending plane. This 
improves a result of Goodman and Pollack. They proved that there is an oriented 
matroid on eight points such that the corresponding pseudoarrangement contains 
three points that cannot lie simultaneously in an extension plane [10]. 

1. Composition of Oriented Matroids 

The constructions of oriented matroids presented in this paper are based on a 
new rank-preserving "composition" operation for oriented matroids. In this 
section we discuss the general aspects of rank-preserving compositions of oriented 
matroids. In Section 2 we specialize these techniques to a concrete construction 
in rank 4. 

For  two given rank d oriented matroids vtt' 1 and v/t' 2 on disjoint ground sets 
E1 and E2 we define a composition operat ion-- the connected sum of ~1  and 
./r an oriented matroid ~r containing both of them. Geometrically, 
such a composition can easily be obtained by interlocking the corresponding 
pseudoarrangements in a suitable way. Clearly, there are many ways to do this. 
Moreover, in general it is also difficult to make sure that all pseudoplanes intersect 
properly. We overcome these difficulties by specifying the particular geometric 
situation by assigning an oriented f lag to each of the summands, which specify the 
position where the other summand has to be glued in. For  a rank d oriented 
matroid ./r on E we denote by Z.~: A(E, d) --, { - 1, 0, 1} its corresponding chiro- 
tope. Since both Xae and - X~ are chirotopes of ~ '  we assume, furthermore, that 
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the lexicographically fist basis 2 of ~r satisfies X~(2) = + 1. Conversely, for a 
chirotope X the corresponding oriented matroid is denoted by "/r In what follows 
we always assume that E :=  {1 . . . . .  n} together with certain extended elements 
a~, . . . ,aa are linearly ordered by 1 < .-. < n < a~ < - "  < a n . 

Definition 1.1. Let J / b e  an oriented matroid of rank d on the set E ~ {al . . . . .  an}. 
The sequence a :=  (a~ . . . . .  an) is called an oriented f lag of .ar a is a basis of ./r 
and for all k < d and ~. ~ A(E, k) we have ;t~()-, ~1) = X~t(2, z2) for all 

Zx, z2 ~ A({a, . . . . .  an}, d - k). 

The pair (~,  a) is called a f lagged oriented matroid. 

If we consider the (oriented) pseudoarrangement corresponding to rig, the 
hyperplanes in a are in general position. Moreover, all subspaces of dimension k 
obtained by intersecting elements in a have the same relative position in the 
pseudoarrangement corresponding to Jc'\a. We can view the flag a in ~ /  as a 
tower of (oriented) pseudosubspaces 

a l  = ( a l  w a2)  = (a l  u a2 u a3)  = " "  = ( a l  ~ a2 w - - "  w an) = 

embedded in the pseudoarrangement corresponding to J/.  
Equivalently, we can characterize an oriented flag by its corresponding sequence 

of oriented subspaces in the pseudoarrangement. 

Definition 1.2. Let (~r a) be a flagged oriented matroid of rank d. The extension 
sequence of (J/, a) is the sequence jog . . . . .  ~ d -  ~ of oriented matroids given by 

. / ~ i :=(Jg / {a  1 . . . . .  a , -1} ) \ {a i+ l  . . . . .  an}. 

Accordingly J[~ has rank d - i +  1 for i =  1 . . . . .  d - 1 .  Furthermore, the 
oriented matroid ~,i+ 1 is a single-element extension of J#/a~ for i e {0 . . . . .  d - 1}. 
Notice that a flagged oriented matroid (~,  a) is uniquely determined by its 
extension sequence. 

We now define the connected sum ~ . ' =  J11 ~)b ~r of two uniform flagged 
oriented matroids (dr a) and (J/2, b). Intuitively, ~r consists of the oriented 
matroid J/1 where the elements a are replaced by the configuration J/2\b. Since 
the definition is completely symmetric in both summands, we can also consider 
~r as generated by taking J12 and replacing b by dCl\a. 

Definition and Theorem 1.3. Let  (Jr' 1, a), (J/2, b) be two f lagged rank d oriented 
matroids on disjoint ground sets E +w {a 1 . . . . .  ad} and F +w {b 1 . . . . .  ba}, respectively.  
The alternating map ZA:  2(E +w F, d) --* { - 1, + 1} given by 

XA(2, ~):= X~,(2, al . . . . .  aa2)" 7.~2(ba . . . . . .  bl, z) 
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for 2 e A(E, dx) and z e A(F, d2) with dx + d2 = d, again defines an oriented matroid 
:= ..r 1 ~s - /g2 ,  the connected sum of  (~#[1, a) and (Jt '  2, b). 

Proof. We only have to prove that  all Grassmann-Pl i icker  relations for the map 
X~ as defined above are fulfilled. If so ~ defines an oriented matroid.  For 
convenience we set Xi := X~,,, X2"-= Xar and ~:= g ~ .  Following I-7] we con- 
sider Grassmann-Pl i icker  relations as polynomial  relations over the fuzzy ring of 
GF 3. Let 2 ~ A(E, dl) and T e A(F, d2) with dl + d2 = d - 2. Fur thermore ,  let 
el . . . . .  e4 e E and f t  . . . . .  f4 e F. We abbreviate the three summand Grassmann-  
Pliicker polynomials  by (see [7]) 

{2, zla, b, c, d}x := g(2, z, a, b). Z(2, z, c, d) - g(2, z, a, c)- Z(2, z, b, d) 

+ Z(2, T, a, d)" X(2, T, b, c). 

If we obtain, over the fuzzy ring of GF 3, 

{2, zla, b, c, d}z ~ {0, *} 

for all (2, ~) ~ A(E +w F, d) and a, b, c, d e E t~ F, then ~ defines an oriented matroid. 
Applying Definition 1.3 we obtain 

{2, zlel,  e2, e3, e4}~ = a .  {2, ax . . . . .  aa~lel, e2, e3, e4}x," (z2(bd . . . . . .  bx ' z))2, 

where a ~ { - 1 ,  + 1} has to be chosen in a suitable way. Therefore the Grass- 
mann-Pl i icker  relation is fulfilled since the corresponding Grassmann-Pli icker  
relation was satisfied for Xl. The same argument  proves the correctness for the 
Grassmann-Pl i icker  relation {2, ~[fl ,  f2, f3,  f4}~. 

Likewise, if we consider the Grassmann-Pl i icker  relation {2, Tie1, e2, e3, f l  }f (or 
symmetrically {2, ~]el, fx, f2,  f3}~) we observe 

{2, Tlel, e2, e3, fl}~ = a-  {2, al . . . . .  ad~le~, e2, e3, e4}x, " g2(ba . . . . . .  bl, z) 

�9 z2(b,,-  1 . . . . .  bl, f l ,  ~), 

which proves the correctness of those Grassmann-Pl i icker  relations. It remains 
to prove the relation on the form {2, r e2, f l ,  f2}i. In this case after expanding 
we observe that the Grassmann-Pl i icker  relation has the form 

{~, xlel,  e2, f l ,  f2}~ = A + B - B, 

where A and B are suitable products.  This implies that this Grassmann-Pli icker  
relation is also satisfied. 
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2. A Geometric  Construction in Rank 4 

In this section we describe a special composition construction in rank 4. We 
especially point out the geometric content of the construction and take care of 
the mutation structure of the resulting oriented matroid. 

For a given oriented matroid Jr  on n elements having k mutations we describe 
how to obtain an extension Jr by four new elements that has exactly k + 3 
mutations. Inductive application of this construction leads to an infinite family of 
oriented matroids on 4n elements having only 3n + 1 mutations. 

We therefore first analyze the geometric structure of the unique uniform rank 
4 oriented matroid X(8) on eight elements with only seven mutations. This oriented 
matroid is a basic building block of our constructions. X(8) was first presented in 
[16]. It was proved in [6] that X(8) is the smallest example of a uniform oriented 
matroid possessing less mutations than elements. The infinite class of oriented 
matroids we want to describe can be obtained by iteratively taking the connected 
sum of several copies of X(8). 

The easiest way to describe X(8) geometrically is by describing a geometric 
situation that can be perturbed to X(8). Let Jr' be the oriented matroid on the 
ground set E.'= { 1 . . . . .  8} consisting of eight planes with normal vectors given by 
the following homogeneous coordinates: 

! 2 3 4 5 6 7 8 (  01010 ) 
1 1 2 0 1 0 
1 0 1 1 2 0 " 
1 0 1 0 1 1 

If we add a plane at infinity g = (1, 1, 1, 1) r and consider the affine oriented 
matroid ( J r  g, g), these hyperplanes correspond to two tetrahedra {1, 3, 5, 7} 
and {2, 4, 6, 8} with same center and parallel faces. For each pair 

(i,j) e A({1, 3, 5, 7}, 2) 

the planes i, i + 1,j,j + 1 meet in a point at infinity. These are the only degeneracies 
in JL. We now define X(8) by its basis orientations: 

~'Z~(2) if X~(2) # 0, 
Zx(8)(2) := ( +  1 if Z~(2) = 0, 

for 2 e A(E, 4). Observe that in X(8) the pairs (i, i + 1) are inseparable for i = 1, 3, 
5, 7. The seven mutations of X(8) are given by 

Mut(X(8)) ..= {(1, 2, 3, 4), (1, 2, 5, 6), (1, 2, 7, 8), (3, 4, 5, 6), 

(3, 4, 7, 8), (5, 6, 7, 8), (1, 3, 5, 7)}. 
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Consider the affine arrangement (X(8), 8). Figure 2. l(a) illustrates the geometric 
situation of the hyperplanes 1 . . . .  ,6. The lines of intersection of two hyperplanes 
are labeled by the corresponding two planes. A description of the complete 
arrangement is obtained if the intersections of the lines with planes 7 and 8 are 
specified. Each line should intersect plane 8 at the end marked by a point and 
intersect plane 7 at the opposite end. 

Observe that the region given by the positive side of 7 and the negative side 
of 8 contains exactly four mutations. Figure 2.1(b) describes the situation in the 
contraction at element 8. We later replace a substructure of a hyperplane 
arrangement by the arrangement given in Fig. 2.1(a). To get the labeling we 
need in this application we define an oriented matroid )~(8) on the ground 
set {1, 11, 12, 21, 22, 2, 3,4} isomorphic to X(8) by the following relabeling and 
reorientation: 

1 ~ 1 ,  6--* --11, 5--'12, 4--*--21, 3--* - 2 2  , 2--*--2, 7--*3, 8--*4. 

The corresponding situation in the contraction on element 3 of )~(8) can be found 
in Fig. 2.2(c). )7(8) possesses the mutations: 

(1, 2, 11, 12), (1, 2, 21, 22), (1,, 12, 21, 21), (1, 2, 3, 4), 

(11, 12, 3, 4), (21, 22, 3, 4), (1, 12, 21, 3). 

We now describe a special extension construction for oriented matroids of rank 
4 that decreases the ratio of mutations and elements. We frequently identify the 
cells in pseudoarrangements with the corresponding covectors. In the attine 
oriented matroid (Jr', g) we also identify the elements in E\g with the correspond- 
ing pseudoplanes in (~ ,  g). For i, j e E we abbreviate the affine line in the 
intersection of i a n d j  by/i,~:= i c~j. 

Let ./r be a uniform oriented rank 4 matroid on E:=  {1 . . . . .  n} with n > 5 
elements. If Jr' contains a mutation (1, 2, 3, 4) e Mut(Jr where the pair (1, 2) is an 
inseparable pair [3] of hyperplanes, we construct an extension ~1/~1,2, 3,4.) by four 
new hyperplanes such that J/t l, 2, 3,4) possesses exactly I Mut(~r162 + 3 mutations. 
Moreover, JOt l, 2, 3,4~ will satisfy the relation I Mut4(Jttl ' 2, 3,4))[ = I M u t 4 ( J l ) J -  1. 

To simplify our considerations we assume that a hyperplane g e E\{1 . . . . .  4} 
plays the role of a hyperplane at infinity. Without loss of generality we assume 
that the affine pseudoarrangement (Jr g) is given such that the hyperplanes 1, 2, 
3, and 4 are realized as flat hyperplanes. By ~r .'= {C e (Jr g)l Ci r 0 for all i e E} 
we denote the set of all full-dimensional regions of (~', g). The mutations of J /  
are in one-to-one correspondence to the tetrahedra in d .  Finally, we assume 
without loss of generality that after a suitable reorientation the tetrahedral region 
corresponding to the mutation (1, 2, 3, 4) lies on the positive side of every 
pseudoplane in E\2 and on the negative side of plane 2. By this choice (1, 2) 
becomes a covariant pair in the terminology of [3]. By s3, 4 we denote the directed 
line-segment o n  13, 4 lying in the boundary of the tetrahedron (1, 2, 3, 4) pointing 
from on the hyperplane 1 to the hyperplane 2 (Fig. 2.2(a)). 
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Geometric situation in the oriented matroid X(8). 
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Fig. 2.2. Construction of ~4#' from .4L 

We now replace the pair of planes (1, 2) by six hyperplanes 

F : =  {1, 11, 12,21,22,2  } 

all incident with the line il.2, intersecting sa. 4 in the order 1, 1 l, 12, 21, 22, 2 (Fig. 
2.2(b)). We assume that the orientations are chosen in such a way that after 
removing any four hyperplanes in {1, 11, 12, 21, 22, 2} we obtain our original 
arrangement (.4/, 0). This is obtained if all orientations point to the direction 
indicated by the directed edge sa. 4. The resulting oriented matroid is called ~g'. 
Notice that .,W' is no longer uniform. We now describe how to perturb the 
hypcrplanes in F in order to obtain ,W(1.2, 3.4) with the desired properties. Consider 
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a point p on the boundary of the tetrahedron (1, 2, 3,4) lying on line Ii ,  2. We 
rotate each of the planes in F slightly around point p in a way that the situation 
in the intersection of the planes in F with each of the planes j e E\{ 1, 2} is deformed 
as described in Fig. 2.2(c). (This rotation can be done keeping all planes of F flat. 
For our purposes a topological deformation in the described way serves as well.) 
If we make the deformation sufficiently small we can still keep the property that 
after removing four hyperplanes from {1, 11, 12, 21, 22, 2} we obtain our original 
arrangement (all, g). This way we obtain an oriented matroid dr" where all 
hyperplanes of F pass through one point p in the boundary of the tetrahedron 
(1, 2, 3, 4). If we now consider the restriction of ./i(" to the elements 

/~:= {l, 11, 12,21,22, 2,3,4} 

we observe that we have exactly the situation of )~(8) with all vertices not lying 
on 3 or 4 collapsed to one single point p. Therefore we can perturb the oriented 
matroid all" in a small neighborhood of p such that its restriction to ~ equals 
our oriented matroid ,t~(8). The resulting configuration is the oriented matroid 
~((~,2,3,4) with the desired properties. Notice that by our construction the pairs 
(11, 12) and (2~, 22) are inseparable in ~1.2 ,  3.4). Furthermore, any inseparable 
pair of dr with elements in E - {1, 2, 3, 4} will be also inseparable in d/(1.2.3.4 P 

Before analyzing the structure of the mutations in dCtt ' 2, s.4) we give a more 
formal definition of dot1.2.3.4 ) by its basis orientations. We assume that 
F +w E\{1, 2} is equipped with the linear order 

1 < i t  < 12 <2~ <22  < 2 < 3  < 4 < . . . < n  

~\{i, 2} 

We also assume that the planes are oriented as described above. If we set Xl := X~ 
and ;~2 := Zeta) we obtain the bases orientation of X := X~,2,3.,) as follows. Let 
r e  A(F, dl) and 2 e A(E\{1, 2}, d2) with dt + d2 = d. We have 

(Z1(2) if Irl =0,  
]Z1(1,2) if lzl = 1, 

Z(z, 2):= ~Zl(1, 2, 2) if I*1 = 2, 
/z2(z, 3) if [zl = 3, 
~,z2(z) if I~1 = 4. 

The different cardinalities of �9 correspond to different steps in the construction 
described above. The whole construction corresponds to a suitable connected sum 
as described in the last section. To simplify the construction and point out the 
geometric situation we just encoded the flags directly in the chosen labeling and 
orientation of the planes. 

We now analyze the structure of the mutations of dr ), using the fact 
that the mutations are in one-to one correspondence to the simplicial regions of 
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arrangements. For an oriented matroid ~t' on A w B and two integers i, j _> 0 with 
i + j = 4 we denote by 

Mutl]!~)(J/):= {2 e Mut(~/)]12 n A I = i and 12 ~ B[ = j} 

the set of all mutations containing i elements of A and j elements of B. Furthermore, 
for a set of d-tuples M we denote by M[i~-~j] the set of d-tuples where all 
occurrences of index i are replaced by index j. 

T h e o r e m  2.1. Let Jr  be a uniform rank 4 oriented matroid on E where 

(1, 2, 3, 4) e Mut(Jr  

and (1,2) is an inseparable pair. Then the oriented matroid 
E +w {11, 12, 21, 22} has the following properties: 

(i) IMut(J/(x,2,3,4)) I = IMut(Jr + 3. 
(ii) Mut4(~/r ) = Mutr162 ) -- {(1, 2, 3, 4)}. 

,A~(1,2, 3,4. ) On 

Proof. We prove this result by carefully analyzing the geometric structure of 
J / . ,  2, 3,4~ and keeping track of the simplicial cells in the pseudoarrangement. We 
first observe that according to our construction we have 

Mutl4,_o~l.2~.r)(j/tl.2.3.,)) = M , , , ( 4 . 0 )  i ,ix "~(E-  {1,2}, { 1 , 2 } ) ~ 1  �9 

This states simply that the regions not incident with 1 or 2 are not influenced by 
our construction. Conversely, the mutations having no elements in E\{1, 2} are 
those that are induced by the inner structure of .~(8): 

(0,4) Mut(E - ~1.2}, v)( J'/~ 1, 2.3.4)) ~--- Mutl~g.r r)(X(8)). 

These are exactly the three mutations (11, 12, 21, 22), (1, 2, 11, 12), (1, 2, 21, 22) of 
the oriented matroid g(8). 

We now have to study the mutations of J/~1,2.3.4) containing elements in 
E\{1, 2} as well as in F. Therefore recall that we have replaced our original line 
11.2 in the pseudoarrangement of v/r everywhere except at the tetrahedron 
(1, 2, 3, 4) by a cylinder over the contraction given in Fig. 2.2(c). Therefore all 
mutations in this region of ~(1 ,2 ,3 ,4 - )  have to be incident to the regions in Fig. 
2.2(c) which correspond to unbounded wedges. Mutations occur exactly at the 
places where these regions meet former mutations of ~/ incident  to 11,2. 

Since (1, 2) is a covariant pair all mutations of ~ containing the pair (1, 2) lie 
in ~ - : =  {C ~ ~11C1"C 2 = -} .  These are exactly the mutations adjacent to the 
line 11, 2. We get 

M,J t (2 ,2 )  ~ (E-{1 ,2} ,F ) ( '~ (1 .2 ,  3.4j)[11 ~ 1][12 ~ 2][21 *-* 1][22 ~ 2] 
(2 2) = MuttE'-" ~1,2~, ~ 1 .2~) (~ ' ) .  
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Mutations of "~(1, 2. 3, 4) having exactly one element in F correspond to muta-  
tions of Jr '  having exactly one element in {1, 2}. We obtain 

M u t l ~ l ,  2), v)(J//(1, 2,3.4)) = MutI~'-I~L 2),{1. z))(-At') �9 

Similary we obtain exactly the mutations of ,A~(1,2,3,4 ) having three elements in 
F and one in E -  {1,2}: 

Mut(E_ {1,2}, v)(~r 2, 3,4)) = 

This is exactly the mutat ion (1, 12, 2t, 3) of the oriented matroid )~(8). 
Collecting these observations and defining M "'j)..= (i'J) I Mut(~ - ~1,2~, v~(~tc,, 2.3,4))1 

we obtain 

[Mut(J[(t 2,3,4))1 :=  M(4'~ + M(3' l )  + M(2'2) + M(I '3)  + M(~ 

=lMut(X/)l- 1 =1 =3 

This proves statement (i). A similar count proves that the mutations con- 
taining element 4 in d/t1,2,3.4 ) are exactly those of ./t' after (1, 2, 3, 4) has been 
deleted. [ ]  

We now immediately obtain: 

Theorem 2.2. For every n = 4" k > 8 there is a uniform rank 4 oriented matroid 
~1[" having exactly 3n/4 + 1 mutations. 

Proof. To prove the result inductively we prove the stronger fact that Jg" has 
3n/4 + 1 mutat ions and moreover  contains an inseparable pair of elements (1", 2"). 
For n = 8 this statement is fulfilled by X(8) and the pair (1, 2). Now assume that  
there exists an oriented matroid ~r with the desired properties. Since (1", 2") is 
inseparable in ~ there is also a mutat ion (1", 2", 3", 4") containing 1" and 2" (see 
Lemma 2.6 of [14]). Therefore ~t '"+4:= J/~1,.2~176 has, by Theorem 3.1(i), 
exactly 3(n + 4)/4 + 1 mutations. Moreover,  J / "  § 4 possesses an inseparable pair 
(1], 13). This proves the claim. [ ]  

Finally we give a construction of an oriented matroid R(20) on 20 elements 
where one element is not  contained in any mutation. We start with the oriented 
matroid X(8) and use our  construction to destroy successively all mutations 
containing element 8. We define 

R(20) := ((X(8)(t. 2.7.8))(3,4.7, s))(s. 6.7, s). 

Theorem 2.3. Muts(R(20)) = ~ .  
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Proof We first have to prove that the above construction of R(20) is well defined. 
For  the oriented matroid X(8) we have 

Muts(X(8)) := {(1, 2, 7, 8), (3, 4, 7, 8), (5, 6, 7, 8)}. 

Furthermore, the pairs (i, i + 1) are inseparable for i = 1, 3, 5. By Theorem 4.1(ii) 
we obtain Muts(X(8)tl.2.7.a) ) = {(3, 4, 7, 8), (5, 6, 7, 8)}. The pairs (i, i + 1) are still 
inseparable for i = 3, 5. Therefore we can again apply Theorem 3.1(ii) and obtain 
a set of mutations Muts((X(8)tL2" 7, s~)ta.4, 7. a~) = {(5, 6, 7, 8)}, where (5, 6) is still 
inseparable. A final application of Theorem 3.1(ii) proves the claim. [] 

The oriented matroid R(20) is used in [14] to prove that there are oriented 
matroids where the space of all one-point extensions is disconnected. Namely, it 
can be proved that R(20) is an isolated element in the extension space of R(20)\8. 
A geometric picture of R(20) in terms of its contractions can also be found in [14]. 

3. A Nonfactorizable Strong Map 

This section is devoted to a rank 4 arrangement of pseudoplanes R(12).'= 
X(8)t7.s.l.2~ containing two topes Tt, T2 such that no extension plane of R(12) 
intersects T1 and T 2 simultaneously. This is a consequence of the fact that X(8) is 
a noneuclidean oriented matroid. For  an introduction to the theory of euclidean- 
hess in oriented matroids and the related theory of oriented matroid programs the 
reader is referred to [31 [91 and [13]. All necessary results needed here can also 
be found in [14] and [19]. 

If not explicitly stated otherwise we assume that every oriented matroid in this 
section is of rank 4. For  a set of covectors A c { - ,  0, + }~ and an element f e E 
we define A ; : =  { V e A I V I = + }, A~ := { V e A I V I = 0}, etc. We say that f hits a 
set ofcovectors A c { - ,  0, + }r i fA} # A and A~7 # A. If in a pseudoarrangement 
f hits a set of vectors (=  faces) A, then not all faces corresponding to elements in 
A lie in the same open half-space with respect to pseudoplane f .  Clearly, if f hits 
A, then f also hits - A  .= { - V IV ~ A}. If f hits a one-element set { V}, then V I = 0. 

A cocircuit of an oriented matroid Mr is a covector corresponding to a vertex 
in the pseudoarrangement of . / / ( see  [3]). We abbreviate the set of cocircuits of 

by r162 For  a given oriented matroid Mr on E and i, j, k ~ E we also define 
Yt = -Z(-/0 ~ Y~,j "= (Yi) ~ and Yi.j,k "= (y~.j)o. Observe that in uniform arrangements 
the set Y~,~.h forms a pair -t- Y of cocircuits corresponding to the intersection of i, 
j, and k. 

According to Fukuda and Mandel [9], [13] every noneuclidean oriented 
matroid program (Mr', g, f )  contains at least one cyclic component e in the 
edge-graph Gt~.g,s ~ (see [19]). In the terminology of Sturmfels and Ziegler c is 
called a very strong component of (.,r g, f )  and consists of all cocircuits contained 
in the cyclic component. The vertices at infinity of (,r g, f )  on the positive side 
of f is abbreviated by I I" g .-.- (d~*(Mr)g)s . o  + 
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The crucial observation about the noneuclidean oriented matroids can now be 
formulated as a property about hitting the sets I I'g and e by an extension plane. 

Lemma 3.1. Let (~r g, f )  be a noneuclidean oriented matroid program with very 
strong component c and infinite vertices I f'g. Let ~ := (~lt~f) u f be a one-element 
extension of ~C.~f. I f  f hits e in ./~, then f also hits I f'g. 

Proof This lemma is a simple reformulation of Lemma 3.6(i) of [19] that the 
localization of every extension of an oriented matroid program (Jr g, f )  has the 
same value on all elements of a very strong component. The proof goes back to 
Mandel [13]. []  

The oriented matroid program (X(8), 8, 7) has a unique very strong component 
e. In this case especially we get 

and 

IS'7:= {Ys.j.klJ, kEE\{7,  8}}~- 

c.'= {Y1.2.3, Y1.2.,, Y1.3,,, Y2.3.,, Y,,2.5, Yi,2.6, Y1.5.6, 
Y2,5.6, Ys,,,5, Y3,4,6, Y3,5,6, 114,5,6}. 

According to the special structure at infinity (see Fig. 2.1(a)) an extension plane 
hits I s' 7 if it just hits I. '= { Ys, x. 2, Ys, 3,4, Ys, 5, 6} 4- since these are extreme vertices 
in the contraction X(8)/8 on the positive side of element 7. We obtain: 

Lemma 3.2. Let (X(8)\7) u f be an extension of X(8)\7. l f  f hits c, then f hits t 

We now consider the oriented matroid X(8)r s, 1,2~ as defined in the last section. 
For matters of symmetry, in the following arguments we relable the new elements 
in X(8)~7, s, 1,2) by 

71--,12, 7 2 ~ 1 1 ,  8 1 ~ 1 0 ,  8 2 ~ 9 ,  

the resulting oriented matroid on E.'= {1 . . . . .  12} is called R(12). Figure 3.1 gives 
a description of R(12) in terms of the induced pseudoline arrangements in every 
contraction. We define E1-'= {1 . . . . .  6} and E 2 : =  {7 . . . . .  12}. Notice that, by our 
construction for (i, j) z A(E2, 2), the oriented matroid program 

(R(12)\(E2 -- {i,j}), i,j) 

(X(8), 8, 7). In this case we get a very strong component is isomorphic to 
either by 

C1:= {Yi,2.3, Y1,2.4, Y1,3.4, Y2,3,4, Yi.2.5, Y1.2.6, Y1,5,6, Y2.5,6, 
Y3,*,5, Y3,*,6, Ys,5,6, Y,.,.6} 
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1 3 B 5  2 3 4 7  3 2 4 6  4 2 g g  

5 C 
fl B g g B f17 7 
R E A 8 C A C  5 

9 7 B 5 7 g g 5 

5 5 3  7 4 3  6 4 2  g B 2  

5 4 ~  9 6 2 4 3  7 2 9 g  e 2 6 5  

7 g g G 3 8 A 7 
C A fi 4 4 9  9 

8 7 B 9 B 3 7  R 

R 3 C 8 C 5 4 C 

6 6 2  3 4 2  g 8 2  5 6 2  

g 2 f i 5  A 2 6 5  B 2 g A  C z g f l  

8 8 g 8 4 4 4  4 

7 C 7 C C 3 B  3 
4 8 4 9 7 S 7 5 

5 6 2  5 6 2  R g 2  R 9 2  

Fig. 3.1. Contractions of R(12). 

or by - c  1. Symmetrically, for every pair ( i , j )eA(E~,  2) the oriented matroid 
program (R(12)\(E 1 - {i,j}), i,j) is isomorphic to (X(8), 8, 7) with the very strong 
component  either 

C2:=  {Y7.8,9, Y7,8,10, Y7,9.10, Y8,9,10, Y7,8,11, Y7. s.12, Y7.11,12, Y8.11,12, 

Y9.10,11, Y9.10,12, Y9.11.12, Ylo,11,12} 

or - e  2. We now prove: 

Theorem 3.3. Let ,~( := R(12) w f be a one-element extension of  R(12). The element 
f cannot hit el and e2 simultaneously. 

Proof. Assume on the contrary that f hits both ct and c2. By Lemma 3.1, for 
every (i,j) e A(EI, 2) w A(E2, 2) the element f hits the infinite vertices I i'J of the 
oriented matroid program (R(12), i,j). For  every i e E 2 we pick one j ~ E2\{i } and 
define 

~i:~__ {Y1.2,i, Y3 4 i, Y~ + , , 5 , 6 , i } j  �9 

Up to a common sign the set T ~ is independent of the special choice of j and 
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8 7 12 
2 

1 I 1 ~ ~ . _ . . . . . . . ~  ~ 4 2,9 -- 

5 

6 

1 

(a) (b) 

Fig. 3.2. Subconfigurations of R(I2). 

therefore the expression '~f hits i i'' is well defined. Likewise for i e E t and j  e E l \ { i  } 
we define 

i':= Y9.1o.,, Ylt.12,,); 

Applying the isomorphism between the substructures of (R(12), i ,j) and (X(8), 8, 7) 
and Lemma 3.2 we obtain f hits T i for  all i e E. The geometric situation in the 
corresponding pseudoarrangement for i e E t is illustrated in Fig. 3.2(a). Since all 
vertices formed by intersections of elements in E z lie in the same region with 
respect to the planes El, the lines II7, 8, Yg. lo, and Y11. t 2 intersect the planes in E1 
all in the same order (2, 3, 4, 5, 6, 1). We refer to the open line segment on Y7.8 
joining vertex YI.7.8 and vertex Y2,7.8 while passing the other planes of E t by 
$7, s. We define $9.1o and $11.12 similarly. Each of the lines Yv,s, Y9, lO, and Y11,12 
is cut by the plane f exactly once. Since f hits i i for every "level" i e {2, 3, 4, 5, 6, 1} 
at most one segment in {$7. s, $9, to, $11.12) lies strictly on the positive side of f 
and at most one segment lies strictly on the negative side of f.  

A similar construction makes sense if we consider the situation at the lines 
spanned by elements of E 1. The lines Y1.2, Y3,4, and Ys.6 are all cut by the 
planes of E 2 in the order (8, 9, 10, 11, 12, 7). We define open line segments $1. 2, 
$3,4, and S~. 6, respectively. At least two of them are separated by f. 

It remains to prove that all these separations cannot take place in the same 
arrangement. Essentially we have to explore all nine combinations of possible 
separations of the s e t s  { S t , 2 ,  $ 3 , 4 ,  $5 ,6}  and {ST, a, $9,1o, $11,12}. We restrict 
ourselves to considering only one of these cases. The remaining cases can be solved 
analogously. Assume that f separates St, 2 and $3,4 and that f also separates $7. a 
and $9. lo- If we consider planes 2, 3, 8, and 9, they form a tetrahedron as given 
in Fig. 3.2(b) (the lines of this picture are labeled by the corresponding two planes 
of intersection). The line segments are also indicated in this picture. Observe that 



268 J. Richter-Gebert 

f hits the three-vertex sets: 

{Y1,2,8, Y2,3,8, Y3,4.8}, {YI,2,9, Y2,3,9, Y3,4,9}, 
{Y7,8,2, Ys,9.2, Y9,10,2}, (YT,s,3, Ys.9.3, Y9,10.3}. 

Therefore, for instance, f has to cross the edge path YL 2, 8-~ Y2.3,8 ~ Y3,4,8. 
Hence f either hits {YI,2, s, Y2.3,s} or {Y2.a,s, Y3.,.s}- Similar statements hold for 
the other'three sets. Assume that f hits {Yt,2,s, Y2,3,s}. Since each of the lines 
Y2.s, Y2,9, I:3, s, Y3.9 is crossed only once by f ,  the plane f also has to hit 
{Ys.9,2, Y9.10,2}, {Y2,3,9, Y3.,.9}, and {YT.s.3, Y7,9,3}. This forces an impossible 
configuration. A similar contradiction occurs if we assume that f does not 
hit {]:1.2,8, Y2. a.s}" In this case f has to hit {Y2,3,s, Y3,4, s}, {Ys.9,3, Y9.1o.3}, 
{I:1,2.9, Y2, a.9}, and {YT, s,2, Ys,9,2}, which is also impossible. 

This proves the impossibility of separating S L 2, $3,4 and $7, s, $9. ~o simultan- 
eously. By choosing suitable planes of reference the other eight cases can be 
concluded similarly. This proves the claim. [] 

We finally translate Theorem 3.3 into two corollaries about extensions and 
strong maps of R(12). The first result improves a theorem of Goodman and Pollack 
[10] about prescribed points in extensions. They proved that there is an oriented 
matroid GP(8) containing three points that cannot be simultaneously intersected 
by an extending pseudoplane. We prove: 

Corollary 3.4. In the pseudoarrangement corresponding to R(12) let T1 and T2 be 
the simplicial regions corresponding to the mutations (1, 2, 3, 4) and (7, 8, 9, 10), 
respectively. No extending pseudoplane of R(12) intersects both T 1 and T2. 

Proof. Observe that for i = 1, 2 the vertices of T~ lie all in the very strong 
component Ci. Hence, every pseudoplane intersecting T~ hits cv Applying Theorem 
3.3 immediately proves the claim. [] 

Finally, we disprove the strong-map conjecture of Las Vergnas, stating that 
every strong map ~t'x -~ ~ 2  factors in an extension followed by a contraction. 
We prove: 

Corollary 3.5. There is a strong map R(12)-~ ~r such that no extension of R(12) 
intersects all covectors of ~ .  

Proof. We have simply to embed a line I in general position in R(12) intersecting 
the topes T1 and T2 of Corollary 3.4. Such a line always exists by Proposition 
4.2.3 of [3]. The rank 2 oriented matroid ~ '  induced on I by Corollary 3.4 cannot 
be contained in an extension plane of R(12). This proves the claim. [] 
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