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Abstract. It is a well-known fact that for every polynomial-time algorithm which 
gives an upper bound 17(K) and a lower bound V(K) for the volume of a convex set 
K c E a given by an oracle, the ratio ~(K)/V_(K) is at least (cd/log d) ~. Here we describe 
an algorithm which gives, for ~ > 0, in polynomial time, an upper and lower bound 
with the property V(K)/V_(K) <<_ d! (1 + e) d. 

1. Introduction 

Since it is hard to compute the volume of convex bodies in high dimensions, 
polynomial deterministic algorithms which give an upper bound V(K) and a lower 
bound _V(K) for the volume V(K) of a d-dimensional convex body K may be 
requested. Indeed, such algorithms were given by Lov~tsz (see, e.g., p. 122 of [GLS]) 
with a ratio V(K)/V_(K) < d 3a/2 and by Applegate and Kannan [AK]- -quo ted  in 
[DF] - -w i th  V(K)/V_(K) < 2 a. dr (1 + 1/d2) d. Here we give an algorithm which 
computes, for any e > 0, in polynomial time, IT(K), _V(K) such that ~(K) /V(K)  < 
d! (1 + e) d. 

The bounds given above appear to be very weak. However, B~tr~ny and Fiiredi 
[BF] showed--see also [E] - - tha t ,  for any polynomial deterministic algorithm, 
the ratio V(K) /V(K)  is at least (cd/logd)a = d at1-~ for some constant c in- 

dependent of d and we have, by Stirling's formula, d! = x / /~ (d /e )d (1  -- o(1)). 
Algorithms of this kind are not only of interest in their own sake but also 

because the newly devised randomized algorithms for computing the volume need 
good inscribed and circumscribed parallelepipedra (see, e.g., I-DF] and [DFK]).  
Such parallelepipedra can be constructed from the bodies obtained by our 
algorithm. 

Thus it seems to be worth while not only to show polynomiality but also to 
compare the running times somewhat closer. Here it turns out that the running 
t ime-- in a sense made more precise below--of  our algorithm is 1/d 2 of the 
algorithm of Applegate and Kannan. 
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To make our ideas more precise we need some notation and we must state 
how the convex bodies are given: Let E d denote the d-dimensional euclidean space 
and the set of all convex bodies---compact convex sets--in E d is denoted by ozcf d. 
e i denotes the ith canonical unit vector and, for a vector x e E d, the ith coordinate 
is denoted by x i. Further, I1"11 denotes the euclidean norm, I1"11~ denotes the 
maximum norm, and, for yl . . . . .  yd e E d, the determinant of the matrix with column 
vectors yl . . . . .  / is denoted by det(y 1 . . . . .  / ) .  Finally, L(y I . . . . .  3,/) denotes, for 
y~ . . . . .  / e E d, the linear space spanned by y~ . . . . .  yl. 

For  the description of a convex body K we adopt the oracle model as studied 
in detail in [GLS].  This means that a convex body K e X d is given by a So-called 
weak membership oracle WMEMO. This is a black box with the following 
properties: 

Given a point y e Qd and a positive rational number e e Q, the oracle answers 
that y e S(K, e) or that y ~ S(K, -- e), 

where S(K, e) = {x e Edl IIx -- Yll ~ ~ for some y e K} and 

s(I,:, - ~ )  = {x ~ EdlS(x, ~) c I,;}. 

Moreover, we must make the assumption that we have the following informa- 
tion about the convex body K, given by a WMEM0: two rational numbers R, 
r > 0 and a point a e Qa with S(a, r ) c  K = S(O, R). For simplification we may 
assume 

S(O, r) c K c S(O, R). (1.1) 

By using a special version of the ellipsoid method Yudin and Nemirovskii [YN], 
[GLS, p. 107] showed that there exist oracle-polynomial-time algorithms that 
solve the following problems for a convex body given by a WMEMO and (1.1): 

(1) The weak violation problem (WVIOL): 
Given a vector c e Qa and rational numbers 7, e, e > 0, either 
assert that crx  < ~, + e for all x e S(K, - e ) ,  or 
find a vector y e S(K, e) with cry  > 7 - e. 

(2) The weak optimization problem (WOPT): 
Given a vector c e Qd and a rational number e > 0, either 
find y e Qa such that y e S(K, e) and crx  <_ cry  + e for all x ~ S(K, - e ) ,  

o r  

assert that S(K, - e )  is empty. 

The result of Applegate and Kannan [AK] can now be stated as follows: Given 
a convex body K e ~f-a by a WMEMO and (1.1), a parallelepiped P and a simplex 
S can be found, such that S c K c P and V(P)/V(S) < d! 2d(1 + l/d2) a. Beside 
some elementary matrix operations the running time of this algorithm is domi- 
nated by at most 2d 3 ln(2dR/r) calls of the 
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Briefly our algorithm can be described in the following way: we construct a 
parallelepiped which contains the given convex body K and a polytope which is 
contained in K such that the volume of the parallelepiped is not greater than d! 
times the volume of the inscribed polytope. To do this we need 2d calls of the 
WOPT. Since we have no exact arithmetic our main result is 

Theorem 1. There exists an oracle-polynomial-time algorithm that, for a convex 
body K �9 3f rd given by a WMEMO and (1.1) and for every e > O, computes, by 2d 
calls of the WOPT, an upper bound V(K) and a lower bound V(K) of the volume of 
K such that 

17(K) 
< d ! ' ( 1  + e )  a. 

_V(K) - 

Let us remark, that to compute, for a convex body K �9 o~ d given by a WMEMO 
and (I.I), nontrivial upper and lower bounds of the volume by using the WOPT 
we need at least d + 1 calls of the WOPT: after d calls of the WOPT we have the 
information that K is contained in some unbounded polyhedron and contains d 
points, which lie in a suitable affine hyperplane. Together with (1.1) we only get 
upper and lower bounds which depend on the input data R, r. From this point 
of view the running time of our algorithm is best possible up to a factor 2. 

Further, the running time of our algori thm--measured in the number of calls 
of the WV I OL-- is  approximately lid 2 of that of Applegate and Kannan as pointed 
out in the third part of this paper where the proof of Theorem 1 is given. In the 
second part we describe our algorithm in a more geometric form. From this 
presentation we deduce our basic theoretical result (Theorem 2). As a theoretical 
application of our algorithm we get an inequality connecting the volume of a con- 
vex body and certain successive diameters and widths. This result is indicated at 
the end of the second part and is a special case of a series of inequalities concerning 
successive diameters and widths, which are described in more detail in [BH]. 

2. The Algorithm 

Geometric version. Let K ~ JK d. 

(1) Let cleEd\{O} and i =  1; 
(2) Find 2~, z~�9 K such that, for all x �9 K, 

(cl)r_z ~ _< (ci)rx <_ (c/)r~ i 

holds; 
(3) let y~ = f~ - zj; 
(4) if (i = d), then STOP; 
(5) find ei+le  Ed\{0} such that c g§ is orthogonal to L(y 1 . . . . .  yi); 
(6) l e t i = i + l ;  
(7) G O T O  (2). 
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Theorem 2. Let  c i, ~.~, z_ i, yi, 1 < i <_ d, satisfy: c i # 0, c i + t orthogonal to L(y t . . . . .  fi), 
~, z_ i ~ K such that (c/)r_fl < (c~)Tx < (Ci)r~ i for  all x ~ K ,  yi = ~.~ _ z i. Then 

Idet(y t . . . . .  ya)l 

d! 
<_ V(K) <_ Idet(y ~ . . . . .  ya)[. 

Proof. Let  P be the parallelepiped given by 

P = {xEEal(c ' )r f l<_ (ci)Tx <_ (ci)r2 i, 1 <_ i ~ d} 

and let C be the polytope  with vertices z_ t, ~ . . . . .  z d, ~d. We obviously have 
C c K c P and in the following we prove 

V(P) = Idet(y I . . . . .  ya)] and V(C) > [det(y t . . . . .  yd)l/d!. (2.1) 

This is done  by induction with respect to the dimension. Fo r  d = 1, (2.1) is 
trivial. Hence  we m a y  assume d >  2. Let H = { x e E a l ( y l ) r x  = 0} and let ~ ,  
z~ be the images of the points  ~i, z ~ under the or thogonal  projection onto H, 
1 _< i _< d. Applicat ion of  the Steiner symmetr iza t ion [BoF,  p. 69] to P and 
C with respect to the hyperplane  H gives convex bodies Ps, Cs with V(Cs) = V(C) 
and V ( P s ) =  V(P). 

By definition of  this symmetr iza t ion  Cs contains the polytope  with vertices 
-1 - , _ � 8 9  2 zv + �89 zv z v, z_ v . . . .  z_ v and hence we have 

~llly 1 
V(C) >_ '~" V(C; H), (2.2) 

d 

where C is the polytope with vertices -2 2 -a a z, ,  _zr . . . . .  zv, _z, and V(C; H) denotes the 
volume of C with respect to the euclidean space H. On  account  of the choice of 
the directions c i we have 

Ps={XeE"l ][Yt H2 2 <-- (Yl)Tx <-- [IY~ []2' (ci)Tz-iv <- (ci)TX < (-i'T~'i } - - - -  - -  _ , c )  v, 2 < i < d  

and thereby 

v ( e )  = Ilylll �9 v(P; n), (2.3) 

with P = {xenl(c')rz_~ < (c')rx < (c')r~, 2 < i < d}. Now the situation for P, C 
in the space H is the same as for P, C and hence the assertion follows from (2.2) 
and (2.3) by using the induction hypothesis. []  
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Remark. A first way to choose the directions c ~ from a theoretical point of  view 
is as follows: choose the c i in (1) and (5) such that the breadth in direction c ~ 
becomes minimal (maximal). If we do this it is easy to see that we can find ~, z i 
such that L(c I . . . . .  c i) = L ( y l  . . . . .  y i ) .  Further,  1121 - z ~ Iq gives the width (diameter) 
of the convex body and, for i = 2 . . . . .  d, the length of the projections of ~ - z i 
onto the or thogonal  complement  of L ( y  ~ . . . . .  yg) gives the width (diameter) of the 
projection of K onto this space. Thus we obtain upper and lower bounds for the 
volume with respect to the product  of "i terated" widths (diameters). This essenti- 
ally proves the main theorem in [BH]  for the case of projections. 

3. Proof of Theorem 1 

First we state the algorithm in its computat ional  form. 

Input:  A rational number  e > 0 and a convex body K �9 ~,~d given by a WMEM0 
and (1.1) 

Output: An upper bound 17(K) and a lower bound _F(K) of the volume of K with 
the property V ( K ) / V ( K )  <_ d! (1 + e) d. 

[1] Let 6 := min{r/3, er/(6 + e)}, ct := r/(r + ~), and 

( r 1 +  - ; 
f l := r ~ r 

[2] let c I :=  e 1 and i.'= 1; 
[3] find ~, z ~ �9 S(K,  6) such that, for all x �9 S(K,  - 6), 

(ci)Tz i --  6 ~ (ci)Tx ~_~ (ci)Tz i "~- 6 

holds; 
[4] Let y i :=  ~i _ _zi; 

[5] if (i = d), then 

cdldet(y 1 . . . . .  ya)l 
V ( K ) : =  and IT(K):= flaldet(y~ . . . . .  ya)l; 

d! 

STOP.  
[6] Find c i+ t �9 Qa such that c i§ i is or thogonal  to L(y 1 . . . . .  / )  and ]lc i+ 1Jl > 1; 
[7] l e t i : = i + l ;  
[8] G O T O  [3];  

P r o o f  o f  Theorem 1. First we study the correctness of the algorithm above. Since 
S(0, r ) c  K we have, by simple geometric arguments [r/(r + 6 ) ] x � 9  K for all 
x �9 S(K,  6) and [(r - 6) /r]x  �9 S(K,  - 6) for all x �9 K. Hence the polytope with 
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vertices O~L r l ,  ~Z__ 1 . . . . .  0~Z d, . z  a is contained in K. From (2.1), 

~d 
V(K) >__ ~. I d e t ( /  . . . . .  ya)[ (3.1) 

follows. On the other hand, we have, for all x e K, the relations 

r r 
- -  ( (c')rz_ ~ - a) < ( c ' f f  x < ( ( c i ) r e  ~ + a) ,  1 < i <_ el. 
r - 6  r - 6  

Since Ilc~ll ~ 1 and S(0, r - tS) c S(K, --6) we have (ci)r2 + 6 > r - 6 and (ci)rz - 
6 < 6 -  r, and hence the convex body K is contained in the parallelepiped 
[x  e Ed](ci)rflz i < (ci)rx < (ci)rfl~ i, 1 < i < d}. Again, from (2.1), we get 

V(K)  < fla. ]det(yl . . . . .  / )1 .  (3.2) 

On account of the choice of 6 we have, by (3.1) and (3.2), the bound 

V ( K ) / V ( K )  K d! (1 + e) a. 

Next we consider the running time of the algorithm. To this end let ( ) denote 
the numbers of bits needed to write down a rational object [GLS, p. 30]. The size 
of the input of the algorithm is (K,  e) = d + ( r )  + ( R )  + (e) .  Step [3] of the 
algorithm can be done with the WOPT in oracle polynomial time with respect to 
the input size d + ( r )  + ( R )  + (3 )  + (d ) .  The size of the output of the WOPT 
oracle depends on the precision needed by the WOPT to carry out its arithmetic 
operations. As pointed out in [GLS] the number of binary digits which are needed 
by the WOPT is a polynomial in d + ( r )  + ( R )  + (6 )  and hence a polynomial 
in (K,  e). This means that all the calculated points ~i, z i are of a fixed size and 
by using the well-known Gaussian elimination we can find, in polynomial time 
with respect to (K,  e), a vector c which is orthogonal to L(y* . . . . .  / ) .  In particular, 
the size of c is bounded by a polynomial in (K,  e). If we use a suitable 
normalization to get Ilcll -> 1, we see that we can find appropriate directions c ~ in 
polynomial time. Since the sizes of these directions are bounded by a polynomial 
in (K,  e), the running time of the WOPT is also bounded by a polynomial in 
(K,  e). So we have an oracle-polynomial-time algorithm. 

Remarks. (1) Using binary search it can easily be seen that each WOPT in step 
[3] of our algorithm can be solved by at most log2(31lcil]R/~) calls of the WVIOL. 
Hence, if we take the special normalization ]fcq[~ = 1 we obtain that the running 
time of our algorithm is dominated by at most 
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calls of the WV I OL. This shows that the running time of our  a lgor i thm--measured  
in the number  of  calls of  the WV I O L - - i s  approximately 1/d  2 of the running time 
of the algori thm of Applegate and Kannan.  

(2) If  we take, for example, as direction c ~+1, 1 < i < d - 1, the vector which 
is or thogonal  to L ( y  l, yi, e i+ 2 . . . .  e d) and satisfies i+ 1 = 1, we do not need to . . . ,  . Ci+ 1 
c o m p u t e  det(y 1 . . . . .  yd), since 

d 
Idet(y 1 . . . . .  Ya)I = 1-[ (c i ) ry  i" 

i=1 
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