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CORRECTION AND SUFPLEMENT TO
"ON A PULL-BACK DIAGRAM FOR ORTHODCX SEMIGROUPS®
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Communicated by M. Petrich

In my paper "On a pull-back diagram for orthodox se-
migroups" which appeared in Vol. 20(1980), 1-10, Corolla-
ry 2 is false and condition(C) in Theorem 3 is necessary
but far from sufficient. Corollary 4 is also false. The
present note contains counterexamples for the false state-
ments and a correct form of Theorem 3 and its Corollary 4.
As an apolication, we investigate which bands have the
property that condition (C) is sufficient for every in-
verse semigroup S

0. In this section we give counterexamples for Corol-
lary 2, Theorem 3 and Corollary 4 of the original paper.
Examples 1 and 2 are due to T. E. Hall (private communi -
cation).

EXAMPLE 1. Let E Dbe a non-trivial right zero semi-
group X with an adjoined identity. Then WE/T is iso-
morphic to the full permutation group on X , with an ad-
joined zero. Therefore the least idempotent separating ho-
momorphic image of WE/G is the two-element semilattice.
On the other hand, WE is fundamental, which shews that
the "only if" part of Corollary 2 is false.

The next example shows that condition (C) in Theo-
rem 3 of the original paper is not sufficient.

EXAMPLIE 2. Let Y Dbe the semilattice and E the
band with E ¥Y , given by the diagrams below:

. . £
‘\/1 e\.{\
T
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Y
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The lowest -class in E 1is a right zero semigroup. The
multiplication in E 1is uniquely determined. Denote by w
an isomorphism of B/® onto Y . Observe that S=ig 7,
is an inverse semigroup satisfying condition (C) in Theo-
rem 3. However, we claim that there is no orthodox semi-
group T with band of idempotents E and with greatest
inverse semigroup homomorphic image S

Suppose that such a T exists. Since the only iso-
morphism of {e) onto {f) in E is the mapping ® as-
signing f to e, h to h,1i to g, k¥ to j and
J to Xk , there is an element % and an inverse t of
t in T with @ g ® . Then ®th nt 1S the non-identi-
cal automorphism of {h), and so ht®h but htth in T.
Hence we obtain that the $-class of hg in T/5 has at
least two elements. On the other hand, we easily see that
S is combinatorial. This contradiction proves our claim.

Corollary 4 of the original paper is trivially false,
as condition (C) is not sufficient by the previous exam-
ple. The following examples show that conditions (1) and
(ii) are neither necessary nor sufficient even if w(c)n
is substituted by "(C) and (D)" in the statement of Cor-
ollary 4. Here (D) is the new condition in the corrected
form of Theorem 3 (see below).

EXANPLE 3. Let E be a band from Example 1 and let
S=Y=E/® . Then, clearly, we have T (S)U =Hp , and E
is properly contained in WE . However E is the unique
orthodox semigroup with band of idempotents E and great-
est inverse semigroup homomorphic image S=E/& . Thus (1)
is not necessary in Corollary 4 of the original paper.

Yote that if (i) is fulfilled for some E and S
then (ii) is necessary for uniqueness.

EXALPLE 4. Now let E be the band defined in Exam-
ple 2. %e will "stick" two semigroups to WE so that the
greatest inverse semigroup homomorphic images of the two
orthodox semigroups obtained are isomorphic to each other
and both have E as their bands of idempotents.

Let T and U be semigroups with a common subsemi-
group V=TnU and « a homomorphism of T onto V.

Suppose that V 1is an ideal in T and t\IV is identi-
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cal. We say that we stick U 1o T by means of X if

we conslder the underlying set TulU and extend the mul-
tiplications in T and U to 2UU by setting tu=(tx Ju
and ut:u(t'&) for t€T , ueU . This multiplication is
well defined since, by ascumption, if t€7T and vevV
then tv , vt €V and tv:(tv)o&=(tx)(v '\):(tf)\)v , Vt=
(vt)x:(vx)(tx):v(tx) . ¥e also have vu=(vo()u and
uv:u(vx) for every ve€V and ue€lU . One can easily see
that this multiplication is associative and so TuU is

a semigroup with this operation.

Note that this construction is a very special way of
embedding the semigroup amalgam [T,U;V] when no extra
elements are needed.

Now we give the semigroup which will be stuck to
WE . Let G be a group and N a normal subgroup of in-
dex 2 in G . Adjoir two right zero elements j and Xk
to G and define

j if g€NXN k if ge€eXN
je= and kg:{
k otherwise j otherwise

for every g in G . One can easily check that the
groupoid U(G,N) defined ir this manner is a semigroup.
Cbserve that XN= { g€ G: Jz=j3 } ={ ge€G: kg:k} . Therefore
U(g,x;)  is not isomorphic to ulG,x,) provided X; and
NZ are non-isomorphic normal subgroups of index 2 in G .
In particular, let G be the group of symmetries of
a square, Nl the subgroup of all rotations and Nz the
subgroup generated oy the reflections through the diago-
rals. Clearly, Ny 1is a cyclic group of order 4 and K,
is a four-group. Thus Nl and N2 are non-isomornhic
normal subgroups of index 2 in G , and hence U1=U(G,N1)
and U2=U(G,N2) are not isomovphic. Both U1 and U,
are orthodox semigroups with bands of idemnotents isomor-
phic to the subband <Jf> in E . loreover, a reflection
t through an axis of symmetry parallel to an edge of the
square is an element of order 2 belonging to G‘\KlL)Nz
whence we can easily see by definition that V=-{t,t2,j,k}
is a full orthodox subsemigroup in Ul and U2 as well,
and V 1is isomorphic to ﬂ(h} . Let us identify V with
313
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W<h> . Hence WEI\U1=#Er\U2=W<h> .
Define a mapping X of WE by restricting the nar-
tial isomorphisms of E +to <h> » more precisely, let
-1y -1 .
(9}(0(2, Ao, )X-—( ©nxh ¢ ®h°()£’ Ahyh(@hu )%7) . since
<h>o<s(h for every partial isomorphism & occurring
in the definition of WE y the mapping x is a homomor-

phism onto W S - Observe that W<h> is an ideal in W,
and q&|ﬂ<h> is clearly identical.
Now we are ready to stick U and U? to WE by

1 >
means oflx . Clearly, the semigroups Tl and

T ob-
tained in this way are orthodox semigroups with %ands of
idempotents E, and their greatest inverse semigroup homo-
morphic images are isomorphic to each other. It is not
difficult to see that Ty and T2 are not isomorphic.
For, if ¢ were an isomorphism of Tl onto T2 , then
we would have h@=h and hence UlQ =U2 , contradicting
the fact that U

band E and the common inverse semigroup homomorphic im-

1 and U2 are not isomorphic. Since the

age S of Tl and T2 satisfy conditions (i) and (i1)
of Corollary 4 in the original paper it follows that these

conditions are not sufficient either.

1. Before turning to the main point we make some re-
marks in connection with the result formulated in Section
1l of the original paper in the case when T 1ig an inverse
semigroup. The proof of the converse part is based on the
following observation. Let T be an inverse semigroup
with semilattice of idempotents ¥ and @ an idemvotent
separating congruence on T . Define G to be the union
of the idempotent @-classes. 0learly, G 1s a semilattice
Y of groups G ( xg¥) where o is the identity in
Gy - The set X= {xse T seT/@ y X @ =s} is termed a
cross-section of §>-classes provided x.x -1=x_.-1 for

every s in Tﬁg . One can easily verify that there ex-
ists a cross-section of Q-classes in T and every cross-
section has the property that xy=o for each  in ¥
and xs-1=x;l for each s in T/9 . Given a cross-sec-
tion X of @-classes we can define a (T/e ,G)-pair h,X

as follows:
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ghg=x,-18x;  and Xs,5™% (s5)-1%s¥5
for every s,s in /9 and g in G . Furthermore, the
mapping (@ 9(5[‘/9 »Gsh,x) — T assigning xg& to the
pair (s,g) is an onto isomorphism which will be called
the canonical isomorphism determined by the cross-section
X .

If we choose another cross-section Xx={x:e Ts
seT/g R ng)us} then, for every & in T/g) , there ex-
ists an element gy in Gs'ls such that x:=xsgs. By
definition, we have gs_1=g;]‘ for every s in T/@ .
Put 9: {gs: sel/Q} and call it a translational basis
for T/Q and G . Clearly, given a cross-section X=
={xse T seT/Q , x89=s} and a set (a‘.= {gse(}s_ls:
seT/e} with gs_1=g; for every seT/@ , we can de=-
fine a new cross-section Xx={xsgs: se T/QS such that

is the translational basis for T/? and G corres-~
ponding to X and X® . The (T/g) ,G)-pair corresponding
to the cross-section X® is (h)g’ , (7()9 defined by

(h)i:hs wgs and (K)g,§=g;%°(s,§(gsh§) gs

for every 8,8 in T/@ where Gy is used to mean the
inner endomorphism of G defined by g in G , that is,
g1 ugag—lglg for each g; in G .
By a trivial (T/@ ,G)-pair we mean a (T/@ ,G)-pair
h,x such that xs,?e(ss) for every s,8 in T/@ .
In the proof of Theorem 3 we need the following lemma.

LEMMA 2, For i=1,2, let Ti be an inverse semigroup
and an idempotent separating congruence on it. Let
A S - i -
Xi-{x%. 8€T,/ Qs x% Qi=s} De a cross-section of @,
classes. Denote by G, 1the union of idempotent Q;-class-
es and by Y, '7((1) the (7,/¢@Q;,G;) -pair determined by X;.
Assume that & 1is an isomorphism of Tl/ @, onto Tz/@z.
Then, if is a homomorphism [isomorphism] of T, in-

to [onte] T, such that xa's)qutg) for every s in T;/0)
then (= ¢TG1 is a homomorphism [isomorphigg] of G
into [onto] G, with the property that

(1) h%’({;:(ph%)& for every s in T,/¢, , and
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(1) 2) , -
(ii) s, 59X sd,59 for each pair s,s in Tl/?l'
Conversely, if ¢ is a homomorphism [isomorphism] of Gl
into [onto] G such that (i) and (ii) are satisfied
then the ma 1n ¢$ of T, into [onto] T, defined by
sg)(b s&g g (g€ _18) is a homomorphism [isomorphism].
Clearly, separates idempotents.
One can verify this lemma by a straightforward cal-
culation, Therefore it is left to the reader.

For brevity, we) say) that & and ¢ commute with the
- 08 2) (@)
(Tl/g)l,cl) pair }p',')( and the (1,/¢ »1Gy)~pair 1 ,9((
if conditions (i) and (ii) in Lemma 2 are satisfied., If &
is the identity automorphism then we simply say that ¢

commutes with ﬂl),g\(l) and h(2) x(2)

2. Now we turn to M. Yamada’s problems. The reader
is assumed to be familiar with the original paper. Defi-
nitions, notations and arguments are not repeated here.
Before establishing the correct form of Theorem 3 we make
several remarks which will be applied in the proof.

The kernel of the homomorphism ¢, is an inverse
semigroup congruence on WE but not the least one in ge-
neral. Let y be the least inverse semigroup congruence
on WE . Then there exists a unique homomorphism w),, of

E/T igto TY such that U‘“wv- %}, . Obviously,
wyow:) is the greatest idempotent separating congru-
ence on WE/'U as TY is fundamental. The latter obser-
vation makes it possible to consider WE/5 as an idempo-
tent separating extension of ‘JIE T, . By Section 1, there
exists a canonical isomorphism ¢,, of 9’(NE Do ;?1',8()
onto Wg/y  with ty,w, the first projection where

¢ is the union of the idempotent w,0 w;l-classes and
ﬁ,&‘( is the (WE ,&)-pair defined by a cross-section
X={x3.. s € W7, y Xg wy =6} . Here G is a semilat-
tice Y of groups '53( (xe€¥) . It is not difficult to
show that, up to isomorphism, E& is just the group

Aut g {e> of all automorphisms of {e) preserving -
classes where eeEa . One has to check only that an iso-
morphism of 66( onto Aut°g<e> is defined by assigning
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@) (@lced) to (9gmy, Apwy e, . In

what follows, for every ® in T , we choose and fix an
s : ~ 3

element e, in Eg and identify Gg with Aut g {es>

under this isomorphism. Note that the structure homomor-

phisms of 8= U_ xe¥ E are P&’ﬁ (& 2 (’5) defined by

8 T, =@l <o) (BIENO, 1 <oy o 0>)

for all g in E& where f=(eaeﬁ es()g"1 .

Observe that if a full orthodox subsemigroup 'NO of
Wp is considered then w = w),lw /9, is the unique
homomorphism of Wo/rzfo onto To onv such that qu =
=v, where T =7, | 4, and g is used to mean Y| ¥
which is the least inverse semigroup congruence on wo
Moreover, woowgl is the greatest idempotent separating
congruence on wo/'U o ° Thus, if 3&0 is a cross-section
of w0 uo;l-classes then there exists a canonical isomor-
phism (¢ of (TO,GO :hO, S'Qo) onto W /?f , determined
by io where T is a subsemigroup in f‘x and hO %0
is the (.L ’ )—palr defined by X . Clearly, we have lo=
gl,v‘ff(To,Go 1°,%%) provided XO— _{ Xs, c¥X ee T,y and
X c W /'5 o *

According to the identification of G& with
Aut o Ce > , the definition of a (T, G°)-pair #°, 5{0 de-
‘cermlned by a cross-section X can be modified as fol-
lows. Let W e {VeW e,f (963*{ » AR 1)6‘\‘1 } for
each pair e, f in E and let #°= U{Ve PR ,f€E} .
Assume that S ={é\ : el § where ergw

with the property that (e «p -1B &, -1 0(»_1)6 < Ed‘cy-l
for every & in Y with J=<x ©provided € €T .
Moreover, we require that & é“1= 6‘/6}1 for all € ' in
To . Under these conditions, X is termed a T -szstem
of E over p . Clearly, if Z.C_W then 2’ %%

¥ € T} where '3'(% =(?e5-< 61’ R Ae/é - )0« prov1ded

-1

QQZ nw _ is a cross=-section of woomo ~classes,

A -1
One has to observe only that X w = (93& Q) o Aeﬂ &,

is just & . Conversely, a straightforward calculation
54 ~O . -
shows that if z{o={xe 1 6T, x w,=6Y is a cross
317
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section of woow;l—classes then we obtain a 7T -system of
E over v with I <W’® by defining 3 = ={ Q ¥e To}

where & = (Qf | <e..>) (@e_ ] {&>) provided x:, =

‘(91‘%"2 a 6-1)5 and feE& s £E€BEx . One can imme-

s ~0 ~ l\ -1
diately verlfy that Xe =(?ea 6, > Ae/-g r )U . Hence we

infer that the cross-section determined by 3 according to
the above definition is just ﬁ . Thus there is a one-to-
one correspondence between the T -systems J of E over
v with I <Ww° and the cross- sectlons of woow
classes. Hence we can work with a(T ﬁ ) ~pair defined by
a T -system of E over contalned in W% instead of
a (To,ﬁo)-pair defined by a cross-section of o wgl—
classes, Given a T -system J of E over » with
3w, the (2,8 -pair %°, /XO determined by I is
defined in the following way: if e T ’ eeT -

X, 5 >, p
and ggﬁg then

ghy = (0,1 de( gy o »-10) (B7HI<LD) (@1 8™ .
(8143 (@ 1<3g)) (8 1<k>) (®e(“d)w_l| k&),

. : . A=l
where i=e Ay -1% (« d’)e*v‘le/by-l , J=e Ju_l(lé )eé'v‘l’

k=e oW _1(Jg)e“ v -1 and

3{3’,5 (6‘6') (® \<e(o(/5)@f—l>,-l>)(6 ‘<1>)

.<@jx<1e>><% | i) (9, 185

)G»‘l) R
where 1i=e  ,, -1€ (&3)6 -1p-1% =1 » j=e gy,-1(i6) ez 7.
Observe that Wo can be recobtained by means of
and X as follows. Consider the canonical isomorphism
t, of ¥z ,&; %o Q ) into ¥ /y determined by I .
Here 1%, 'o‘(o ies the (T, G)-pair deflned by X . Let
wW@e,3)= 9’(1‘ ,G° T{O,o&o)[ (6*1) . Clearly, we have
ay _%(G yZ) .
Note that if TOS. WE ’b‘y ’
and 2 is a T ~svstem of E over » such that the
("‘ ,8)-pair RO, %0 defined by X possesses the proper-
ty that G°R% €G° and xe. -~ e G° for every &,6 in
T, then h°,a"\ is a (TO,Gb) -pair and wo=W('6°,z) is

~
% is a subsemigroup in G
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a full orthodox subsemigroup in WE .
THEOREM 3. Let S be an inverse semigroup with semi-
lattice of idempotents Y and let E be a band which is
a semilattice ¥ of rectangular bands Eg (% € Y). De-
note by & the Munn homomorphism of S onto Ty(S).
For every « in Y , let G, stand for the %o{-_l-
class containing « . Their union G is a semilattice Y
of groups G (x&Y). Consider the (Ty(S),G)-pair h, &
defined by a cross-section X of & o%'l-classes. More-
over, for every & in Y , let us choose and fix an ele~
ment e, in E. and denote by 5& the group of all
automorphisms of <ea> preserving B -classes. Equip
their union & with a multiplication defined by means of
the structure homomorphisms r‘&,fb (& 2 {—5) which let
¢ become a semilattice Y of groups Gg (Xe¥). Then
there exists an orthodox semigroup T with band of idem-
potents E and with greatest inverse semigroup homomor-
phic image S if and only if there exists an isomorphism
v of Y onto Y such that
(C) for every s in S , there exist elements e in

E(ss‘l)v"l y f in E(s‘ls)y‘l and g._x_lisomorghism'&‘

<
of eBe onto fEf such that (eEai)ﬁ""E(s-l(ap)s)»—l
for each ® in Y with &< (ss~1)»-1, and
(D) there exists a Ty(S)-system 3. of E over » and
a homomorphism ¢ of G into € such that G, 9s

=t «y-1 for every o« in Y and commutes

with the (Ty(S),&)-pair h,x and the (Ty(5),Gg) -

pair 'ﬁ°,%'\ defined by X .

REMARK. One can immediately see that condition (C) is
equivalent to the inclusion TY(S)SWE ¥, and it is equi-
valent to requiring the existence of a TY(S)-system of E
over ¥ . The latter fact means that condition {c) is
impliecit in (D) .

Proof. Let T be an orthodox semigroup with band
of idempotents E and greatest inverse semigroup homomor-
phic image S . The necessity of (C)is verified as in the
original paper. Denote by ¥ the least inverse semigroup

congruence on WE and by Wy, the unique homomorphism
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of Wg/y into Ty with the property that g%, =2,
Let qgo=gyle(T) and = w,, | ¥g(T)/ 5 . Since W (T)
is a full orthodox subsemigroup in wE therefore To

is the least inverse semigroup congruence on WE(T) and
w, is the unique homomorphism of WE(T)/’FQ onto TY(S)
such that fggouos T, - Now we define a homomorphism Y

Y

-

T AT (1) W/
Iy 6?) %o A &
T We(T)e W

of S onto WE(T)/'ZSO such that m =2 'Uh and W, =
=& . Let swy=ty g2 for every s in S where t is
an element in T with t'r)as . Since both S and
WE(T)/'UO are inverse semigroups and n o'r)-l is the
least inverse semigroup congruence on T the definition
of is independent of the choice of t . It can be
immediately checked that ~y 1is a homomorphism and it is
onto as both & and 753 are. The equality »ma =2 75%
holds by definition, On the other hand, we have s Y, -
=tz '55‘ W,=tL ¢ =t mz=sZ for every s in S where
teT with t7n=s . Thus equality Y W, =2 1s also ver-
ified, Let 5 Dbe the T (S) system of E over vy cor-
responding to the cross- section % -Xr\}/ Putting «
for & in Lemma 2, we infer the necessity of condition(D).
In order to prove sufficiency, suppose that there
exists an isomorphism » of Y onto Y such that (C)
and (D) are fulfilled. Consider the full orthodox subsemi-
group W =U(G¢y,3) in Wgp . Let g = alw and define
a mapping Ay of S onto W /rls'o by (xs. g):\y-xe gy
where GGC["\Y(S)(\T b xGeX , gGGﬂ, and x%:=
=(?e°‘»_1@!‘,g s -1 r)?f « By Lemma 2, ny 1is an

idempotent separating homomorphism. By applying Theorem 1,
we obtain an orthodox semigroup T and homomorphisms ”
and 2 of T onto S8 and Wo , respectively, such
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that 07007'1 is the least inverse semigroup congruence
and 4<)§—l is the greatest idempotent separating con-
gruence on T , Thus the band of idempotents in T is i-
somorphic to E and S 1is the greatest inverse semigroup
homomorphic image of T which completes the proof of the
theorem.

As an application, we can easily answer the question
which bands have the property that condition (C) is suffi-
cient for every inverse semigroup S .

COROLLARY 4a. Let a band E Dbe given which is a se-~
milattice Y of rectangular bands. For every inverse se-
migroup S with semilattice of idempotents Y which sat-
isfies condition (C), there exists an orthodox semigroup
with band of idempotents E and greatest inverse semi-
group homomorphic image S 1if and only if there exists
an isomorphism » of Y onto Y and a W, -system
5 of E over » which defines a trivial (Wp?, ,0)-

pair or, equivalently, for every isomorphism » of

Y
onto Y there exists a Wy %, 1~xstem 2 of E ogver v
which defines a trivial (wE ', ,G)=pair.

Proof. Suppose first that, for every inverse semi-
group S satisfying condition (C), there exists an ortho-
dox semigroup with the required properties. Then, in par-
ticular, there exists an orthodox semigroup T with band
of idempotents E and greatest inverse semigroup homo-

morphic image WE Qrvo where Yo ig an isomorphism of

¥ onto Y . Since W, ¢, is fundamental the necessity
o

of condition (D) in Theorem 3 implies that there exists an

isomorphism p of Y onto Y and a WE @v -system J.
0

of E over y which defines a trivial (¥g LY ,G)-pair.
0

-1
Observe that Tboo tJ”o

just the greatest congruence on WE with the property

= 7,0 ’b'):l as each of them is

that its restriction to E is & . Moreover, we have
A [ A . .
(Qe& Sy S\efg & )z"v-e for every 6 in J provid-

ed %ewe o . Thus 2. can be considered to be a
& 53
WE‘vv ~system of E over vo . This completes the proof
0

321



SZENDREI

of the "only if" part.

Conversely, assume that there exists » and J
with the required properties. Then, for every inverse se-
migroup S , the homomorphism ¢ assigning the identity
of Eo(»“‘l to all elements in Gy and the TY(S)-system
Zo={ 6ci: ec TY(S)} satisfy condition (D). Thus The-
orem 3 implies the "if part", too.

As far as the problem of uniqueness is concerned we
can formulate the following assertion.

COROLLARY 4b. Let S be an inverse semigroup with
semilattice of idempotents Y and let E be a band which

is a semilattice Y of rectangular bands Eg (xe?).
Define G,h,x and G as in Theorem 3. Suppose that con-
ditions (C) and (D) are fulfilled. Then the orthodox semi-
group with band of idempotents E and greatest inverse
semigroup homomorphic image S 1is unique up to isomorphism

if and only if the following is satisfied: whenever v
(i=1,2) is an isomorphism of ¥ omto Y , ¢, (i=1,2) is

a homomorphism of G into G and 3 (1=1,2) is a 7,(5)-
system of E over ¥; such that the triple vi,gpi,zi
(i=1,2) fulfils conditioh (D) then there exist automorphisms
£,& and ® of Y, E and G , respectively, such that

€ induces an automorphism & of TY(S) , € 1induces
an isomorphism  of Gy, onto Ge¢, , the equality
®Pq=(,p holds and ¥ and ot commute with h,x

and (h)¥ , (x)9  where ¢ 1is a translational basis for
Ty(S) and G with the property that g(f’l is the trans-
lational basis for TY(S) and G, corresponding to 7

and 2.32. Here _ZZ is used to mean the Ty(S)-system of

E induced from 3, by g .
Proof. Assume that the triple v, (Fi’zi (i=1,2)
fulfils condition (D). By means of the triple »;,¢;,

Zi (i=1,2), construct the idempotent separating homomor-

phism v, of S onto wi/'bﬂi where Wis@(f(Ggpi,Ii) and Wi"ﬁm

and construct an orthodox semigroup Ti with homomorphisms
”71 and & i as in the proof of sufficiency in Theorem 3.
In order to prove necessity suppose that the orthodox se-
migroup with band of idempotents E and greatest inverse

322



SZENDREI

gemigroup homomorphic image S is unique up to isomor~

phism. In this case, there exists an isomorphism AT of
T2 onto Tl « It is easily seen that AT determines an
automorphier{ AS of S ior which we have ATr)l= Mo As
as m,07m7~ and 7,07," are the least inverse semi-

group congruences on Tl and T2 , Tespectively., Let &=
= AglY and E= AplE . Clearly, ¢ and & induce an au-
tomorphism A~ of TY(S) and an isomorphism A, of W,

s S (8)
@, Y
’\Yl\»\w /1/”
71

/31

As . /‘ \
) z; F
S Fel y/l‘ v(s)
72 %

2/ J2

17/

2 4‘2

onto W, , respectively. The equalities }\S§=;§& and
A Tglsgzxw are immediately deduced. Moreover, Aw det-
ermines an isomorphism A of w2/'62 onto Wl/'g 1 with
H L}
ﬁwwln '62;\ since g, and g, are the least inverse
semigroup congruences on Wl and Wz ’ respectively. Then
we have 1, Ag¥1= Ap '71“1’1' Apgi B1= 52 Ay Ti=50 Y3 A=
= 072\y2 whence we infer S'Yl '\|/2 as 1M, is onto.
Similarly, since Yo is also onto the equalities
oA W= Agy W =Agg=s T =y, W, @ imply  Adwi=w,Y .
By applying Lemma 2 for As and A and taking into
consideration the equalities AS'Yl"YzA and A W=
=w,N , we see that e=AglY , E=2glE, m=AglG and
the translational basis g for TY(S) and G corres-
ponding to X and XAS satisfy the conditions required
which proves necessity.
Conversely, now assume that there exist E, & , x
and g with the properties formulated in Corollary 4b,
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Then, by Lemma 2, we obtain an automorphism AS of S
with 'ASZ--{%' and an isomorphism A of W,/g, on-
to Wy/yy with Acul-oszﬁ‘ such that the equality

A sVY1™ fYZA is valid. Moreover, the automorphism of WE
induced by & maps W2 onto Wl , that is, & 1induces
an isomorphism AW’ of W2 onto Wl . One can easily see
that Awtﬁgs-U;J\ . Thus we obtain that both of the pairs
of mappings %, ,%, and ’72AS ":ZAW are pull-
backs of the homomorphisms v, and ¥3 - Therefore The-
orem 1 implies Tl and T2 to be isomorphic which com-
pletes the proof of the Corollary.

Note that the isomorphism problem of Hall-Yamada se-
migroups was solved by T, E. Hall (private communication)
ags follows: Let S , S* be inverse semigroups, E , E’
bands and {p:S —>IE/6 , q':S’-a»WE,/g" idempotent
separating homomorphisms whose ranges contain all the idem-
potents of WE/U and WE,/E" , respectively. Then
H(S,E,¢) and #H(S’,E’,(p’) are isomorphic to each
other if and only if there exist isomorphisms & of S
onto S; and ﬁ of E onto E’ such that we have ’=
= u'lq7ﬂ where z is the unique isomorphism of WE/6 onto
WE,/ '6" that makes the diagram

A

p >

”»

WEF WE,
¥ }o
VIE/B‘)—————ﬁ———»— WE,/ ,K- ’
commute. Here /?, is the unique isomorphism of WE onto
W5, extending nHo.

The author expresses her thanks to T. E. Hall for
calling her attention to the error in the original paper
and to the paper by Takizawa entitled "Orthodox semigroups
and E-unitary regular semigroups (Bull. Tokyo Gakugei Univ.
ser, IV. 31(1979), 41-43.) where the result formulated in
Theorém 5 in the original paper is independently proved.
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