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R E S E A R C H  A R T I C L E  

CORRECTION AND SUPPLEEENT TO 

"ON A PULL-BACK DIAGRAI~ FOR ORTHODOX SEIIIGROUPS" 

M~ria B. Szendrei 

Communicated by E. Petrich 

In my paper "On a pull-back diagram for orthodox se- 
migroups" which appeared in Vol. 20[1980), 1-10, Corolla- 
ry 2 is false and condition(C) in Theorem 3 is necessary 
but far from sufficient. Corollary 4 is also false. The 
present note contains counterexamples for the false state- 
ments and a correct form of Theorem 3 and its Corollary 4. 
As an application, we investigate which bands have the 
property that condition (C) is sufficient for every in- 
verse semigroup S 

0. In this section we give counterexamples for Corol- 

lary 2, Theorem 3 and Corollary 4 of the original paper. 

Examples 1 and 2 are due to T. E. Hall (private communi- 

cation). 

EXAMPLE 1. Let E be a non-trivial right zero semi- 

group X with an adjoined identity. Then ~E/~ is iso- 

morphic to the full permutation group on X , with an ad- 

joined zero. Therefore the least idempotent separating ho- 

momorphic image of WE/~ is the two-element semilattice. 

On the other hand, W E is fundamental, which shews that 

the "only if" part of Corollary 2 is false. 

The next example shows that condition (C) in Theo- 

rem 3 of the original paper is not sufficient. 

EXAMPLE 2. Let Y be the semilattice and E the 

band with E~ ~Y , given by the diagrams below: 

e .  ~  
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The lowest ~-class in E is a right zero semigroup. The 

multiplication in E is uniquely determined. Denote by 

an isomorphism of E/~ onto Y . Observe that S=~E~ ~ 

is an inverse semigroup satisfying condition (C) in Theo- 

rem 3. However, we claim that there is no orthodox semi- 

group T with band of idempotents E and with greatest 

inverse semigroup homomorphic image S 

Suppose that such a T exists. Since the only iso- 

morphism of (e~ onto ~f~ in E is the mapping ~ as- 

signing f to e , h to h , i to g , k to j and 

j to k , there is an element t and an inverse ~ of 

t in T with @ts, t = ~ . Then ~h,ht_ is the non-identi- 

cal automorphism of ~hT, and so ht~h but ht~h in T. 

Hence we obtain that the ~-class of h~ in T/~ has at 

least two elements. On the other hand, we easily see that 

S is combinatorial. This contradiction proves our claim. 

Corollary 4 of the original paper is trivially false, 

as condition (C) is not sufficient by the previous exam- 

ple. The following examples show that conditions (i) and 

(ii) are neither necessary nor sufficient even if "(C)" 

is substituted by "(C) and (D)" in the statement of Cor- 

ollary 4. Here (D) is the new condition in the corrected 

form of Theorem 3 (see below). 

E XAr~PLE ~. Let E be a band from Example 1 and let 

S=Y=E/~ . Then, clearly, we have Ty(S)~l=~ E , and E 

is properly contained in W E . However, E is the unique 

orthodox semigroup with band of idempotents E and great- 

est inverse semigroup homomorphic image S=E/~ Thus (1) 

is not necessary in Corollary 4 of the original paper. 

Note that if (i) is fulfilled for some E and S 

then (ii) is necessary for uniqueness. 

EXA~.~PLE 4. Now let E be the band defined in Exam- 

ple 2. ~e will "stick" two semigroups to W E so that the 

greatest inverse semigroup homomorphic images of the two 

orthodox semigroups obtained are isomorphic to each other 

and both have E as their bands of idempotents. 

Let T and U be semigroups with a common subsemi- 

group V=T n U and ~ a homomorphism of T onto V . 

Suppose that V is an ideal in T and ~IV is identi- 
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cal. We say that we stick U t__o T b/ means of ~ if 

we consider the underlying set T UU and extend the ~ul- 

tiplications in T and U to TuU by ~etting tu=(t~ )u 

and ut=u(t ~.) for t~T , ueU This multiplication is 

well defined since, by assumption, if tE T and vEV 

then tv , vt ~V and tv=(tv)~=(t~)(v~)=(t~)v , vt= 

(vt)~=(v~)(t~)=v(t~) ,~e also have vu=(v~)u and 

uv=u(v~ ) for every v~V and u~U One can easil~ see 

that this multiplication is associative and so T uU is 

a semigroup with this operation. 

Note that this construction is a very special way of 

embedding the semigroup amalgam [T,U;V] when no extra 

elements are needed. 

Now we give the semigroup which will be stuck to 

W E Let G be a group and N a normal subgroup of in- 

dex 2 in G . Adjoin two right zero elements j and k 

to G and define 

j if gEN s if g~N 
jg= and kg= 

k otherwise j otherwise 

for every g in G . One can easily check that the 

groupoid U(G,N) defined in this manner is a semigroup. 

Observe that N={g@C: jg=j} =~ g~G: kg=k} . Therefore 

U(G,N l) is not isomorphic to U(G,~ 2) provided N 1 and 

E 2 are non-isomorphic normal subgroups of index 2 in G 

In particular, let G be the group of sym~uetries of 

a square, N 1 the subgroup of all rotations and N 2 the 

subgroup generated by the reflections through the diago- 

nals. Clearly, N 1 is a cyclic group of oraer 4 and tT 2 

is a four-~roup. Thus N ! and ~2 are non-iso~orohic 

normal subgroups of index 2 in G , and hence U~=U(G,~ l) 

and U2=U(G,N 2) are not isomo1'phic. Both U 1 and U 2 

are orthodox semigroups with bands of idemootents isomor- 

ohlc to the subband ~h> in E ~!oreover, a reflection 

t through an axis of symmetry parallel to an edge of the 

square is an element of order 2 belonging to C\~lU~,2 

whence we can easily see by definition that V={t,t2,j,k~ 

is a full orthodox subsemigroup in U 1 and U 2 as well, 

and V is isomorphic to ~<h> " Let us identify V with 
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W<h > . Hence ~E~UI=~E~U2=~<h> . 
Define a mapping ~ of ~E by restricting the nar- 

tial iso~orphisms of E to <h> , more precisely, let 

(~x~, ~. ~i)~=( ~hxh ( ~h~)~, ~hyh(Sh ~ )~i) . Since 

<h>~<h~ for every ~partial isomorphism ~ occurring 

in the definition of 'H E , the mapping ~ is a homomor- 

phism onto W<h > . Observe that "J<h> is an ideal in W~ 

and %1 ~<h> is clearly identical. 

Now we are ready to stick U 1 and U 2 to W E by 

means of ~ . Clearly, the semigroups T 1 and T 2 ob- 

tained in this way are orthodox semigroups with bands of 

idempotents E, and their greatest inverse semigroup homo- 

morphic images are isomorphic to each other. It is not 

difficult to see that T 1 and T 2 are not iso~orphic. 

For, if ~ were an isomorphism of T 1 onto T 2 , then 

we would have h~=h and hence UI~ =U 2 , contradicting 

the fact that U 1 and U 2 are not isomorphic. Since the 

band E and the common inverse semigroup homomorphio im- 

age S of T 1 and T 2 satisfy conditions (i) and (ii) 

of Corollary 4 in the original paper it follows that these 

conditions are not sufficient either. 

i. Before turnin~ to the main point we make some re- 

marks in connection with the result formulated in Section 

I of the original paper in the case when T is an inverse 

semigroup. The proof of the converse part is based on the 

following observation. Let T be an inverse semigroup 

with semilattice of idempotents Y and ~ an idempotent 

separating congruence on T . Define G to be the union 

of the idempotent v-classes. Clearly, G is a semilattice 

Y of groups G ~ (~gY) where ~ is the identity in 

G~. The set X= ~x s@ T: sGT/~__ , Xs~ =s~ is termed a 

cross-section o_.ff ~-classes provided XsXs_l=Xss-1 for 

s in T/~ One can easily verify that there ex- every 

ists a cross-section of ~-classes in T and every cross- 

section has the property that xa=~ for each ~ in Y 

and Xs.l=x~l~ for each s in T/~_ Given a cross-sec- 

tion X of ~-classes we can define a (T/~ ,G)-pair h,~ 

as follows: 
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ghs=Xs_Igx s and ~s, ~=x (ms)-iXsX~ 

for every s,s in T/~ and g in G . Furthermore, the 

mapping s : ~[T/~ ,G;h,~) -, T assigning Xsg to the 

pair (s,g) is an onto isomorphism which will be called 

the canonical isomorphism determined b_~ the cross-section 

X . 

If we choose another cross-section X ~={ X~s~T: 

s~T/~ , X~s~=S} then, for every s in T/~ , there ex- 

s-Xsgs. By Ists an element gs in Gszls such that x ~- 

definition, we have gs_l=gs for every s in T/9 . 

Put 9 = { gs: s ~ T/~ } and call it a translational basis 

for T/9 and G. Clearly, given a cross-section X= 

= {x sg T: sgT/~ , Xs~O=s} and a set 9 = {gs ~Gs-ls: 
sgT/~ } with gs_l=gs I for every s~T/? , we can de- 

fine a new cross-section X ~--{xsgs: ss T/~ such that 

is the translational basis for T/~ and G corres- 

ponding to X and X ~ . The (T/~ ,G)-palr corresponding 

to the cross-section X ~ is (h)~ , (~)~ defined by 

=-l 
(h)~s=hs (~gs and [~)s,~ gs~s,~(gsh~)g~ 

for every s,~ in T/~ where ~g is used to mean the 

inner endomorphism of G defined by g in G , that is, 

gl b~g=g-lgl g for each gl in G . 

By a ~rivial ~T/~ ,G)-pair we mean a (T/~ ,G)-pair 

h,~ such that ~s,~=~(s~) for every s,s in T/~ . 

In the proof of Theorem 3 we need the following lemma. 

LEMMA 2. For i=l,2, let T i be an inverse semigroup 

and Q~ a_.n.n idempotent separating congruence on it. Let 

Xi= {~: ss , ~s)~i=s} be a cross-section o_~f ~i- 

classes. Denote by G i the union of idempotent ~i-class- 

e_~s and by ~i), ~(i) the (Ti/~i,Gi)_pai r determined by X i. 

Assume that ~ i_~s a.n.n isomorphism o_~f TI/~I ont___.~o T2/~ 2" 
_Then, i_~f ~ is a homomorph.i.sm [isomorphism] o~f T 1 i n- 

t._o [onto] T2 such that ~s)~=~s ) for every s i_~n T1/~l 
then ~=~|G 1 i_ss a homomorPhism [isomorphism] of G 1 

imt..._.oo [onto] G 2 with the property that 

(i) h~s)~=' h e) for every s in TI/~ 1 and T s~ ' 
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~s,~ ,~ for each pair s,s in T1/~l. 

Conversely, if ~ is ~ homomorphism [isomorphism] of G 1 

in%o [onto] G 2 such that (i) and (ii) are satisfied 

then the magping ~ of T 1 into [on t0] T 2 defined by 

Clearly , ~ separates idempotents. 

One can verify this lemma by a straightforward cal- 

culation. Therefore it is left to the reader. 

For brevity, we say that ~ and ~ commute with the 

(Tl/~l,G1)_Pai r ~l),~(1) and the IT2/~ 2,G2)-palr ~2~ ~(2) 
if conditions (1) and (ii) in Lemma 2 are satisfied. If 

is the identity automorphism then we simply say that 

commutes with ~i), ~(i) and h~ ~(2) . 

2. Now we turn to M. Yamada's problems. The reader 

is assumed to be familiar with the original paper. Defi- 

nitions, notations and arguments are not repeated here. 

Before establishing the correct form of Theorem 3 we make 

several remarks which will be applied in the proof. 

The kernel of the homomorphism ~ is an inverse 

semigroup congruence on W E but not the least one in ge- 

neral. Let ~ be the least inverse semigroup congruence 

on W E . Then there exists a unique homomorphism ~o~ of 

WE/~ into Ty such that ~q00~=~ . Obviously, 

oJ~o~o "l is the greatest idempotent separating congru- 

ence on WE/~ as Ty is fundamental. The latter obser- 

vation makes it possible to consider WE/~ as an idempo- 

tent separating extension of WE~ ~ . By Section l, there 

exists a canonical isomorphism C~ of ~(WE~,G;h, ~) 

onto WE/~ with ~aJ~ tbJB first projection where 

is the union of the idempotent Oo~ooo~l-classes and 

~,~ is the (WE~ ~ ,~)-palr defined by a cross-section 

X={~: ~e WE~ ~ , ~OD~ =~ . Here ~ is a semilat- 

tlce ~ of groups ~ (~ flY) . it is not difficult to 

show that, up to isomorphism, ~ is just the group 

Auto(e> of all automorphisms of <e> preserving ~- 

classes where e e E~ . One has to check only that an iso- 

morphism of ~ onto Auto<e> is defined by assigning 
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(~f[<e>)~(~e]<g>) to (~f~, ~g~rl)~ ~ ~ . In 
what follows, for every ~ in ~ , we choose and fix an 

element e~ in E ~ and identify G~( with Aut~ ~e~> 

under this isomorphism. Note that the structure homomor- 

phisms of ~= ~J[~y ~ are [~,~ ~(_> ~) defined by 

g P~( ,/B =('~fl<e/~ "~) (gl<fb)(@e/ll~/e~ e/~ e >)  
I%, 

for all g in G~ where f=(e~e~ e )g-I 

Observe that if a full orthodox subsemigroup ~o of 

W E is considered then COo-- cO2 I Wo/~ o is the unique 
=W homomorphism of Wo/~o onto T o o~p such that ~4o60o= 

=Z~ o where Z~o= T~ I W ~ and ~o is used to mean ~] ~o 
which is the least inverse semigroup congruence on W . 

-I o 
Moreover, OOoOUa ~ is the greatest idempotent separating 

congruence on Wo/~ o " Thus, if ~o is a cross-section 

of OOoO0O;1-elasses then there exists a canonical isomor- 

phism 60 of ~(To,~~176 ~~ ) onto ,~o/~o determined 
by ~o where ~o is a subsemigrou~ in ~ and ~o, ~ o 

,G )-pair defined by ~o " is the (T ~ ~o Clearly we have ~o-- 

, , % j  p r o v i d e d  and 

XoC- Wo/~ o " 

According to the identification of G~ with 

Aut <e~ , the definition of a (To,~~ ~o, ~o de- 

termined by a cross-section ~o can be modified as fol- 

lows Let W ~ ;~ �9 e , f  = {~C=We,f :  Qge;~ ' ~ f ~  g~/o} for  
each pair e,f in E and let ,~o= ~ fW;,f: e,fgE} . 

Assume that ~_ =~ : ~To~ where ~We - e 
~ -I, /~-i 

with the property that <e o(9 -IE c~9-1e ~4~ ~ ~ E - c~ ~'~) -I 
for every ~ in Y with ~ C< orovided ~ ~ T ~ ,~.. 

Moreover, we require that ~ @-I= ~-i for all ~ ~n 

T o . Under these conditions, ~7_ is termed a To-S2stem 

of E over )). Clearly, if ~ c--W O then ~o=~% : 

@ ~ TO~ where xs = ~ ' ~e~ ~ ; provided 

~ f] W is a cross-section of d~ ~ 

One has to observe only that ~% ^ 

is just ~ . Conversely, a straightforward calculation 

-~ ~-0 @ ~ is a cross- shows that if Xo={~; : S ~ To, x 6o0= 
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section of ~OoO~Ool-classes then we obtain a To-system of 

E over ~ with ~ ,~o by defining )-={ ~ : ~ a To~ 
,~O where ~ = (@f ] <e~>) ~ (~e~] <g>) provided x~ = 

=(ef~g , ~g~rl)~ and feE~ , geE~ . One can imme- 

diately verify that ~o x~ =(ge~ ~ ' ~e~ ~ ~i)~ . Hence we 

infer that the cross-section determined by ~ according to 

the above definition is just ~o " Thus there is a one-to- 

one correspondence between the To-systems J- of E over 

with ~ ~-W ~ and the cross-sections of OOoOO0o 1- 

classes. Hence we can work with a(To,~~ defined by 

a To-system of E over ~ contained in W ~ instead of 

a (To,~~ defined by a cross-section of OOoOgool- 

classes�9 Given a To-system ~i of E over )) with 

h , ~o determined by T[ is c_ W ~ the (To,~ -oair ~o 

defined in the following way: if ~ @ T ~,~ , ~@T~,~ 

and g ~ ~} then 

tO gh~ =(~il (e(~)~),-l>) (~-II (i>) (~j ] (i~-l>) . 

where 

k=e 

�9 (gl<J>) (~kl<Jg>)(~l<k>)(e 

i=e /5~ -le Q~ ~) 6" )2 -le/5 ~ -I , 
-l(Jg) e ~ ~ -1 and 

_- (~-~)-i( 

�9 (| I <i~ 

i=e c~ ~ -le 

I <k~>), e(~d)~-i 
j=e d~-l(i~-l) edg-l' 

where 

Observe that W ~ can be reobtained by means of ~o 

and 5- as follows. Consider the canonical isomorphism 

Lo of ~(To,~;~~176 ) into VE/~ determined bye- . 
0 0 " a  ~o 

Here h ,~ i~ the (To,G)-pair defined by /~ . Let 
~(~o,)-)=~(To,~O;~O,~O)c ~ (~)-l . Clearly, we have 

,~io_.= ~ . ( ~ o ,  ~- ) . 
Note that if To C_WE~ , ~o is a subsemigroup in 

and ~ is a To-system of E over ~ such that the 

(T o,~)-pair ~o, ~o defined by )- possesses the proper- 

ty that ~o~ ~ ~o and ~~ ~ e ~o for every ~,~ in 

~o o is a (~o'~) =~(~~ I) is T o then h ,~ -pair and W ~ , 

~il<e(a~) ~ -i~-I>)(% I <i>)^. 

>) (~ I <J>)(@e(a/~)~)- I] <J~>) , 

(~/B)~-l~-le c~-I , J=e~-l(i~)e~-l. 
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a full orthodox subsemigroup in W E . 

THEOREM 5. Let S be an inverse semigroup with semi- 

lattice of idempotents Y and let E be a band which is 

semilattlce ? of rectangular bands E ~ (~ C ? ) . D_~e- 

note b_~ ~ the Munn hgmomorphism of S onto Ty(S) . 

Fo___rr every ~ i_nn Y , let G~ stand for the ~ o ~-l_ 

class containing ~ . Their union G i_~s ~ semilattice Y 

of groups G~ ~ Y) . Co__nsi_de X th~ (Ty(S),G)-pair h,~ 

defined by ~ cross-section X of ~ o~-l-classes. More- 

over, for every ~ i_.nn Y , let us choos_~e and fix an ele- 

ment e~ i_~n E~ and denote by ~ ~ the ro~ of all 

automorphisms of (e~ preserving ~-classes. Equip 

their union ~ with a multiplication defined by means of 

the structure homomorphisms P~,~ (~2~) which let 

become a semilattice ~ of groups G~ (~ ~Y ) . Then 

there exists an orthodox semigroup T with band of idem- 

potents E and with ~reatest inverse semigroup homomor- 

phic image S if and only if there exists an isomorphis~ 

of Y onto Y such that 

(O) for every s in S , there exist elements e i__nn 

E(ss_l) _ I , f i__nn E(s_is)R_ I and an isomqrphlsm~ 

of eEe ont____o fEf such that (eE~e)~E(s_~)~_ 1 

for each ~ i_~n Y with ~ ~ (ss -1)~-• , and 

(D) there exists a Ty(S)-system ~ of E ove r ~ and 

homomorphism ~ of G into ~ such that Ga~ 

~ ~-l for every ~ i_nn Y and ~ commutes 

with the ~T (S ) , G) -pair h,~ and the QTy(S),G~)- 

pair ~o, ~ defined by ~ . 

REMARK. One can immediately see that condition (C) is 

equivalent to the inclusion Ty(S)~W E ~ and it is equi- 

valent to requiring the existence of a Ty(S)-system of E 

over p . The latter fact means that condition (C) is 

implicit in (D) . 

Proof. Let T be an orthodox semigroup with band 

of idempotents E and greatest inverse semigroup homomor- 

phic image S . The necessity of (C)is verified as in the 

original paper. Denote by ~ the least inverse semigroup 

congruence on W E and by ~ the unique homomorphism 
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of WE/~ into Ty with the property that $~=~. 

Let ~o=~lw~T) ~d ~o=~O~l~C~)l~o . S• W~(~) 
is a full orthodox subsemlgroup in W E therefore ~o 

is the least inverse semlgroup congruence on WE(T ) and 

co o is the unique homomorphism of WE(T)/qo onto Ty(S) 

such that ~2~o= ~o . Now we define a homomorphlsm 

w~/~' | 

W E 

of S onto wE(~)l~o such that ~ = ~  and ~o = 

=~ . Let s~=t ~ ~ for every s in S where t is 

an element in T with t~s . Since both S and 

WE(T)/~ o are inverse semigroups and ~ o -1 is the 

least inverse semigroup congruence on T the definition 

of ~ is independent of the choice of t . It can be 

immediately checked that ~ is a homomorphism and it is 

onto as both ~ and ~ are. The equality ~ =~ ~ 

holds by definition. On the other hand, we have s ~6o o- 

=tg ~ ~o=t~ ~o~t ~=s~ for every s in S where 

t GT with t~=s . Thus equality ~ ~o =~ is also ver- 

ified. Let ~ be the Ty(S)-system of E over ~ cor- 

responding to the cross-sectlon Xo-X ~ . Putting 

for ~ in Lemma 2, we infer the necessity of condltion(D). 

In order to prove sufficiency, suppose that there 

exists an isomorphism ~ of Y onto Y such that (C) 

and (D) are fulfilled. Consider the full orthodox subsemi- 

group Wo=~(G~,~ ) in W E . Let ~o=~ IW o and define 

a mapping ~ of S onto Wo/~ o by (x~ g)~=x~~ g~ 
~o where gGTy(S)NT~,~ , x~ C X , g~G~ and x~ 

^ --I 
(ge~_l~ ' ~e~_l~r )~ . By Lemma 2, ~ is an 

idempotent separating homomorphlsm. By applying Theorem l, 

we obtain an orthodox semigroup T and homomorphisms V 

and ~ of T onto S and W o , respectively, such 
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-I is the least inverse semigroup congruence that 9 o _ 91 

and ~ o ~ is the greatest idempotent separating con- 

gruence on T . Thus the band of idempotents in T is i- 

somorphic to E and S is the greatest inverse semigroup 

homomorphic image of T which completes the proof of the 

theorem. 

As an application, we can easily answer the question 

which bands have the property that condition (C) is suffi- 

cient for every inverse semigroup S . 

COROLLARY 4a. Let a band E b_ee given which is a se- 

milattice Y of rectangular bands. For every inverse se- 

migroup S with semilattice of idempotents Y which sat- 

isfies condition (C), there exist__~s a_~n orthodox semigroup 

with band of idempotents E and greatest inverse semi- 

group homomorphic ~ S if and only if there exists 

a__nn ieomorphism p of Y onto Y and a W E ~u -system 

of E over p which defines a trivial (W E ~ ,~)- 

pair or, equivalently, fo__~r every is0morphism J of 

onto Y there exists a ~E ~p -system ~_ of E over 

which defines a trivial (W E ~ ,~)-pair. 

Proof. Suppose first that, for every inverse semi- 

group S satisfying condition (C), there exists an ortho- 

dox semigroup with the required properties. Then, in par- 

ticular, there exists an orthodox semigroup T with band 

of idempotents E and greatest inverse semigroup homo- 

morphic image WE ~o where ~o is an isomorphism of 

Y onto Y . Since W E ~ is fundamental the necessity 
o 

of condition (D) in Theorem 3 implies that there exists an 

isomorphism ~ of Y onto Y and a WE ~o-System 

of E over ~ which defines a trivial (W E ~Ro,~)-pair. 

Observe that ~o~ ~o-1 ~ o ~l as each of them is 

just the greatest congruence on W E with the property 

that its restriction to E 

' 

ed @e~Ve a ,e~ . Thus 

~E ~o "system of E over 

is ~ . Yoreover, we have 
A 

for every g in ~T provid- 

can be considered to be a 

~o " This completes the proof 
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of the "only if" part. 

Conversely, assume that there exists p and ~. 

with the required properties. Then, for every inverse se- 

migroup S , the homomorphism ~ assigning the identity 

of ~-l to all elements in G~ and the Ty(S)-system 

~[~o={ @~[: ff~Ty(S)~ satisfy condition (D). Thus The- 

orem 3 implies the "if part" too. 9 

As far as the problem of uniqueness is concerned we 

can formulate the following assertion. 

COROLlaRY ~b. Let S be an inverse semigrou~ with 

semilattice of idempotents Y and let E be a band which 

i_gs ~ semilattice Y of rectangular bands E~ (~ ~) . 

Define G,h,~ and ~ as in Theorem 3. Suppose that con- 

ditions (C) and (D) are fulfilled. Then the orthodox semi- 

group with band of idempotents E an__dd greatest inverse 

semi~roup hpmomorphic ~ S is unique up to isomorphism 

if and only if the following is satisfied: whenever P i 

(i=1,2) is an isomorphism of Y onto Y ' ~i (i=1,2) is 

homomorphism of G into ~ and ~i (i=l,2) is ~ Ty(S) - 

system of E over ~i such that the triple Mi' ~i' ~i 

(i=l,2) fulfils condition (D) then there exist automorphisms 

, ~ and ~ of Y , E and G , respectively, such that 

induces an automorphism ~ of Ty(S) , ~ induces 

an isomorphis m ~ of G~2 onto G~l , the equality 

~l = ~2~ h__olds and ~ and ~ commute with h, 

and (h)~ , (~)~ where ~ is a translational basis for 

Ty(S) and G with the property tha$ ~l is the trans- 

lational basi__~s fo~ Ty(S) and G ~l 9orresPonding to ~ 1 

and ~__%. Here ~ is used to mean the Ty(S)-system of 

E induced from ~[2 by ~ . 

Proof. Assume that the triple Mi' ~i'J[i (i=l,2) 

fulfils condition (D). By means of the triple ~i' ~i' 

~i (i=l,2), construct the idempotent separating homomor- 

phism Ti of S onto Wi/~i where Wi=~G~i,~i) and ~i=~] ~ 

and construct an orthodox semigroup T i with homomorphisms 

i and ~ i as in the proof of sufficiency in Theorem 3. 

In order to prove necessity suppose that the orthodox se- 

migroup with band of idempotents E and greatest inverse 
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semigroup homomorphic image S is unique up to isomor- 

phism. In this case, there exists an isomorphism ~T of 

T 2 onto T 1 . It is easily seen that ~T determines an 

automorphism ~S of S for which we have AT ~l = ~2 AS 

as ~lO~l I and 72o~21 are the least inverse semi- 

group congruences on T 1 and T 2 , respectively. Let e = 

= ~sIY and ~= ~TIE . Clearly, ~ and ~ induce an au- 

tomorphism @ of Ty(S) and an isomorphism A W of W 2 

onto W 1 , respectively. The equalities AS~=~ and 

T~l=~2~W are immediately deduced. Moreover, ~l det- 

ermines an isomorphism J of W2/~ 2 onto W1/~ 1 with 

W~= ~ j since ~l and ~2 are the least inverse 

semigroup congruences on W 1 and W 2 , respectively. Then 

we have 72 21S%1'1= t%TTl~t/1 ='%Tgl ~]~=g2 ~w'~]~=Z~2 ~TA= 
= ~ 2 ~ 2  ~ whence we infer ~$71=~2 ~ as ~2 is onto. 

Similarly, since %[2 is also onto the equalities 

~2 ~ ~l=~SVl~1=~s~=~=Vz~z~ imply ~1=~2~ . 
By applying Lemma 2 for AS and A and taking into 

consideration the equalities AS~(I=~/2~ and ~ ~Jl = 

=~2 ~ , we see that 6=~sIy , ~=ATIE , ~=~sIG and 

the translational basis ~ for Ty(S) and G corres- 

ponding to X and X ~ S satisfy the conditions required 

which proves necessity. 

Conversely, now assume that there exist ~ , ~ , 

and q with the properties formulated in Corollary 4b. 
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Then, by Lemma 2, we obtain an automorphiem ~S of S 

with ~S~ =~ and an isomorphism A of W2/~ 2 on- 

to Wl/~l with ~1=~2~ such that the equality 

S~l=~2 A is valid. Moreover, the automorphism of W E 

induced by ~ maps W 2 onto W 1 , that is, E induces 

an isomorphism ~W of W 2 onto W 1 . One can easily see 

that ~W ~= ~ ~ " Thus we obtain that both of the pairs 

of mappings ~l ' ~l and ~2AS '~2 ~w are pull- 

backs of the homomorphisms ~l and ~ . Therefore The- 

orem 1 implies T 1 and T 2 to be isomorphic which com- 

pletes the proof of the 0orollary. 

Note that the isomorphism problem of Hall-Yamada se- 

migroups was solved by T. E. Hall (private communication) 

as follows: Let S , S' be inverse semigroups, E , E' 

bands and q:S-~WE/~ , q':S' -~WE,/[' idempotent 

separating homomorphisms whose ranges contain all the idem- 

potents of WE/~ and WE, / [ ' , respectively. Then 

~(S,E,q) and ~4(S',E',~') are isomorphic to each 

other if and only if there exist isomorphisms ~ of S 

of E onto E' such that we have ~'= onto S' and ~ 

~-lq~ where ~ is the unique isomorphism of WE/~ onto 

WE,/~' that makes the diagram 
A 

WE~ ~ ~ W E, 

commute. Here ~ is the unique isomorphism of W E onto 

WE, extending ~ . 
The author expresses her thanks to T. E. Hall for 

calling her attention to the error in the original paper 

and to the paper by Takizawa entitled "Orthodox semigroups 

and E-unitary regular semigroupe (Bull. Tokyo Gakugel Univ. 

set. IV. 31~1979), 41-43.) where the result formulated in 

Theorem 5 in the original paper is independently proved. 
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