Matrix transformations involving analytic sequence spaces

Karl-Goswin Grosse-Erdmann

Fachbereich Mathematik, Fern-Universität Hagen, Postfach 940, W-5800 Hagen, Federal Republic of Germany

Math. Z. 209, 499-510 (1992)

In Theorem 3.2 one has to assume that E is solid, for in general (b) only implies that there are sequences $\xi^{(1)}, \ldots, \xi^{(m)} \in E$ with $\sup_{x \in B} \left| \sum_{n=0}^{\infty} x_n y_n \right| \leq \sum_{k=1}^{m} \sum_{n=0}^{\infty} |\xi_n^{(k)}| \|y_n\|$ for $y \in F$, so that if E is solid we may take $\xi = \left(\sum_{k=1}^{m} |\xi_n^{(k)}| \right)_n$.

Mathematische

③ Springer-Verlag 1993

To give a concrete counter-example, let (q_n) be an enumeration of \mathbb{Q} , and let x = (1, 0, 1, 0, 1, ...) and $y = (q_1, 1, q_2, 1, q_3, ...)$. We put $E = \varphi \oplus \langle \{x, y\} \rangle$ and $F = E^{\times}$. The solid span |E| of E is a diagonal transform of l^{∞} , so that $F = |E|^{\times}$ is a diagonal transform of l^1 and (F, v(F, E)) = (F, v(F, |E|)) is barrelled. But we show that $(E, \sigma(E, F))$ is not simple. Else there would exist scalars α and β and some $z \in \varphi$ such that $|x_n| \leq |z_n + \alpha x_n + \beta y_n|$ and $|y_n| \leq |z_n + \alpha x_n + \beta y_n|$ for $n \in \mathbb{N}_0$. This implies that $\beta \neq 0$, so that we can find a sequence (n_k) with $\alpha + \beta q_{n_k} \to 0$, while we have $|x_{2n}| = 1$ for $n \in \mathbb{N}_0$. This is a contradiction.

As a consequence, in *Theorem 6.1(1)* and *Theorem 6.2* one also has to assume that E is solid.