Matrix transformations involving analytic sequence spaces

Karl-Goswin Grosse-Erdmann

Fachbereich Mathematik, Fern-Universität Hagen, Postfach 940, W-5800 Hagen, Federal Republic of Germany

Math. Z. 209, 499-510 (1992)
In Theorem 3.2 one has to assume that E is solid, for in general (b) only implies that there are sequences $\xi^{(1)}, \ldots, \xi^{(m)} \in E$ with $\sup _{x \in B}\left|\sum_{n=0}^{\infty} x_{n} y_{n}\right| \leqq \sum_{k=1}^{m} \sum_{n=0}^{\infty}\left|\xi_{n}^{(k)} \| y_{n}\right|$ for $y \in F$, so that if E is solid we may take $\xi=\left(\sum_{k=1}^{m}\left|\xi_{n}^{(k)}\right|\right)_{n}$.

To give a concrete counter-example, let $\left(q_{n}\right)$ be an enumeration of \mathbb{Q}, and let $x=(1,0,1,0,1, \ldots)$ and $y=\left(q_{1}, 1, q_{2}, 1, q_{3}, \ldots\right)$. We put $E=\varphi \oplus\langle\{x, y\}\rangle$ and $F=E^{\times}$. The solid span $|E|$ of E is a diagonal transform of l^{∞}, so that $F=|E|^{\times}$ is a diagonal transform of l^{1} and $(F, v(F, E))=(F, v(F,|E|))$ is barrelled. But we show that ($E, \sigma(E, F)$) is not simple. Else there would exist scalars α and β and some $z \in \varphi$ such that $\left|x_{n}\right| \leqq\left|z_{n}+\alpha x_{n}+\beta y_{n}\right|$ and $\left|y_{n}\right| \leqq\left|z_{n}+\alpha x_{n}+\beta y_{n}\right|$ for $n \in \mathbb{N}_{0}$. This implies that $\beta \neq 0$, so that we can find a sequence (n_{k}) with $\alpha+\beta q_{n_{k}} \rightarrow 0$, while we have $\left|x_{2 n}\right|=1$ for $n \in \mathbb{N}_{0}$. This is a contradiction.

As a consequence, in Theorem 6.1(1) and Theorem 6.2 one also has to assume that E is solid.

