Errata

Three constructions of rational points on $Y^{2}=X^{3} \pm N X$

Paul Monsky
Department of Mathematics, Brandeis University, Waltham, MA 02254, USA

Math Z. 209, 445-462 (1992)
Lemma 4.7, and the expression for W in terms of Fricke functions given in Theorem 4.8 are false. In fact, as φ is defined, $\varphi^{8} f^{24}$ has zeros at the cusps $\frac{1}{2}$ and 2 of $C(4)$ and poles at the cusps lying over 1; I thank Andre Robatino for pointing this out to me.

To get a correct expression for W and a correct proof of the main lemma one may proceed as follows. Let $\bar{E}_{4}=\bar{e}_{0.4} \bar{e}_{4.4}, \bar{E}_{5}=\bar{e}_{4,0}-\bar{e}_{4.12}$ and \bar{E}_{6} $=\bar{e}_{4,8}-\bar{e}_{8.4}$. Set $\varphi=\bar{E}_{1} \bar{E}_{2} \bar{E}_{6} / \bar{E}_{3} \bar{E}_{4} \bar{E}_{5}$. Then φ is modular of level 16, holomorphic in \mathfrak{H}. The proof that φ satisfies the functional equations of Lemma 4.6 goes through with obvious modifications. With this choice of φ one may verify that $\varphi^{8} f^{24}$ is holomorphic at the cusps of $C(4)$; since it is holomorphic in the upper half-plane it is constant. Arguing as in the proof of Theorem 4.8 we get an expression for W in terms of Fricke functions; $W=32(1-i) \cdot 2^{1 / 4}$. $\bar{E}_{3} \bar{E}_{4} \bar{E}_{5} / \bar{E}_{1} \bar{E}_{2} \bar{E}_{6}$. The argument in the rest of Sect. 4, establishing the main lemma, works with trivial modifications.

