Errata

Three constructions of rational points on $Y^2 = X^3 \pm NX$

Paul Monsky

Department of Mathematics, Brandeis University, Waltham, MA 02254, USA

Math Z. 209, 445-462 (1992)

Lemma 4.7, and the expression for W in terms of Fricke functions given in Theorem 4.8 are false. In fact, as φ is defined, $\varphi^8 f^{24}$ has zeros at the cusps $\frac{1}{2}$ and 2 of C(4) and poles at the cusps lying over 1; I thank Andre Robatino for pointing this out to me.

To get a correct expression for W and a correct proof of the main lemma one may proceed as follows. Let $\overline{E}_4 = \overline{e}_{0,4} - \overline{e}_{4,4}$, $\overline{E}_5 = \overline{e}_{4,0} - \overline{e}_{4,12}$ and \overline{E}_6 $= \overline{e}_{4,8} - \overline{e}_{8,4}$. Set $\varphi = \overline{E}_1 \overline{E}_2 \overline{E}_6/\overline{E}_3 \overline{E}_4 \overline{E}_5$. Then φ is modular of level 16, holomorphic in \mathfrak{H} . The proof that φ satisfies the functional equations of Lemma 4.6 goes through with obvious modifications. With this choice of φ one may verify that $\varphi^8 f^{24}$ is holomorphic at the cusps of C(4); since it is holomorphic in the upper half-plane it is constant. Arguing as in the proof of Theorem 4.8 we get an expression for W in terms of Fricke functions; $W=32(1-i)\cdot 2^{1/4}$. $\overline{E}_3 \overline{E}_4 \overline{E}_5/\overline{E}_1 \overline{E}_2 \overline{E}_6$. The argument in the rest of Sect. 4, establishing the main lemma, works with trivial modifications.