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Statements 1) and 3) of Theorem 4.1 are false. The correct statement of the 
theorem is the following 

Theorem 4.1 Let A be a finitely generated R-algebra of Krull dimension <-_d, 
and f a totally positive element of A. Then 

1) if d<=3, we have an identity 

2) /f d =< 4 and f is a unit in A, we have 

3) /f d > 4, we have 

f[SrgS---~= 1 +I2 "+' + d - 4  l 

4) /f d > 5 and f is a unit in A, we have 

f [ ] =  1 +12 a + d -  5]. 

Subsequently, Corollary 4.4 on the level has to be modified as follows: 

Corollary 4.4 Let A be an R-algebra of transcendence degree d without any real 
point (i.e. Specr A = 0), then 

1) /fd=<4 then - 1  = ~  

2) ~f d____5 then -1  =)"+1+d-5] 
Proof Apply 2) or 4) of Proposition 4.3 to f = -  1 which is a totally positive 
unit when Specr A = 0. 

Also in Remark 4.5, if the level of a curve without any real point is actually 
less than 3 (because 21+ 1 =22-1 ! ) ,  the real bound for surfaces is 7 instead 
of 5. Nothing else in the paper is affected by this modification, except the proof 
of Theorem 4.1, which is the subject of Sect. 5. 
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We give below a complete replacement of the end of Sect. 5 starting from 
line 18 p. 624. 

Let us prove part 1). Let d=tr.d.(A). If f is not a unit, it may be 0 in 
the function field K~ of level U, of some complex irreducible component of 
A and in that case, we get 0 = 1 + [ ] .  Because 0 has the shape f~=5~,  we 
can 

write f ~ = 5 ~ =  1 + [ ]  in every field Ki, and thus in the product [ I  Ki. 
In the 0-dimensional case, we have f [ ~ =  1 +[~ in each Ki, and so in A. 
In dimension 1, with the above arguments, we obtain an identity 

(1 + +l -s o 
in A. Applying Lemma 3.1 with X = 1 and g=[~-f~, we get 

which gives 

and eventually 

1 +~-J [~+ (1 +[~-f[~l ([~-f[~) = 0 

+171-sl?]+ -sl =o 

f ~ =  1+]-51. 
The same method in dimension 2, starting from 

(l -!-[~--f~]) 2 -t- ~]-- f [ ~  = 0 

leads (using Lemma 3.1 and Lemma 3.3 part 1) to 

sg:l+  
For the dimension 3, we do as in dimension 4 when f is a unit, starting 

with a double reduction in the dimension to get an identity 

+171-fgl' +17}-fl71)' + l-flal= o 
and using Lemmas 3.1 with X=(1  + ~ _ j . ~ ) 2  and Y=~-.f[~, we get 

(1 + ~]-- f ~])6 + ~ _  f ~ + ( ~ _  f El) (El-  f [41) = 0. 

With Lemmas 3.2 (n = 6) and 3.3 part 2, this gives 

(1 -I- [~- f~)e -I- ~ -  f[~ + ~ -  f~l--O 
and a last application of Lemma 3.1 gives 

l+ [ ] -z [ ]=0  
In order to get the parts 3) and 4) of Theorem 4.1, we make an induction 

respectively for d > 3 and d > 4. Let tr.d.(A) = d + 1 and f a totally positive (resp. 
unit) in A. Letting d'= d + 1 (resp. d), we have 



Erratum 483 

in A for some non zero-divisor  g. By induct ion hypothesis,  we get 

in Aig for s a = 2 d + ~ + d - - 4  (resp. s e = 2 d + d - - 5 )  and t a = 2 ~ + 7  (resp. U), and 
SO 

1 

in A, and 

()og)= =(1 + x - - f  y) 2 

where x =[~] and y = ~ .  This gives 

(2g) 2 = 1 +(x _ f  y)2 + 2 ( x - - f  y). 

But because 2 is a square, we get 

(2g) 2 = l + ~ +  1 -.fired. 

Return ing  to the original equat ion,  we get 

1 + ~ - J ' [ ~ + [ ] - ) ' ~ =  1 +Isd + 1 +  2 e j - f ~ l +  2~[=0. 

In the non unit case, put t ing s 3 = 15 = 24 + 3 - 4, d' = d + 1 and  t3 = 15 = 2 3 Jr- 7,  

the induct ion relations se +l--- 1 + sa + 2 a + 1 and t d + l =  te + 2 a give the result. 
In the unit case, put t ing  s 4 =  1 5 = 2 4 + 4 - - 5  and t 4 = 1 6 = 2 4 ,  the relat ions 

sd + t = 1 + se + 2 d and t d + 1 = td-{-  2e give the result. 


