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Abstract. This paper gives lower and upper bounds on the complexity of triangu- 
lating the region between polyhedra. Particular attention is given to the case of 
convex polyhedra and terrains. 

1. Introduct ion 

We extend the work of Bern [5] on triangulating the region between three-dimen- 
sional polyhedra. Here  is a summary of our results: 

�9 We give a linear algorithm for triangulating the region between two convex 
polyhedra. No assumptions are made on the polyhedra: they can be disjoint, 
nested, or overlapping. The algorithm produces O(n) tetrahedra,  where n is the 
input size. This optimal bound improves on an O(n log n)-size construction by 
Bern [5]. 

�9 We give a method for triangulating the region between a convex polyhedron 
and a disjoint polyhedral  terrain (or a star-shaped polyhedron). The number of 
te t rahedra  produced is O(n log n). We prove the rather surprising result that 
the bound is tight. More generally, we show that any convex decomposit ion of 
the space between a convex decomposit ion of the space between a convex 
polyhedron and a terrain requires f l (n  log n) pieces in the worst case. 

* The first author was supported in part by NSF Grant CCR-90-02352 and The Geometry Center, 
University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc. The second 
author was supported in part by NSF Grant PHY-90-21984. 
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�9 We prove that any polyhedron of genus g must have at least g - 1 reflex 
dihedral angles. To  our surprise, this result appears to be new. Actually, we 
were not even able to find any proof in the literature that the number of reflex 
edges is f l(g).  Although our proof is quite simple it relies on the Gauss -  
Bonnet curvature formula and thus it is not completely self-contained. This 
result shows that the triangulation algorithm of Chazelle and Palios [8] works 
just the same for polyhedra of arbitrary genus: specifically, any polyhedron with 
n vertices and r reflex angles can be triangulated with O(n + r 2) tetrahedra, 
regardless of its genus. The bound is tight in the worst case. 

Tetrahedralization refers to the triangulation of three-dimensional polyhedra. 
The subject has been heavily researched because of its relevance to the finite- 
element method, mesh generation, topology of 3-manifolds, interpolation theory, 
tool design, etc. [1]-[5], [8], [9], [14], [15]. An odd assortment of results has emerged. 
For example, all polyhedra can be tetrahedralized, but nonconvex ones might 
require additional vertices, so-called Steiner points: the canonical example is the 
Sch/Snhardt octahedron [17], which is made by connecting together two parallel, 
slightly twisted triangles. Checking whether Steiner points are needed or not has 
been shown to be NP-hard by Rupper t  and Seidel [16]. Steiner points are somewhat 
of a nuisance in practice, because they make representations more complicated and 
cause round-off error problems. Unfortunately they can rarely be avoided. The 
number  and the shape of the tetrahedra are parameters  that are both more critical 
and malleable. The former is where we focus our attention in this paper. 

It was shown in [8] that any n-vertex polyhedron can be triangulated using only 
O(n 2) tetrahedra. This is known to be optimal in the worst case [6]. Of  course, in 
many cases it is possible to do much better. For example, a convex polyhedron 
requires only O(n) tetrahedra. Bern [5] provided motivation for looking at the 
region between two convex polyhedra. If the polyhedra are disjoint (side-by-side) it is 
quite easy to achieve an O(n)-size triangulation. The nested case is more difficult, 
and Bern proposed a construction consisting of O(n log n) tetrahedra. Our  first 
result improves this to O(n), which is optimal. Furthermore,  the method allows the 
polyhedra to be intersecting. It  is based on a dovetailed construction of the 
Dobkin-Kirkpatf ick polyhedral hierarchy [10], somewhat in the style of [7] though 
much simpler. Unlike Bern's construction, our method uses Steiner points. Whether  
this can be avoided remains an open problem. 

The polyhedron used in the quadratic lower bound iaroof of [6] is built by placing 
two polyhedral terrains, 1 one on top of the other. It is natural to ask whether the 
lower bound collapses if one terrain is convex. Our  second result shows that 
O(n log n) is the tight answer. The upper bound is obtained by carefully pruning the 
outer  polyhedral hierarchy at critical places and tracing its interaction with the 
terrain by way of a fairly delicate accounting scheme. 

The lower bound is achieved by creating an art gallery that requires on the order 
of n log n guards: the roof  of the gallery is a hangar-like concave structure; the floor 

1A polyhedral terrain is the graph of a bivariate piecewise-linear continuous function: any 
vertical line intersects it in exactly one point. 
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plan is a terrain parametr ized by a permutation.  We prove that the number of 
guards needed is precisely equal to the number of swaps required in mergesorting 
that permutation.  Expectedly, we use the bit-reversal permutat ion to achieve the 
best possible lower bound. The essence of our proof technique is to be able to 
interpret  a triangulation scheme as a permutat ion routing network, whereby each 
node corresponds to one or several distinct tetrahedra.  This connection allows us to 
classify the floor plans that lead to easy triangulations by just looking at the 
complexity of their corresponding permutations. 

2. Triangulating Between Two Convex Polytopes 

Let P and Q be two convex polytopes, 2 with a total of n vertices. We wish to 
subdivide the region between the boundaries of  P and Q into O(n) tetrahedra.  
Naive methods such as merging the Dobkin-Kirkpat r ick  hierarchies of the two 
polytopes are doomed to fail. Instead, we define a process for "thickening" the 
boundaries of the polytopes in coordinated fashion, until they become so wide as to 
cover all of R3: during the growth process we maintain a triangulation of the union 
of the thickened boundaries.  For  this to work, the two boundaries have to grow at 
comparable speeds. 

To flesh out this idea, we introduce the key notion of a polyhedral layer, which is 
simply the region between two nested convex polytopes. The outer  and inner 
boundaries  might share faces, so a layer is topologically equivalent to S 2 x [0, 1] 
pinched at various places. We define the magnitude of a layer to be the total number  
of faces (of all dimensions) among its inner and outer  boundaries.  Layers will always 
come along with a cell decomposition, so any standard data structure for three- 
dimensional cell complexes 3 will provide an adequate representat ion [11]. Specifi- 
cally, we need lists of vertices, edges, facets, and cells, along with their incidence 
relations. 

Thickening the Boundaries. A layer can grow inward or outward. We begin with the 
inward growth. Pick a maximal independent  set of low-degree vertices on the inner 
boundary. For  each such vertex v, form the convex hull of its adjacent vertices and 
keep only those faces nonadjacent to v: glue the resulting patch to the layer. The 
space between the patch and the layer is called a pocket (Fig. 1). It is a polyhedron 
of constant description size. Growing a convex polytope inward in this fashion 
produces the well-known Dobkin-Kirkpat r ick  hierarchy [10]. 

The outward growth [12], [13] is equivalent to the inward growth in dual space. 
We select a maximal independent  set of nonadjacent, low-complexity facets on the 

2A polytope is a bounded polyhedron: our restriction to the bounded case is meant only to 
simplify the explanation. It is routine to extend our results to unbounded polyhedra. Similarly, we 
assume that the polytopes are nondegenerate and well behaved. In particular, it is assumed that no 
vertex is completely surrounded by coplanar facets: if this were the case, we would remove the vertex 
and merge the incident facets together. 

3 Recall that a cell complex is a subdivision of a region into relatively open faces (i.e., vertices, 
edges, facets, cells) such that the closures of two adjacent faces intersect in the closure of a face. 
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Fig. 1. Inward growth. 

outer boundary of the layer. For each such facet f ,  we intersect the half-spaces 
bounded by f and its adjacent facets (on the relevant sides). This creates a pocket 
with at most a constant number of other facets, one of which is f (Fig. 2). There is 
one delicate point to address: the facets of the pocket are coplanar with the facets 
adjacent to f. On the one hand, we must merge those facets together, otherwise the 
complexity of the new outer boundary does not decrease (actually it strictly in- 
creases). On the other hand, if we merge the facets, we no longer have a cell 
complex. To resolve this dilemma, we enclose the new outer boundary B into a 
slightly enlarged copy of itself. This enlarged copy is triangulated in the same way as 
B except that coplanar faces are merged. We connect each edge of the enlarged 
copy to its corresponding edge in B by rectangular or trapezoidal facets (Fig. 3). 
This creates a layer of very thin buffer pockets that completely surrounds the outer 
boundary, such a pocket is a symbolic device and need not have actual volume. 

A simple but important observation is that thickening both the inner and outer 
boundaries of the layer decreases its magnitude by a constant factor. Note that the 
magnitude of a layer may have nothing to do with its complexity as a cell complex: as 
a matter of fact, growing a layer increases the complexity of its cell complex but 
decreases its magnitude. 

Coordinated Growth of Two Layers. We now look at the thickening of two layers, L 
and L' ,  emanating from P and Q, respectively. We do not make any assumptions 
about the relative positioning of the layers. We assume that the union of the two 
layers is fully available as a cell complex (not necessarily simplicial); we call it the 
union complex. Note that it is also provides a cell decomposition of the boundary of 
L u L' .  We do not assume, however, that it gives a cell decomposition of the four 
boundaries. For example, features of the boundaries "strictly inside L U L '  might 
have been removed and have no representative features in the union complex. 

/< 
Fig. 2. Outward growth. 
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Fig. 3. Construction of buffer pockets. The outer boundary, an enlarged copy, and part of the 
triangulation between them are drawn. 

We assume that all four boundaries of the layers are available separately, i.e., 
with no regard to the fact that some might intersect: this is the same as having a 
representat ion of four distinct convex polytopes. However, we also provide pointers 
from the facets of the four boundaries to their corresponding facets of the union 
complex: for this to make sense, we require that any boundary facet that does not lie 
completely inside L U L '  should have its "outside" part appear  as the union of at 
most a constant number of facets of the union complex. (Just one is not enough, 
because such a facet might be homeomorphic  to an annulus, so it needs to be cut in 
two in order to keep all the facets topologically equivalent to disks.) 

The reason we need this correspondence will now become clear. Suppose that we 
wish to grow, say, the layer L inward. Our first task is to determine the intersection 
of the new pockets of L with the current union complex. If a pocket has a facet in 
(old) 0L that intersects L ' ,  then routine navigation through the cell complex starting 
at that intersection does the job. If not, then things are a little more risky, as the 
pocket might penetrate  L '  at some random location. We use the optimal algorithm 
of [7] to intersect the boundaries  of L and L '  pairwise. With the correspondence 
mentioned above, this gives us access to all the union complex boundary facets that 
intersect the pockets, in time linear in the complexity of the boundaries. (There are 
technical details which we omit.) 

What  do we do with the new pockets? A pocket that does not intersect either 
boundary of L '  falls in one of  two categories (Fig. 4): If it lies entirely inside L ' ,  it is 
ignored, i.e., it has no effect on the union complex. Otherwise, it is simply added to 
the union complex. The more interesting case arises if a pocket partly intersects L '  
(Fig. 5). Then we triangulate the complement of L '  within the pocket and add these 

Fig. 4. The shaded region on the left is a pocket of L which lies entirely outside L'. The shaded 
region in the center is a pocket of L which lies entirely in L'. 
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Fig. 5. The shaded region in the top figure is a pocket of L which partly intersects L'. We 
triangulate the complement of L' in the pocket (the shaded region in the bottom figure). 

faces to the current union complex. In Fig. 5 this complement consists of two 
full-dimensional components; in general, it can have up to a constant number of 
them (because the pocket has O(1) complexity). We should also observe that the 
union complex is only modified by growing: once it contains a face it keeps it forever. 
Also, as we mentioned before, we should not expect the boundary of the new layer L 
to be represented in the union complex in its totality. 

Triangulating the complement of L '  in the pocket is quite easy because the 
boundary of  L '  is convex and the pocket has constant size. Outward growth is 
handled similarly. The only difference is that a pocket might now have a large size 
(remember those thin buffer pockets). It is an easy exercise, however, to carry out 
the triangulation in linear time. 

The Triangulation Algorithm. Returning now to our original problem, we grow the 
layer of P first inward and then outward. Then we switch and do the same with 
respect to Q. We iterate this process back and forth until the boundaries become of 
constant size. At that point, a simple finishing touch adds a few unbounded 
tetrahedra to create a full-fledged union complex that subdivides all of  R 3. Buffer 
pockets that have not yet been triangulated can be handled now, which produces the 
desired simplicial complex. The total space and time complexity is easily seen to 
follow a geometric series summing up to O(n). 

Theorem 2.1. It is possible to triangulate the region between the boundaries of two 
convex polytopes in linear time, using a linear number of faces. 

Remark. The dovetailing mechanism can be replaced by variants such as always 
thickening the bigger layer. However, it would be a big mistake to grow one layer all 
the way, and then work on the other. Similarly, simply merging the two hierarchies 
fails miserably. In both cases, on the order of  n log n tetrahedra might end up being 
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produced. As should be noted, a key idea to avoid this blowup has been to avoid 
refining the interior of the layers as they grow. 

3. Triangulat ing  Between a Polytope and a Terrain 

Let P and Q be respectively a convex polytope and a polyhedral terrain. We could 
also choose an arbitrary star-shaped polyhedron as Q, since it can be made into a 
terrain by a suitable projective transformation. For example, if a polyhedron Q is 
star-shaped with respect to the origin, then Q is transformed into a polyhedral 
terrain by a projective transformation sending the origin to the point at infinity. We 
assume that P and Q do not intersect, or if they do, that the input size n accounts 
for all the intersection features as well. 

Theorem 3.1. It is possible to triangulate the region between two disjoint polytopes (one 
convex, the other star-shaped), using O(n log n) tetrahedra, where n is the size of the 
input polyhedra. The size of  the triangulation is asymptotically optimal in the worst case. 

3.1. The Upper Bound 

A natural idea would be to compute the outer Dobkin-Kirkpatrick hierarchy of P 
and merge the terrain Q within it. Such a naive approach runs into problems, 
however, because terrain facets may intersect too many features of the hierarchy. 
We get around this problem by pruning the resulting cell complex appropriately. 
Recall from the previous section that the outer hierarchy of P subdivides ~3 into 
constant-complexity pockets and arbitrarily thin buffer pockets. Suppose that two 
facets f,  g of the terrain intersect the same pocket and: 

1. Both facets intersect the same set of pocket edges. 
2. No edge of either facet intersects the pocket. 
3. The portion D of the pocket between the two facets does not intersect the 

terrain (except at f ,  g). 

A polytope D that satisfies all these conditions is called a drum (Fig. 6): it 
consists of two facets (which are pieces of the terrain facets f,  g that cut all across 
the pocket) and at most a constant number of lateral facets (pieces of pocket facets); 

Fig. 6. A drum. 
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the pair ( f ,  g) constitutes the type of the drum. We say that two drums are adjacent 
if they share a common lateral facet. Our pruning strategy involves removing all the 
lateral facets between adjacent drums (along with the incident edges and vertices, 
unless they are needed by neighboring nondrum cells). Note that because two 
adjacent drums are always of the same type, pruning never brings in contact drums 
of different type. The merged drums are called superdrums. Two obvious questions 
are: How do we turn the resulting subdivision into a triangulation? Why is the 
triangulation of size O(n log n)? 

Completing the Triangulation. We examine each pocket separately. If the pocket is 
free of any terrain features, then triangulating it is routine (as usual, care must be 
taken that the triangulations of a facet should agree on both sides, but this is easy to 
enforce; see [5] for a thorough treatment of a more general and difficult version of 
that issue). If the pocket does not give rise to any drum, then no pruning takes place 
within and we must triangulate a portion of the terrain inside a single pocket. If  the 
pocket is not of the buffer type, then it is of constant size. So we can simply erect 
vertical walls from the edges and triangulate the resulting cylinders (which is a 
two-dimensional problem), while also adding enough internal Steiner points to make 
the facet triangulations compatible (see [1] and [8] for a similar idea). If the pocket is 
a buffer, then we can further assume that it contains no terrain vertex, so there is 
not even any need to erect walls. 

The only difficult case is when a pocket contains one or several drums. The 
portion of the pocket outside its drums can be handled as before. The question is 
how to triangulate a superdrum R. Such a polyhedron resembles a thick polygon 
(Fig. 7). It consists of two facets F, G (arbitrarily complex simple polygons within f 
and g) connected together by lateral facets. As in a drum, the edges of the lateral 
facets provide a bijection between the vertices of the polygons F and G. Note that a 
given pair (f ,  g) can give rise to more than one polyhedron R. 

Naive methods for triangulating R seem to run into all sorts of snags, as care 
must be taken to keep the size small. Recall that the pockets contributing the drums 
of R are arranged in a hierarchical fashion. The cross section of the outer hierarchy 
of P with the plane supporting F is a nonempty collection of O(log n) nested 
convex polygons, Co, C 1, etc. The 2d-pockets between them are convex polygons 
consisting of a base made of some number of coUinear segments and a constant-size 
polygonal arc (Fig. 8). The nondotted 2d-pockets in the figure indicate the drums. 
The nondotted region, which is precisely the facet F of R, is surrounded by a set of 

Fig. 7. A supcrdrum. 
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Fig. 8. A top view of the vicinity of a superdrum R. The union of the nondotted regions is the facet 
F of R, and the dotted regions are the blocking pockets. 

blocking 2d-pockets  (the dotted polygons). Note that  these blocking pockets might 
not  necessarily be a l l  adjacent to R. 

We describe a method for subdividing F and explain how it can be carried over to 
R. Let  B i be the set of vertices of  C a incident to blocking 2d-pockets.  Note that the 
B i a r e  not necessarily disjoint. By analogy, the points of B i are called blocking. We 
define D a to be the convex hull of  all the points in B 0 W .-. U B i. An easy way to 
visualize D i i s  t o  think of the blocking points of B~ as nails in a board and Ci as a 
tight rubber band which is to be snapped: the new position of C a is precisely D i . 

Recall that  we have an identical structure on the facet G, so we can similarly 
define a polygon D~ from C~. Note, however, that  although C i and C~ are in 
bijection, the same need not be true of D i and D~. We now match each D i and D~ 
by taking the convex hull H a of their union. Since the sequences Do, D 1 . . . .  and 
Db, D'  1 . . . .  are nested, the same is true of  the sequence of convex hulls H 0, H l , 
etc. Let K i = ( H  i n R) U Hi_l ,  SO that R = U ~= l ( g i  \ n i _  l). Note that K i  \ H i_  1 
is the region between two nested,  convex polytopes: it is free of any blocking 
material, so we can apply Theorem 2.1 to triangulate it. 

The Complexity of  the Triangulation. An edge of the terrain can appear  in only 
O(log n) pockets. It follows immediately that the number of te t rahedra produced 
outside of the drums is O(n log n). For the same reason the combined complexity of  
all the merged drums is at most O(n log n). The only question remaining is how 
many te t rahedra are produced during the triangulation of the superdrum R. The 
final triangulation step adds only a constant factor to the size, so it suffices to 
estimate the total complexity of the H 0, H t , etc. The  size of H i is proport ional  to 
the total number  of  edges in D i and D~. However, notice that the edges in all the 
Di 's  form a planar  graph, therefore it suffices to count the number  of vertices, which 
is IB01 + IBll + . . . .  Unfortunately, this estimate is too crude. We must take into 
consideration the fact that not all blocking points contribute to the complexity. In 
particular, it is clear that only points on blocking 2d-pockets  that are adjacent to R 
can become vertices of the (R n Hi)'s. Furthermore,  if more than two vertices lie on 
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Fig. 9. A blocking pocket. 

the base of a blocking 2d-pocket, only the two endpoints can play any role. It thus 
appears that the contribution of superdrums to the overall size of the triangulation is 
at most proportional to the total number of blocking 2d-pockets adjacent to 
superdrums. Such a 2d-pocket is blocking for one of two reasons: 

1. It is intersected by an edge of f or g (Fig. 9). 
2. It is not intersected by any edge of f or g but it is adjacent to what would be a 

drum D, if it were not for a terrain edge that intersects D (Fig. 10). 

Obviously, there are at most O(n log n) 2d-pockets of the first kind. The same is 
true of  the second kind of pockets, but to see why is a little more subtle. The crux is 
that no single terrain edge can create more than two 2d-pockets of type 2 within the 
same three-dimensional pocket G. The reason for this is that D cuts all across G 
and therefore no terrain edge can intersect both D and G \ D. We conclude that 
the triangulation is of size O(n log n). 

Fig. 10. Another blocking pocket. 
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The naive algorithm for constructing the triangulation involves intersecting each 
facet of the terrain with the entire outer hierarchy, which certainly takes no more 
than O(n 2) time. Within that running time, it is routine to carry out the entire 
pruning. It is possible to improve the running time slightly, by using fairly compli- 
cated batching techniques based on multidimensional searching. It is not worthwhile 
pursuing that line of attack. Whether a simple, quasi-linear algorithm exists remains 
an open question. 

3.2. The Lower Bound 

We construct a convex polytope and a terrain disjoint from it, such that any convex 
decomposition of the space between them requires on the order of n log n pieces, 
where n is the combined size of the input. 

Building the Polyhedra. The polytope is a cylinder with half of a regular 2m-gon as 
a base, where m = 2 p. It consists of: 

(i) a horizontal square of unit area facing up, 
(ii) m slabs facing down, 

(iii) two congruent vertical facets whose normals are parallel to the y-axis 
(Fig. 11). 

To define the terrain it is helpful to (conceptually) enclose the cylinder inside a 
tall box, with the square of the cylinder coinciding with the top of the box. The 
terrain consists of the plane supporting the bottom of the box, plus m blade-like 
protrusions abutting the slabs of the cylinder (Fig. 11 shows only one of them). Each 
protrusion is associated with a slab of the cylinder: it is essentially a trapezoid (with 
small but positive thickness) parallel to the x-axis; its top side is parallel to a slab of 
the cylinder and comes extremely close to it without touching it. The trapezoids are 
in one-to-one correspondence with the m slabs of the cylinder. We assume that each 
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Fig. 11. A convex polytope facing a terrain. 
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trapezoid extends all across the vertical box. This is why it is necessary to make the 
box tall enough: a simple calculation shows that the height of  the box should be on 
the order of m. Clearly, the total description size of  the input scene is n = O ( m ) .  

Our construction is complete once we specify: 

(i) The permutation that defines the correspondence between slabs and trape- 
zoids. 

(ii) The placement of  the trapezoids along the y-direction. 

Because the box is tall enough, any permutation on m elements is feasible. We 
choose the bit-reversal permutation 7r = ( i o , . . . , i m _ l )  , where i k is 1 plus the 
number obtained by writing k in binary over p bits and reversing the bits. For 
example, if p = 3, we obtain 

~ = ( 1 , 5 , 3 , 7 , 2 , 6 , 4 , 8 ) .  

P l a c i n g  G u a r d s .  The slabs can be thought of  as the leaves of  a complete binary tree 
of  depth p. An internal node v is thus naturally associated with a sequence of  
consecutive slabs s i , . . . ,  s j .  l e t  W ( v )  be the wedge formed by two planes tangent to 
the cylinder along the segments s i_  1 A s i and s j n  sj+ 1 . We choose the planes so 
that their normals bisect the angles between their respective slab pairs. If s i or sj is 
an extreme slab, then we take the vertical plane supporting the relevant wall of the 
box. Figure 12 shows such a wedge (with some liberty in the drawing to make it 
clearer). Given a node v (not a leaf, not a parent of  a leaf, not the root), consider 
the bounding line L v of  the wedge W ( v ) .  A simple geometric observation is that 
since the trapezoids are extremely close to the slabs, the line L v intersects (strictly) 
the trapezoids in correspondence with the slabs s i . . . . .  s j ,  and only those. Further- 
more, because of the bit-reversal permutation, as we move along the line we 
encounter trapezoids from the left and right children of  v in alternation. The 
intersection with the trapezoids are such tiny segments that we might as well as think 

e �9 
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q, 
Fig. 12. Placing guards. 
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of them as points q0 . . . .  , qi-i (given in ascending y-order). The midpoint of a 
segment of the form qlql+l, for 0 _< l < j -- i, is called a guard (the crosses in 
Fig. 12). Obviously, there is a total of about m log m guards overall. The lower 
bound will follow directly from the fact that by judicious placement of the trapezoids 
in the y-direction we can ensure that no two guards can see each other. 

Instead of assigning each trapezoid an explicit y-coordinate, which would compli- 
cate the proof, we define their placement in a recursive manner. We process the tree 
of  trapezoids bottom-up. For a node to be processed means that the entire block of 
trapezoids associated with it has been placed, up to translation (i.e., its degrees of 
freedom have been reduced to one). Since we proceed bottom-up, to process v 
simply means deciding the relative positioning of the blocks associated with the two 
children of v. To simplify matters further, we make the placements of all the blocks 
at a given level in the tree identical up to translation. Thus, it suffices to specify the 
placement of the nodes on the leftmost path of  the tree, Vo,. . . ,  vp. 

Let ek = (c /rn)  ~, for some small enough constant c > 0. For any 1 < k < p, we 
place the block for the right child of v k ahead of the block for the left child of v~ by 
precisely ek (Fig. 13). Observe that it is always easy (for c small enough) to fit the 
entire block of trapezoids within the box. The lower bound follows from the next 
lemma. 

L e m m a  3.2. No two guards can see each other. 

Proof. If the two guards p, q correspond to nodes v, w that are not in any 
ancestral relationship, then the convex cylindei itself obstructs their mutual visibility. 
If v = w, then the trapezoids passing through the points q0, ql,  etc., hide the guards 
from one another. So, the only case remaining is if, say, v is an ancestor of w. Let j 
and k (j  < k) be the heights of w and v, respectively. If  we project trapezoids and 
guards onto the xz-plane, we find that not only the projection of p lies in that of 
every trapezoid associated with v, but actually the projected point is at least at a 
distance proportional to d / m  away from any edge of the trapezoid's projection 
(Fig. 14), where D is the distance from the bounding line L,  to either of the two 
lines of contact between the wedge W(v)  and the cylinder. 

v k 

e k 

Fig. 13. Offset blocks. 
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P 

Fig. 14. Projected guards. 

Thus, two disks of radius I~(D/m)  exist which any infinite ray of visibility from p 
must necessarily avoid: these disks are centered on and normal to the line Lv, and 
they lie on each side of p at a distance ek/2 from it (Fig. 15). 

Let p '  be the point of L w nearest to p (Fig. 16). Because of the two obstructing 
disks, p cannot see any point of L w away from p '  by more than O(Ipp' lekm/D),  
which is O(clpp'lej/D). However, ]pp't is at most D, so by setting c small enough, 
we find that no point on L w away from p '  by more than ~i/3 can see p. 
Nevertheless, q lies at least (ej - ek)/2 away from p ' ,  which gives a contradiction. 

[]  

4. Genus and Reflex Angles 

Intuitively, it seems clear that a polyhedron with large genus should have many 
reflex dihedral angles (we call the corresponding edges reflex). Recall that a 
polyhedron of genus g is a 3-manifold with piecewise-linear boundary that is 

o, 

~p 

�9 . ~  ~ 7.o. 
\ j "  

Fig. 15. Avoiding disks. 
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p" .. ek 

L w  L v 

Fig. 16. Completing the proof. 

homeomorphic  to a torus with g holes. If r is the number of reflex edges, we show 
that 

g _ < r +  1. (1) 

The curvature k v at the vertex v is defined to be 

k v = 2 ~  i 

where 0 i is the angle at v of a triangle incident to u. The Gauss -Bonne t  formula 
relates the total curvature to the genus: 

~ k  v = 2 - 2g.  
u 

Inequality (1) follows easily from the next lemma. 

Lemma 4.1. The number o f  reflex edges incident to a vertex v is at least - k v .  

Proof. Project the facets incident to v onto a unit sphere centered at v. This 
produces a simple, closed curve made of geodesic pieces. In other  words, it is a 
"polygon" on the sphere made of  arcs of great circles. A reflex edge gives rise to a 
reflex angle on the polygon and vice versa. It is easy to see that 

L < 2~-(R + 1), (2) 

where L is the length of the curve and R is its number of reflex angles. Indeed, if R 
is zero, then the inequality simply states the classical fact that the curvature at a 
locally convex point  is nonnegative. If R is nonzero, then we can draw arcs of great  
circles from each reflex point along the bisector of its reflex angle, and thus 
decompose the unit sphere into at most R + 1 convex regions (i.e., regions where 
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any two points  are visible along an  arc of great  circle connect ing  them). The  case 
R = 0 can now be used R + 1 t imes to establish (2). The l emma follows immediate ly  
from the fact that  

L = Y'.O i = 2Ir(1  - kv).  
i 

[] 

ChazeUe and  Palios [8] have given an  algori thm for t r iangulat ing a genus-0 
polyhedron with n vertices and r reflex angles, us ing O(n + r E) tetrahedra.  The 
algori thm works for arbi trary genus g, bu t  the b o u n d  becomes  O(n + (r + g)2) 
te t rahedra.  The inequali ty g _< r + 1 implies that the true b o u n d  is still O(n + r2). 
In  other  words, the complexity b o u n d  for genus  0 applies to polyhedra of arbi trary 
genus as well. 
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