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Abstract. The existence of different kinds of local rules is established for many 
sets of pentagonal quasi-crystal tilings. For each t c ~ there is a set ~ of 
pentagonal filings of the same local isomorphism class; the case t = 0 corresponds 
to the Penrose filings. It is proved that the set ~t admits a local rule which does not 
involve any colorings (or markings, decorations) if and only if t = m + nr. In other 
words, this set of tilings is totally characterized by patches of some finite radius, or 
r-maps. When t = (m + nv/5)/q the set ~t admits a local rule which involves 
colorings. For the set of Penrose tilings the construction here leads exactly to the 

1 Penrose matching rules. Local rules for the case t = 7 are presented. 

Introduction 

The aim of this paper is to find local rules (or matching rules) which force tilings to 
belong to a specific set of tilings. The tilings considered in this paper are the sets of  
pentagonal quasi-crystal tilings, also sometimes called quasi-periodic tilings with 
fivefold symmetry, or generalized Penrose two-dimensional tilings. These tilings have 
received a great deal of attention among mathematicians and physicists (see [dB1], 
[KP], and [IS]). The method used in this paper can be applied to other classes of 
quasi-periodic tilings of two or higher dimensions. The infinitely many sets of 
pentagonal quasi-crystals are parametrized by t ~ R; we denote them by gtt. The 
exact definition of these tilings are given in Section 1. They have many nice 
properties, and they are quasi-periodic by perhaps all the known definitions of 
quasi-periodicity. For each t the set ~ consists of  tilings of the same local 
isomorphism class: every finite part of a tiling in ~t can be found in any other tiling 
in ffTt. All these tilings are obtained by the strip projection method [dB1], [KP]. 
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Fig. 1. The Penrose local rule. 

The set of tilings J0  was discovered by Penrose; it is perhaps the best known 
among nonperiodic tilings. As an example we give here the local rule which forces 
tilings to belong to ~0 (see [P] and [dB1]). Let us consider two rhombs whose acute 
angles are ~-/5 and 27r/5, and whose edges are of the same length. The edges are 
equipped with arrows as in Fig. l(a). A tiling of a two-dimensional plane by these 
"arrowed" rhombs is said to satisfy the Penrose local rule if every edge of this tiling 
has a definite arrow, that is, the arrows of an edge coming from two rhombs incident 
to this edge are coincident. 

Suppose T is a tiling of the plane by copies of these rhombs, without any arrows. 
We say that T satisfies the Penrose local rule if there is a way to put arrows on 
edges of rhombs of T such that the arrowed tiling satisfies the Penrose local rule. A 
fundamental result of De Bruijn states that the set J0 is the set of all tilings 
satisfying the Penrose local rule. 

The main question of this paper is whether there are similar local rules for other 
sets gtt of pentagonal quasi-crystals. This question is also studied in [KP] and [IS]. 

Note that a "local rule," in some sense, contains information in a local finite 
radius. It is far from trivial to decide when a local rule forces tilings, say, to be 
nonperiodic, or quasi-periodic, or to belong to a specific set consisting of tilings of 
the same isomorphism class. The question whether a set of (usually quasi-periodic in 
some sense) tilings admits a local rule also has importance for physics. It seems that 
only such sets of tilings can serve as model for real quasi-crystals such as those 
discovered in 1984 (see discussions in [K], [Lev], and [LPS2]). The similar question of 
finding a set of prototiles such that every tiling by these prototiles must be aperiodic, 
or, more difficult, quasi-periodic in some sense but not periodic, seems interesting 
and has been investigated by many authors. 
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There are two types of  local rules discussed in this paper; their definition are 
given in Section 1. The main difference between them is the first one does not 
involve any coloring (marking, decorations) while the second one does. 

Our  chief results can be summarized as follows. First we prove that if t = (m + 
n v ~ ) / q ,  then the set ffTt admits a local rule of type 2. Furthermore, this local rule 
consists of patches containing only two neighboring tiles. The case t = 0 corresponds 
to the Penrose tilings, and the construction of local rules here leads exactly to the 
Penrose local rule. Hence De Bruijn's result can be regarded as a special case of our 
results. We prove that if t = m + n~" where ~- = (1 + ~ - ) / 2 ,  then this local rule can 
be realized by a local rule of type 1; hence ~ admits a local rule of  type 1. It follows 
from a result of Ingersent and Steinhardt [IS] that t = m + n~" is also a necessary 
condition for the existence of local rules of type 1. Hence we have a criterion for the 
existence of  local rules of  type 1. As an illustration, we describe the local rule (of 

1 type 2) for the case t = ~-. Actually, we have to refine the method so that we could 
get a simple local rule. This local rule is the Kleman-Pavlovitch local rule [KP] 
enhanced with some condition on the vertex which is very similar to the Ammann 
and Socolar local rules for eight-fold and twelve-fold tilings. 

The existence of local rules of type 2 has been established for sets of quasi-crystals 
based on quadratic irrationality of  any dimensions [LPS1], [LPS2]. The eight-fold 
two-dimensional and icosahedral three-dimensional tilings are special cases of these 
results. 

We would like to emphasize the fact that many sets of tilings that do not admit 
local rules of the first type do admit local rules of the second type. An example is the 
set of tilings with eight-fold symmetry (see [B], [dB2], [Lel], and [Sol]), or any set ~-t 
with t = ( m  + n v / 5 ) / q  where t is not of the form m + n,c. For those sets o f  tilings, 
the problem of coloring a tiling to get a colored tiling satisfying the local rule of type 
2 is not a local problem: one cannot decide how to color a tile by inspecting a 
bounded region around this tile. As observed by Senechal [Se] there is a tiling in ffTt 
which can be colored in two different ways. This is very different from the set of 
penrose tilings. For this class, we can decide how to arrow the edges of a tile by 
inspection around this tile within the radius 2; and every tiling can be arrowed in a 
unique way. 

Here is a very rough sketch of the proof of the existence of a type 2 local rule. By 
the cut method, there is a periodic tiling ~'t of R 4 whose tiles are prisms with the 
base parallel to a two-dimensional plane E; and every tiling in ff~t is obtained as a 
slice of : t  by a two-dimensional plane parallel to E. In other words, a tiling in ffTt is 
the projection of the tiles of : t  which meet a fixed 2-plane parallel to E. Suppose T 
is a tiling such that every pair of neighboring tiles of  T is a translate of  a pair of  
neighboring tiles of some tiling in ffTt (i.e., T satisfies some special local rule). Then 
we can lift T onto @t: we can choose a collection of  tiles of  ~'t which project onto 
tiles of T. The lift has an important property: for every pair of neighboring members 
in this collection, there is a plane parallel to E which meets the interior of both of 
them. In some cases this is enough to prove that: 

(-k) There is a plane parallel to E meeting all the members of this collection. 

This means T is defined by a slice of ~t, i.e., T belongs to ~t. 
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Technically the proof of (~-) is rather complicated. First we have to prove that our 
local rule is a weak local rule in the sense of  Levitov [Lev]. Actually this was 
established in a general setting in [LPS2]; we give a proof for our case in the 
Appendix. Then we have to study the boundary of  the tiles in @t and in general we 
have to replace @t by its "refinement" so that the boundary matches some condi- 
tions. This step corresponds to the coloring of the local rules. The method used here 
can be easily generalized for other sets of quasi-periodic tilings obtained by the 
projection method. There is no specific property of the case investigated here that is 
used for the proof, except that in this case, due to some symmetry, we can reduce 
the number of verifications. The general result of  the existence of type 2 local rules 
(local rules involving coloring) is formulated in Section 7, Theorem 7.1. 

To establish the existence of a type 1 local rule we do need some specific property 
of the case under investigation. Actually we prove that if t = m + n~-, there is some 
finite radius such that the coloring of  a tile is uniquely defined by the configuration 
of the tiling inside the disk of  this radius around the tile. It also follows from the 
proof that the radius is linearly dependent on n. 

The paper is organized as follows. In Section 1 we introduce definitions and 
preliminary facts. In Section 2 some facts about the cut method are recalled. We 
follow the paper [ODK]. In Section 3 we give the proof of the existence of a local 
rule of  type 2 for the case t = 0; the proof is readily generalized in Section 4 for the 
case t = (m + nv/5) /q.  We also prove that the local rule obtained for t = 0 is 
equivalent to the Penrose local rule. Section 5 is devoted to the case t = rn + n~'; 
the existence of  a local rule of type 1 is proved. In Section 6 we prove a technical 
result used in Sections 3 and 4. Section 7 contains the example t = �89 some 
generalizations, and concluding remarks. In the Appendix we prove a generalization 
of a result of Levitov concerning the weak local rule. 

1. Definitions and Preliminary Facts 

For technical convenience some of our definitions (tilings, prototiles, etc.) are more 
special than is generally the case. In particular, we use translational congruence 
instead of  the usual congruence which involves rotations and reflections (our results 
can be easily reformulated in terms of  the usual congruence). 

1.1. On Tilings and Local Rules 

Two subsets of R k are called congruent if the second is a translate of  the first. We 
always distinguish between two congruent polyhedra. 

A tiling of R k is a family of  k-dimensional polyhedra, called the tiles of this tiling, 
which covers R k without overlaps (that is, the interiors of  two different tiles have 
empty intersection). In this paper, except in the case of  the oblique periodic tilings 
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which appear later, all tilings are assumed to be face-to-face type, i.e., the intersec- 
tion of every two tiles is a common facet of lower dimension, if not empty. A vertex, 
edge, facet, etc., of a tiling is, respectively, any vertex, edge, facet, etc., of  one of its 
tiles. For a given tiling the translation classes of tiles are called the prototiles of this 
tiling. All the tilings encountered in this paper are tilings of some Euclidean space 
with a fixed origin 0. We use the following definition of convergence of tilings 
(compare [Ral] and [Ro]). 

Definition. A sequence of tilings T1, T 2 . . . . .  of Ek converges to a tiling T if, for 
every r > 0, there is a natural number N such that, for i > N, the tiling T/ coincides 
with T inside the disk U r with center at 0 and radius r. 

We define the closure ~ of a set X / of tilings as the set of  all the limits of 
sequences of tilings belonging to X/. A set of tilings is closed if it is coincident with 
its closure. 

A n  r-map o f  a tiling T at a vertex v is the collection of all the tiles lying inside the 
ball of radius r centered at v. More generally, an r-map is any r-map of any tiling at 
any vertex. Two r-maps are congruent if the second is a translate of the first. 

Definition. A local rule of type 1 of radius r is a finite set of  r-maps. A tiling T 
satisfies a local rule ~r of type 1 of radius r if every r-map of T is congruent to one 
from ~r 

By "a local rule of type 1" we mean a local rule of type 1 of some radius. 

1.2. Coloring 

A colored polyhedron is a pair (P, j ) w h e r e  P is a polyhedron and j is an arbitrary 
element, called the color of this polyhedron. Two colored polyhedra are congruent if 
their colors are the same and the second is a translate of the first. A colored tiling 
(resp. a colored r-map) is a tiling (resp. r-map) whose tiles are colored polyhedra. 
Two colored r-maps are congruent if the second is a translate of the first and colors 
of the corresponding tiles are coincident. As in the previous section, we can define 
colored r-maps of colored tilings, limits of sequences of colored tilings, and closures 
of sets of colored tilings. 

The following definition of a local rule of type 2 is introduced only for the 
two-dimensional case. 

A n  edge-configuration is a collection of  two colored polygons having a full 
common edge. Two edge-configurations are congruent if the second is a translate of 
the first and the corresponding colors are the same. For a colored tiling of ~2 the 
edge-configuration of  an edge is the pair of  colored tiles incident to this edge. 

Definition. A local rule of  type 2 is a finite set of edge-configurations. A colored 
tiling satisfies a local rule of type 2 ~ '  if the edge-configuration of  every its edge is 
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congruent to one from ~ ' .  A noncolored tiling satisfies this local rule if it can be 
colored to become a colored tiling satisfying this local rule. 

D e f i n i t i o n .  A set of noncolored tilings admits a local rule of any type if it is the set 
of all tilings satisfying this local rule. 

It is easy to see that if a set of tilings admits a local rule of any type, then this set 
is closed. 

R e m a r k s .  

1. The coloring makes the number of  prototiles become larger. For example the 
two Penrose tiles in Fig. l(b) are not congruent. 

2. The Penrose local rule is a local rule of  type 2. All the proofs for the absence 
of local rules (maybe under some restrictions) in [B], [L], [Lel], and [IS] are 
only for local rules of type 1. 

3. In [Lel], [Le2], and [LPS2] local rules of  type 1 are called simply "local rule"; 
local rules of type 2 are special cases of "local rules with coloring" there. 
Danzer [D2] calls local rules of  type 2 "strictly local matching rules." Our 
definition of a local rule of type 1 corresponds to the r-rule of Levitov [Lev]. 

1.3. The Superspace R 5 

In the Euclidean space R 5 with origin 0 we fix a standard base 60, 81, o~2, E3, 84. Let 
Z 5 be the lattice of integer points, and let Qv~- be the set of  all numbers of the form 
a + bye-, where a and b are rational numbers. If x is a point in (Qv~)  5, then 
x = y  + zv~- where y and z are rational points in R 5, i.e., points with rational 
coordinates. The point y - z~/5 is called the conjugate of  x. If X and Y are subsets 
o f R  5 put X + Y = { x + y l x ~ X , y ~ Y } , a n d  - X = { - x l x ~ X } .  

A subspace (as a vector space) of  R 5 is called a homogeneous plane and its 
translates are called planes; an n-plane is a plane of dimension n. A plane F is 
called rational if F is homogeneous and spanned by vectors with rational coordi- 
nates. 

Consider the action of cyclic group Z 5 = (g ig  s = 1) on R 5 by cyclic permutation 
of the base: g(8  i) = (8i+ 1) (mod5). The space R 5 decomposes into three invariant 
subspaces E, F,, and A. Here A is the one-dimensional subspace spanned by 
6 = (80 + 81 + 82 + e 3 + 84)/5, E is the 2-plane spanned by two vectors with 
coordinates ( 4 , ~  - 1 , -  V3- - 1 , - ~ / 5  - 1, x/5 - 1) and (v~ - 1,4,~/5 - 
1, - v~ - 1, - v~- - 1), F.. is the 2-plane spanned by the conjugates of  these two 
vectors. The element g acts on E as rotation by 27r/5, on E as rotation by 47r/5, and 
on A as the identity. 

Putting E J-= E + A, •s = E �9 E �9 A = E �9 E • Let p , p , p •  be, respec- 
tively, the projectors of R 5 on E , E , E  x A. We define e i ~8i) ,  ei • , = = p•  (o~ , and 
ei  = g'J(si).  The projection of  every of  8 i on A is 5. Hence Pa(~) is a multiple of 6 
for every ~ ~ Z 5. 
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For a real number t let Et = ~ + t6. Denote the 4-plane E + E't by Rt 4. Then 
ff~5 = (-Jt~R R4. For example, R~ is the rational 4-plane E �9 E; it is the set of all 
points whose coordinates sum to 0. l e t  A = R g C3 7/5 be the set of  all integer points 
lying in ~4; it is the lattice generated by e 0 - el, 8l - ~2, ea - 63, e3 - 64. 

The following is easy to check. 

Proposition 1.1. p(~)  = p(~), where ~, 71 ~ 7/5, i f  and only i f  ~ - ~l is  a multiple 
of S~. 

Definition. Let x = p(~)  where ~ = E 4 i=oni~i ,  ni ~ 7/, is an integer point. The 
index(x) is the remainder of  the sum Ea=oni modulo 5 (see also [dB1] and [KP]). 

It follows from Proposition 1.1 that the index is well defined; it is defined only for 
points in p(7/5). For x, y ~ p(7/5) we have index(x + y)  =- index(x) + index(y) 
(rood 5). 

The projection p(7/5) on E is a dense 7/-module generated by five vectors 
e l , . . . ,  e 5 which point to the vertices of a regular pentagon (see Fig. 2). The set 
p • (7/5) is not dense in E l but is contained and dense in the union of parallel and 
equidistant 2-planes E + k 6, where k ~ 7/. 

The following is also easy to check. 

Proposition 1.2. 

(a) I f  pa( ~ ) = m 6, then m ~ 7/ and m - index(p( s ~ )) (rood 5). 
(b) I f  Pa(~) = O, where ~ ~ 7/5, then ~ belongs to A (recall that A = R~ N 7/5). 
(c) I f  two rational points  ~, ~' have the same projection on E • , then ~ = ~'. 
(d) I r a  rational k-plane F contains E, then it contains R 4 = E �9 E. 

1.4. The Strip Projection Method 

If Vl, u 2 . . . . .  u k are vectors of ~5 let Pol(v 1 . . . . .  v k) be the polyhedron: 

P~ . . . . .  Vk)=li~k~ivi~'iE[O~l]l " ~ i = 1  

e 1 

O2 

e 

04 

Oo 

"~3 

02 

Fig. 2. The projections of the base. 
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The set y = Pol(e0, Opl, E2, ~3, ~ is the unit hypercube of the lattice 7/5. The set 
Pol(6i, e:) (for 0 _ i < j _< 4) is called a 2-facet of 3' and its translates ~: + Pol(ei, s:), 
where s r ~ 7/5, are called the 2-facets of the lattice 7/5. 

The set of  all pairs (i, j )  with 0 < i < j _< 4 is denoted by M. For convenience a 
rhomb in this paper  always refers to a translate of one of ten P1 = Pol(ei, ej) with 
I = (i, j )  ~ M. Up to rotation there are only two rhombs from the ten Pi, they are 
shown in Fig. l(a). 

For every a ~ E • let S~ be the strip defined by shifting the unit hypercube y 
along t h e 2 - p l a n e E +  a : S ~ = E + a +  7, a E E  •  

Definition. a ~ E • is regular if the boundary of the strip S~ does not contain any 
integer point. Otherwise a is singular. 

The following facts are fundamental  in the strip projection method. For regular a 
the union of  all the 2-facets of the lattice 7/5 lying in the strip S~ is a two-dimen- 
sional continuous surface. This surface contains all the vertices of the lattice 7/5 
falling inside S~ and has an obvious polyhedral structure. By projecting this polyhe- 
dral structure along E + onto E we get a tiling T~ of E. Note that there are no 
overlaps: the restriction of p to this surface is one-to-one. The prototiles are the ten 
rhombs P1, I ~ M. This method of obtaining the tilings T~ is the strip projection 
method, applied to our setting (see [dB1], [GR], and [ODK]). 

Denote  bySr(resp .  5~t) the set of all tilings T~ for regular a ~ E • (resp. a ~ E't) 
and their translates. 

Definition. A tiling of the closure J of  J is called a pentagonal quasi-crystal. 

Of  course if a ~ E't is regular, then any translate of T~ is in 4 ,  but other tilings 
in ~ exist as well. We describe such tilings in Section 2.5. 

Two important properties of  pentagonal quasi-crystals are [dB1], [KP], [ODK]: 

Proposition 1.3. 

(a) Local isomorphism: for every two tilings in ~tt, for every r > O, every r-map of 
the first tiling is congruent to an r-map of the second. 

(b) Symmetry: if T is a tiling of ~tt, then the rotation of T by 27r/5 also belongs 
tor 

Remark.  Some authors consider only regular cases, that is, the sets JTt and 3-  but 
not their closures. However, as argued above, the question of finding a local rule for 
~a~t,5 r is not relevant, because these sets are not closed. In each set of ~tt ,3-there are 
two different tilings coincident in a half-plane. 
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2. The Cut Method 

2.1. The Cut Method in the Superspace 

A set X in ~5 is called a prism if X = p (X)  + p • (X).  If X and Y are prisms, then 
their intersection is also a prism, and we have the nice formula 

X •  Y =  [p (X)  • p(Y)]  + [p• ( X )  A p•  (Y)].  (1) 

This makes it easy to study the intersection of two prisms. 

Definition: Suppose X is a prism such that p z (X)  is a polyhedron. We define the 
parallel boundary of X as 

p ( X )  + O(pJ-(X)), 

where 0(p �9 (X))  is the boundary of p • (X).  

The parallel boundary of a prism is a part of its boundary. 
For I = (i0, i l) ~ M recall that P1 is the rhomb Pol(ei0, eil). Let 

PI • = - Pol(e/~ , e :~jl , eye), 

where (i0, il, J0, Jl, J2) is a permutation of (0, 1, 2, 3, 4). Put C 1 = Pt + P~• ; it is a 
prism. 

Consider the family @ consisting of all prisms of the form C 1 + ~ for I ~ M and 
~ 7/5. It is proved in [ODK] that this family covers ~s without any overlaps, i.e., it 

is a tiling of Es. The tiling ~' is not of  face-to-face type and is invariant under 
translations by vectors of 7/5. The parallel boundary B of G, by definition, is the 
union of the parallel boundaries of all the tiles of C. It is a cellular complex of 
dimension 4. If a ~ E  • is such that E +  a does not meet B, then all the 
intersections of E + a with tiels of @ form a cover of E + a without overlaps and 
define a tiling of E + a. Projecting along E • we get a tiling of E, called the tiling 
defined by ~ and a.  If E + a meets B, then all the intersections of  E + a with G 
covers E + a with overlaps. The fundamental result of [ODK] can be stated as 
follows. 

Theorem 2.1. The 2-plane E + a does not meet B if  and only if  a is regular and in 
this case the tiling defined by • and a is coincident with the tiling T~ obtained by the 
strip projection method. 

It follows that the set I r  of all singular points is p • (B), Ir  = p i (B). We have the 
following description of  Ir. For I = (i, j )  ~ M let H I be the 2-plane spanned by eg • 
and e ~ .  Then H t + p•  (7/5) is a dense family of parallel 2-planes in E • . 
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Proposition 2.2 (see [ODK]). The set I r  of  all singular points is the union of  ten 
families o f  parallel planes H I + p •  (zs) ,  I ~ M: 

I r  = p •  (B) = I,.J ( / / i  + p •  (77s)). 
I ~ M  

Of course I r  is a dense set in E x but it has measure 0. 

2.2. Index o f  Rhombs 

We have ~tt = Jtt§ 1, hence we study ~tt for - 1 < t < 0. 
Recall  that  a rhomb is always referred to as a translate of one of ten Pi, I ~ M. 

Suppose a rhomb P has one vertex in p(2-~5). Then all the four vertices are in p(7/5), 
hence they each have an index (see Section 1.3). Let  v and v'  be  two vertices such 
that the segment [v,v']  is an edge of P.  Then the vector vv'  is ei ther  one of  
e0, el,  e2, e3, e 4 or one of - e  o, - e l , - e 2 , - e 3 , - e  4. In the first case i n d e x ( v ' ) =  
index(v) + 1, in the second index(v ' )  = index(v) - 1. Hence the four vertices can 
take only three  values of  the index i, i + 1, i + 2 (mod 5) for some i ~ {0, 1, 2, 3, 4}. 

Definition. This number  i is called the index of  this rhomb. 

In case P = p ( ~ +  Cl) , ~ E  775, I ~ M ,  it is easy to see that i n d e x ( P ) =  
index(p(~)).  The index is important  due to the following proposit ion which is a 
consequence of  Proposit ion 1.2(b). 

Proposition 2.3. 
p(A)  i f  and only 

Proposition 2.4. 
indices O, 1, 2 i f  

Suppose P, P '  are congruent rhombs, P = P '  + v. Then v belongs to 
if index(P) = index( P '  ). 

For regular ct ~ E 1 the tiles o f  T~ have indices 1 or 2 if t = 0 and 
- 1 < t < O. (The case t = 0 has been proved in [dB1].) 

Proof. Suppose P is a tile of Ta. Then P = p (~  + C 1) for some prism ~ + C z 
meeting E + a ,  by the cut method.  Since E + a does not meet the parallel  
boundary of  the prism ~: + C t, it meets the  interior of this prism. Projecting on A, 
we have pa(E + a )  = t~ and pA(C 1) = [0, --38].  Let  Pa(~)  = m~,  m ~ 7/. Then 
m8 + [0, - 3 / ~ ]  contains t8 as an interior point. It follows that, when t = 0, m must 
be 1 or 2, and when - 1 < t < 0, then m must  be 0, 1, or 2. By Proposit ion 1.2(a) we 
have m = index(p(~))  = index(P).  [ ]  

2.3. The Cut Method in Four-Dimensional Planes 

We have seen that every tiling T~ is the slice of a periodic structure in ~5 by a 
2-plane. For  a fixed t every tiling T a with a ~ Et can be obtained by a slice of a 
periodic structure in the  4-plane R 4 as follows. 

The intersection of  R 4 with a tile ~ + C I of ~' is 

[P(~) + P1] § let n (p• (~)  + p/i)] ,  
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/ 

/ 

Fig. 3. Intersections of ~2 t and P~.  

t=-1/2 

t=-2 

by formula (1). The first term is a translate of the rhomb P~, the second term is 
either a point or a polygon, if it is not empty (see Fig. 3). Hence the intersection of 
E7 with a tile of  e~ is either of dimension 2 or 4. Let ev t be the family of all the 
four-dimensional intersections of ~4 with tiles of ~.  The family : t  is a tiling of Rt 4 
and has two fundamental properties: 

(i) It is invariant under translations from A (recall that A = ~4 ~ 7/5 is a lattice 
in R4). 

(ii) All its members are prisms; there are a finite number of  them up to 
congruence. 

Definition. Any family of  four-dimensional polyhedra in ~4 covering R 4 without 
overlaps and satisfying conditions (i) and (ii) above is called an oblique periodic tiling 
of R 4 

It follows immediately from the construction that, for a regular a ~ Et, the tiling 
T~ is obtained by intersecting E + a with members of the family 6~ t and then 
projecting onto E. 

Definition. Suppose C is a prism in Rt 4 such that p • (C) is a polygon. The sum of 
p(C) and an edge of polygon p • (C) is called a small wall of C. The union of all the 
small walls of C is its parallel boundary. 

Suppose ~' is an oblique periodic tiling of R 4 whose tiles are colored polyhedra. 
Let B ( ~ )  be the union of all the small walls of all the tiles of  ~. If ct ~ E t is such 
that E + a does not meet B(~'), then by intersecting E + a with the colored tiles of 
g/ and then projecting onto E we get a colored tiling, called the colored tiling 
defined by ~' and a. Denote b y O ' ( ~ )  the set of  all such colored tilings and their 
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translates, and byY(~/)  the closure of ~q(~). When ~' is a noncolored tiling we use a 
similar definition, the set ~ ( ~ ' )  is then a set of  noncolored tilings. 

Of course ff'(@t) = fftt- The projection on Et of the parallel boundary ~ ' ( G  t) is the 
set of singular points lying in E r Hence we get 

Proposition 2.5. The projection o f  the parallel boundary B(~' t) onto Et is I r  • Et: 

p• (B(Gt)) = Ir f~ F't. 

2.4. Lifting a Tiling 

Suppose that ~" is an oblique periodic tiling of ~4 whose tiles are colored polyhedra, 
and that T is a colored tiling of E. 

Definition. A lift of a tile P of  T into ~ is a tile C of ~/such that p(C) = P and the 
colors of P and C are the same. A lift of  T into ~/is  a map l: {tiles of T} ~ {prisms 
of ~/} such that for every tile P of T the tile l (P)  is a lift of P into ~'. 

Of course the lift does not always exist, and when one does exist it may not be 
unique. 

Definition. A lift l of a tiling T into ~' is strongly connected if, for every pair of tiles 
P1, P2 sharing a common edge, the polygons p • (I(P1)), p • (l(P2)) have a common 
interior point. 

A simple but important example is the case when T is a colored tiling defined by 
a and ~', where E + a does not meet the parallel boundary B(~'). Then T has a lift 
into ~ :  I(P), where P is a tile of T, is the tile of ~ which meets E + a and projects 
into P. This lift is strongly connected because all the polygons p • ( l(P))  contain 
as an interior point. 

Let P be a rhomb having vertices in p(7/5). There may be no lift of P into ~ but 
there are always lifts of  P into ~'; they are of the form C + k56, k ~ 2~, where C is 
congruent to one of ten prisms C r The projection pa(Cl) is the segment [0, - 3 3 ] .  
Hence there is at most one prism from the set C + k56 which meets  ~7. Thus we 
have: 

Proposition 2.6. Suppose P is a rhomb having vertices in p(7/5). There is at most one 
tile C o f  t~ t such that p(C) = P. 

This means the lift into ~'t is always unique. 
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2. 5. Singular Cases 

For completeness we describe the "singular tilings," i.e., all the tilings in f f ~ ,  
~ \ J t t .  The results here are not used in what follows. 

Suppose a ~ Ir. Recall that Ir  is a family of 2-planes in E • . There are several 
2-planes from Ir  going through a ;  they partition E • into many pairs, called 
"corners." 

Proposition 2.7. Suppose o~i, i = 1, 2 . . . .  are regular, lie in one comer o f  E • 
separated by 2-planes from I r  going through a, and converge to c~ when i ~ ~. Then 
the sequence of  tilings T~i converges to a tiling, called the tiling defined by ct and this 
comer. This tiling depends only on the comer containing oti, but not on the choice o f  
points a i. 

Proof. We have to prove that for r > 0 a number N exists such that if i > N, then 
all the tilings T,, coincide inside the disk U r with center at 0 and radius r. Consider 
the union Z of parallel boundaries of all prisms (from the family @) which projects 
onto E into rhombs intersecting U r. l e t  Y = p i (Z). Of course Y c Ir, but it is not a 
dense set in E l :  for large r it divides a small neighborhood of a just as the 
2-planes from Ir  going through c~ do. Hence for large i all the points a i lie in 
one part of E divided by Y. Obviously for these a i the tilings To, are the same 
inside U r. []  

It can be proved that no two tilings defined by an irregular ~ and two different 
corners are the same, and that the closure 2 of 3-  is the set of: 

(a) All T~ with regular a ,  and their translates. 
(b) All tilings defined by singular a and a corner of E • divided by 2-planes from 

Ir  going through a,  and their translates. 

The singular cases in Jtt are similar. Suppose a ~ Et is singular. The set I r  n Et 
is a family of lines in Et. There are several lines in I r  n Et going through c~; they 
partition E t into many parts. If a; is a sequence of regular points lying in one part 
and converging to a ,  then the corresponding tilings converging to a tiling, called the 
tiling defined by a and this part. Of course this tiling belongs to ~ and it can be 
proved that ~tt, up to translations, is just the set of all such filings plus "regular" 
ones. Using this picture the topology of J,,Jtt can be easily described. 

3. The Penrose Tilings 

Theorem 3.1. The set 5-0 admits a local rule o f  type 2. 

This theorem was first proved by de Bruijn [dB1]. The proof here is different from 
that of  de Bruijn and will be soon generalized for other cases. 

We present a concrete local rule which is actually equivalent to the Penrose local 
rule. We make use of the Main Technical Theorem that is proven in Section 6. 
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3.1. Coloring and the Local Rule for Joo 

We describe in more detail the tiles (or members)  of  the family @0. Each tile is an 
intersection (C 1 + ~) n R 4. 

Definition. For  a tile C of ~o let index(C) = index(p(C)). 

So far we have defined the index for points in p(7/5), for rhombs with vertices in 
p(ZS), and for tiles of  ~0. 

Proposition 3.2. Up to translations by vectors from A the family G o has 20 different 
members. 

Proof. Fix I ~ M .  The intersections C ] = ( C  1+ G 0 ) ~ l ~  g and C 2 = ( C  t + 2 6 0  ) 
C3 ~4 are not congruent: their projections on F, are two triangles which are not 
congruent. We prove that every member  of 6% is a translate of one of twenty C], 
j = 1, 2, I ~ M, translated by a vector in A. 

A member  of 6% is the intersection ( r  + C 1) n R 4, where R 4 meets the interior 
of  ~: + C I. Then PA(r must be j6 where j = 1 or 2 (see Proposition 2.4). By 
Proposition 1.2, 7 / = s  r - J ~ 0  belongs to A. The translation by ~7 transforms C] into 
the intersection (~ + C t) n ~4. [] 

The index of a tile CJ + ~ of G 0 is j. In this section we consider the index of a 
tile of ~0 to be its color. Now G 0 is an oblique periodic tiling of ~4 whose tiles are 
colored prisms. We use the notation G~ for this colored oblique periodic tiling. If 
c~ ~ E is regular, let T~ be the colored tiling defined by c~ and 0'8; it has 20 
prototiles: (Px, 1), (PI, 2), I ~ M. The color of a tile P of Tf  is its index. The set 
f f ' ( ~ )  (see the definition in Section 2.3) is the closure of the set of all Tf. If we 
ignore the color, then f f ( ~ )  = ~0. 

We define the following local rule of  type 2. Let  ~'0 denote the set of all 
edge-configurations of  tilings f rom f f ( ~ ) .  Up  to congruence there are only a finite 
number  of  elements in ~0 .  Then a colored tiling T satisfies the local rule ~q~0 if and 
only if every edge-configuration of T is congruent to an edge-configuration of a 
colored tiling T~, a ~ E. A concrete description of this local rule is given later in 
Section 3.4. 

Theorem 3.3. If T is a colored tiling satisfying the local rule ~o,  then T belongs to 

Theorem 3.1 is a consequence of this theorem; we see later that this theorem is 
equivalent to de Bruijn's theorem. We prove this theorem after some preparation. 

Let  P be  an arbitrary rhomb congruent to one of 191, I ~ M, and having vertices 
in ~7/5). The  index(P) is defined (see Section 2.2) and equals index(u) of some 
vertex v of  P. Then index(P + x) = index(v + x)  for every x ~ p(775). Hence 
x ~ ~7/s)  always exists such that  index(P + x) is a given number  in {0, 1, 2, 3, 4}. 
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Consider a colored tiling T satisfying the local rule ~0 .  Every tile of  T has color 
1 or 2. If  one vertex of T is in p(7/5), then all the vertices of T are in p(7]5). After a 
translation we may assume that there is a tile P of  T such that its color is the same 
as its index. From now on fix such T. 

Proposition 3.4. The tiling T has a strongly connected lift into ~ .  

Proof. First we prove that for every tile Q of T the index of Q and the color of Q 
are the same. This is true for Q = P. 

Suppose Q1, Q2 are two tiles of T sharing a common edge, and index(Q 1) = color 
of Qv By definition of the local rule, there is a pair of tiles Q'I, Q'2 of a colored tiling 
T~, a ~ E, such that the colored pair (Q1, Q2) is congruent to the colored pair 
(Q~, Q~), where the colors of Q~, Q~ are their indices. Since index(Q 1) = color of 
Q1 = index(Q~), by Proposition 2.3 the pair Q1, Q2 is the translation of Q'I, Q'2, by a 
vector v = p(~),  ~ ~ A. Then again by Proposition 2.3 index(Q2)= index(Q~). 
Hence index(Q2) = color of Q2. 

Each of Q], Q~ has lift into ~ .  Let the lift of Q~ be C[, i = 1, 2. Then the 
colored tile C~ + ~ of ~ is the lift of Qi. The  lift of a colored tile is unique 
(Proposition 2.6). The projections of C~ and C[ on E have nonempty interior 
intersection, because both contain a as the interior point. The lifts of Q1, Q2 are 
translations of the lifts of Q'I, Q[, hence their projections on E also have nonempty 
intersection. So we can lift every colored tile of T into ~f~ and the lift is strongly 
connected. []  

The next step is to prove that if a colored tiling T has a connected lift into ~ ,  
then T belongs to ff(~f~). 

Note that the family ~'0 of prisms has the following symmetries: 

(a) Translations by vectors from A. 
(b) Actions of cyclic group 7/5. 
(c) Symmetry with respect to 0 (this maps C a to C~ + 3e 0 - ez - e3 - g 4  ) .  

Up to these symmetries in G 0 there are only two tiles: their representatives are 
C~o, 1), C~o.z). This will cut significantly the number of verifications which appear later 
in the proofs. 

3.2 Properties o f  ~f~ 

Consider five 2-planes, F i spanned by e i + 1 - -  ~ 1 7 6  1 and e i + 2 - -  ~ 1 7 6  2 for i = 0, 1, 2, 3, 4 
(indices are taken mod 5). They are rational 2-planes contained in •4. An important 
remark is that the intersection of these 2-planes with E and F, are lines, i.e., they are 
not in generic position with respect to E and F,. Let  f / =  F i r E, f / =  F / n  E. Then 
both f i  and fi  are lines and F,. = f / +  fi. All of  the 2-planes F i are prisms and 

P(Fi) = fi, p•  (Fi) = fi. 
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Let ~ / =  F i + A, for i = 0, 1, 2, 3, 4, and 5 r = U4= 0 F/. Each ~// is a family of 
parallel 2-planes in R4; this family is locally finite (i.e., every compact set meets only 
a finite number of 2-planes from this family) because F i is a rational 2-plane. 

Proposition 3.5. I f  two 2-planes F, F '  in S r have the same projection onto E, then 
F = F ' .  

Proof. We may assume that F = F /  and F '  = F / + ~  where ~ A ,  for some i. 
Then p •  i) = p •  i + ~), or, equivalently, ~ ( F  i + E). Note that F i + E is a 
homogeneous 3-plane. If  ~ does not belong to F i, then the 3-plane spanned by ~ and 
F i must coincide with F i + E. However, the 3-plane spanned by ~ and F i is rational, 
so it could not contain E (Proposition 1.2). Hence ~ ~ F/. This means F = F ' .  []  

For each i = 0, 1, 2, 3, 4 the set qb i = p • (~//) = f i  + P • (A) is a dense family of 
parallel lines in E. Denote by �9 the union of five sets eP i. Then dp = p • (~-). 

Proposition 3.6. The projection o f  the parallel boundary B(~e~) onto E is dp: 

p • (B(@~))  = qb. 

Proof. By Propositions 2.2 and 2.5, p • (B(~'~)) = p • (B(~0)) is the intersection of 
with ten families of  planes H I + p • (~_s), I ~ M. These ten families can be 

grouped into five pairs, each pair has the same intersection with E, and the inter- 
sections are exactly the five families (I) i of parallel lines, because f / =  H(i + 1,i-1) n 

= H(i+2, i_2) f3 E (indices are taken mod5). []  

We suppose the length of vector e 0 is 1. Let U d be the disk in E of radius d 
centered at 0. The set F i + U d is a three-dimensional prism, its projection onto E is 
the line f / ( jus t  as the projection of  F/), and its projection onto E is fi + Ud which is 
a strip of width 2d. 

Definition. In this section any set of the type F i + Udo + r where i = 0, 1, 2, 3, 4, 
A, d o = (3 - v ~ ) / 4 ,  is called a big wall. 

The union ~i~a0 of  all the big walls is 3 - +  Udo. The  next proposition is a specific 
property of  the case t = 0. 

Proposition 3.7. All  the big walls are contained in the paraUel boundary: 7 f  ao c B(~'~). 

Proof. We have to prove that the intersection of every tile of e~ 0 with every big wall 
is contained in B(~'~). The intersection is of two types: of  dimension 3 or of 
dimension less than 3, because the dimension of a wall is 3. 

First we prove that all the intersections of  the first type are in B ( ~ ) .  Since B(ee~) 
and ~d0 are invariant under the symmetries listed in (a)-(c) in Section 3.1, it suffices 
to prove that the intersection of  dimension 3 of  the prism C} with a big wall lies on 
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the parallel boundary of the prism C} where I = (0, 1) or (0, 2). In fact it is easy to 
check that, for each I = (0, 1) or (0, 2), the prism C] intersects at most three big 
walls if the intersection is of dimension 3, and in this case the intersection lies on the 
parallel boundary of C]. Hence the intersection of the first type of every big wall 
with every tile of C O is in B(C~). 

Now let W be a big wall. Since W and B(C~) are closed subsets of N 4, the 
complement W \  B(C~), as a subset of W, is open. By the above result, this 
complement is the union of at most a countable number of sets of dimension less 
than 3 and hence must be empty. That is, W c B(C~). []  

We recall that a small wall of a prism C is the sum of p(C) and one edge of 
p �9 (C). The projection of a small wall of a tile of ~f~ on F, is a segment lying in 
dO = p �9 (,gr), hence it lies in the projection of a big wall. Proposition 3.5 says that 
this big wall is unique. 

Proposition 3.8. I f  the projection of  a small wall w on E lies in the projection of  a big 
wall W, then the small wall has nonempty intersection with the big wall. 

Proof. It suffices to consider the cases when w is a small wall of one of the C~, 
where I = (0, 1) or (0, 2). In each case C has three small walls and the assertion can 
be verified straightforwardly by finding the unique big wall involved and checking 
that the projections of the small walls and the big wall onto E have nonempty 
intersection. []  

3.3. Proof of  Theorem 3.3 Using the Main Technical Theorem 

The following theorem is proved in Section 6. 

Theorem 3.9 (Main Technical Theorem). Let ~ be an oblique periodic colored tiling 
of  ~4 satisfying the following conditions for some constant d > 0: 

(a) The projection of  the parallel boundary onto E is dO: p �9 (B(~)) = dO. 

(b) 7 f  a = 5 r +  U d is a subset o f  the paralM boundary. 

(c) I f  w is a small wall o f  a tile of  ~d and the segment p • (w)  lies on the line p �9 (F),  
where F is a 2-plane in ~,, then w and F + U d have nonempty intersection. 

Then i f  T is a colored tiling having a strongly connected lift into ?/, T belongs 
to ~(~'). 

By Propositions 3.6-3.8, the oblique periodic colored tiling C~ satisfies conditions 
(a)-(c) of  the Main Technical Theorem. By this theorem if T has a connected lift, 
then T belongs to ff(C~). Theorem 3.3 is proved. 
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Prototiles of .~(@~). 

3.4. Connection to Penrose Local Rule 

First we describe the local rule ~'0. The prototiles of this local rule are (1"l, J), 
I ~ M, j = 1, 2. We have to point out all the possible edge-configurations in J(@~). 
For every P / =  p(CJ) we mark the vertices of polygon P] by their indices. Then we 
have 20 rhombs with marked vertices. Four of them are as in Fig. 4 (in fact two of 
them are congruent to P(0.1), two are congruent to P(0.2)). All the other rhombs are 
obtained from these four by rotations by 2mlr /5 ,  m ~ Z. 

There is one-to-one corresponding between the 20 prototiles (Px, J), I ~ M, 
j = 1, 2, and these 20 marked rhombs. We describe the local rule ~r in terms of the 
20 marked rhombs. 

Proposition 3.10. The local rule ~ o  is the set of  edge-configurations: 

(a) Shown in Fig. 5 together with their reflections with respect to a horizontal 
line. 

(b) Obtained by rotating any edge-configurations in (a) by 2mTr/5, rn ~ E. 

This can be verified by analyzing the edge-configurations of T~. 
The local rule ~0  is equivalent to the Penrose local rule in the sense that every 

colored tiling satisfying this local rule can be equipped with arrows such that the 
arrowed tiling satisfies the Penrose local rule, and, conversely, every tiling satisfying 
the Penrose local rule can be colored into a colored tiling satisfying the local rule 
~'0- This can be seen as follows. 

For every marked rhomb we put a double arrow on every edge with vertices 2 and 
1 such that the arrow directs to 1. We also put a double arrow on every edge with 
vertices 3 and 4 such that the arrow directs to 4. Then every rhomb of the 20 rhombs 
has double arrows on two or four its edges. On the other two edges we put single 
arrows such that they direct to obtuse angles of the rhomb. By this way we get the 20 
arrowed rhombs of Penrose. Then it can be checked easily that an edge-configura- 
tion belongs to the local rule ~r if and only if arrows on the common edge coming 
from different rhombs are the same. Conversely, every tiling satisfying the Penrose 
local rule can be marked (indexed) at vertices such that (when forgetting about 
arrows) this tiling satisfies the local rule oqr 0 (see [dB1]). Hence the local rule 
constructed here and the Penrose local rule are equivalent. 
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Fig. 5. The local rule forff(~). 

4. A Local Rule of Type 2 for t = (m + n C ~ ) / q  

Theorem 4.1. I f  t = (m + n z ) / q ,  where m, n, q are integers and T = (1 + v~-)/2, 
then the set ~tt admits a local rule o f  type 2. 

The proof is in fact simpler than the previous case. The reason is that in the 
previous case we wanted to establish not only the existence of a local rule but also 
the coincidence with the Penrose local rule. Here we may simplify the proof but the 
local rules we obtain are much more complicated. In the previous sections we had to 
prove that all the big walls are contained in the parallel boundary and if a small wall 
has projection onto E lying in the projection of a big wall, then the small wall and 
the big wall have nonempty intersection. Here these properties are fulfilled automat- 



50 Le Tu Quoc Thang 

ically from the construction of  the refined oblique periodic tiling. A n  example of the 
1 

local rule for the case t = 2 is presented in Section 7. 

4.1. The Big Walls 

First we describe the tiles of  @t. Let 

CJ, t = (C l + j e  o) n ~4. (2) 

For - 1 < t < 0 none of the three sets Cj, t, j = 0, 1, 2, is empty, and no two of them 
are congruent. Using the same proof of  Proposition 3.2 it can be proved that every 
tile of @t is the translation of one of  30 prisms CJ, t by a vector in A: 

~'t = {CJl, t + ~, I ~ m , j  = 0,1 ,2 ,  ~:~ A}. 

Definition. For a tile D of @t let index(D) = index(p(D)). 

Then the index of a tile CJ, t + ~ of @t, where ~ ~ A, is j. 
By Propositions 2.2 and 2.5 the projection of the parallel boundary B(@ t) o n  Et is 

the union of ten families of lines [H  1 n Et] + A. When t = (m + n r ) / q  all the ten 
families of lines are subsets of a system of lines which is as "good" as q~ (this is the 
place where we use t = (m + nT)/q)):  

Proposition 4.2. I f  t = (m + n'r) /q,  then the projection of  B(~' t) onto Et, after 
translation by - t ed - ,  is contained in ~ / q ,  where r / q  = {xlqx ~ qb}: 

p • (B(Gt)) c (ted- + d~/q). 

Proof. Using Propositions 2.2 and 2.5, it suffices to verify that each line H I n Et is 
lying in the set te d- + ~ / q .  This can be done straightforwardly. []  

Let  ~ i  = Fi + A / q  + ted-, and i f =  U40  ~//. Each ~ / i s  a locally finite family of  
parallel 2-planes in R 4. We have p • (if-) = ~ / q  + ted-. 

Proposition 4.3. I f  p • (F)  = p • (F ' )  where F, F '  are 2-planes from ~ ,  then F = F' .  

Proof. After translation by - ted- and rescaling by q from the system of 2-planes .~  
we get the system ~ .  Hence this proposition follows from Proposition 3.4. []  

The projection of a small wall of a tile of  @t onto Et is a segment lying in the 
projection of  some 2-plane in f f o n t o  E r  Up to translations by vectors in A there are 
only a finite number of  small wails of the tiles of ~'r Hence there is a constant d > 0 
such that if w is a small wall of  a tile of  ~t and the segment p J- (w) is contained in 
the line p • (F), where F is a 2-plane in ~,, then the Hausdorff distance between the 
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line p(F)  and the rhomb p(w) is less than d. In other words, the sets p(F)  + U a and 
p(w) must have a common point, where U a is the disk in E with center at 0 and 
radius d. We fix such a d. 

Definition. In this section a set F + U d where F is a 2-plane in ~ is called a big 
wall. 

4.2. The Refinement of eet 

Each big wall F + U d is contained in a unique 3-plane F + E. We construct an 
oblique periodic tiling of •4 such that all the big walls are contained in the parallel 
boundary of this olique periodic tiling. 

Every compact set in E7 meets only a finite number of 2-planes o ar and hence 
meets only a finite number of  big walls. Each prism CJ, t meets a finite number of big 
walls. The 3-planes going through these big walls divide C],t into many pieces. Each 
piece is also a prism, and the projection of each piece onto E is the same as the 
projection of  C], t onto E. Suppose there are s pieces; we denote them by 

c1 't, ci  t, J;' �9 . . . ,  Cl, t, where s depends on I and j, s = s(I, j). 
So far we have divided every C],t, I ~ M, j = 0, 1, 2, into smaller prisms. Every 

tile of eet is a translate of one of C], t, I ~ M, j = 0, 1, 2, and we repeat the division 
in every tile of ee l, by translation. We get a new family of (smaller) prisms, each of 
the form C[it k + ~ where I ~ M, j ~ {0, 1, 2}, k ~ {1 . . . . .  s(I, j)}, ~ ~ A. We define 
the color of the prism C1it k + s as the pair (j; k). Denote this new family of colored 
prisms by ~t .  It is an oblique periodic colored tiling of  R 4. The color of a tile 
contains the index of this tile. From the construction we have: 

Proposition 4.4. The parallel boundary B(6~t c) contains all the big walls and has the 
same projection o n  Et as the big walls: 

pX (B(6~t)) = p i  (~-) = gp/q + te~.  

Proposition 4.5. Every colored rhomb in E has at most one lift onto ~ .  

Proof. This follows from Proposition 2.6 and the coloring. []  

If w is a small wall of a tile C of ~_f, then p • (w) is a segment lying on some line 
p • (W), where W is a big wall. 

Proposition 4.6. I f  the projection of a small wall w of a prism C of ~ onto Et lies on 
the line p• (W), where W is a big wall, then w and W have nonempty intersection. 

Proof. C is contained in a prism D of the original family eet with p(C) = p(D). Let 
Q = p i (D). Then p • (C) is a polygon lying in Q, and p • (w) is an edge of  p • (C). 
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are two possibilities: 

p • (w) does not lie in any edge of Q. Then by the construction of the family 
~t ~ there must be a big wall meeting D and projecting into the line containing 
p • (w). This big wall must be W because it has the same projection on Et as 
W has. Hence W and D have nonempty intersection, so p(W) and p(D) = 
p(w) have nonempty intersection. Then w and W also have nonempty 
intersection because they are prisms and their projections both on E and on E 
have nonempty intersection. 
p•  (w) is a segment lying in a side of Q. By definition of d, p(W) and 
p(D) = p(w) have nonempty intersection. We can apply the last phrase of the 
previous paragraph. [] 

4.3. Proof of  Theorem 4.1 

The oblique periodic colored tiling ~t e defines a set of colored tilings 6T'(~t). If 
does not belong to ~ / q  + te~ = p • (B(~tc)), then a and ~t ~ define a colored tiling 
Tf which is the same as T~ if we ignore the colors. 

We define ~'t as the set of all edge-configurations of all colored tilings in J ( : tc ) .  
Up to translation there are only a finite number of edge-configurations in ~'t. By 
definition, ~'t is a local rule of type 2. 

Theorem 4.7. Every colored tiling satisfying the local rule ~q~t is a tiling of f f ( ~ t  ). 

Theorem 4.1 is a consequence of this theorem. Again we use the Main Technical 
Theorem to prove Theorem 4.7. 

Suppose T is colored tiling satisfying the local rule ~ ' r  Recall that a lift of T into 
~ is a map l: {tiles of T} ~ {prisms of ~t c} such that p(l(P)) = P and the color of 
P is the color of I(P) for every tile P of T. 

Proposition 4.8. I f  T is a tiling satisfying the local rule ~ t ,  then, after a translation, T 
has a strongly connected lift onto d~f . 

Proof. Using the uniqueness of the lift of a colored tile (Proposition 4.5), the proof 
is the same as in the case t = 0 (see Proposition 3.4). [] 

^ 

The oblique periodic tiling ~t c does not satisfy the conditions of the Main 
Technical Theorem, because it is not a tiling of Rg. However, after translation by 
-te~- and rescaling by q from ~t r we get an oblique periodic colored tiling of R 4 
satisfying all the conditions of the Main Technical Theorem, by Propositions 4.4 and 
4.6. Hence we can use this theorem to conclude that T belongs to ff'(~p). Theorem 
4.7 is proved. 
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5. Local Rules of Type 1 for t = m + n'r 

At the outset fit is a set of tilings without any colors. Hence the question of finding 
local rules of  type 1 (which does not involve any coloring) for these sets is the most 
natural. 

Theorem 5.1. I f  t = m + n'c, where m, n are integers and ~- = (1 + v/-5)/2, then the 
set ~ admits a local rule of  type 1. 

It follows from a result of Ingersent and Steinhardt [IS] that if t # m + nz, where 
r = (1 + v~) /2 ,  then the set fit does not admit any local rule by type 1 (see 
Proposition 5.9 below). Hence t = m + n r  is a criterion for the existence of a local 
rule of  type 1. 

The case t = 0 is well known [dB2], [Se], and it suffices to take the radius of the 
local rule r = 2. The proof consists of the following observation. If T is a tiling in 
2 0, then by inspecting the neighborhood within radius 2 of any tile we can decide 
how to put arrows on edges of  this tile such that the arrowed tiling is a Penrose 
arrowed tiling. The proof for the case t = m + n=: is based on the same idea. 

Suppose t = m + nz is fixed, - 1 < t < 0. Let 5,r be the set of all r-maps of  all 
the tilings of fit. Up to translations there are only a finite number of elements in the 
set ~'(r). This set ~r is a local rule of type 1. We prove that, for sufficiently large 
r, the set of all tilings satisfying the local rule s t ( r )  is coincident with fit. In the 
previous section we defined the oblique periodic colored tiling ~t c. When t = m + nT, 
by Proposition 4.4, the projection of the parallel boundary B(~t c) onto /~t is the 
same as the projection of the parallel boundary B(@ t) of the original oblique 
periodic tiling eet, 

p•  ( B ( ~ t e ) )  = p i  (B(@,t)) = ~ + t e ~  = Ir N Et. (3) 

If c~ ~ Et is regular we denote, as in the previous section, the colored tiling 
defined by a and @t c by T~. 

5.1. r-Maps and Coloring 

Fix t = m + m-. For a rhomb P with vertices in p(7/5), index(P) is the index of a 
unique vertex of P, called the base vertex of P. For  a regular a ~ Et we have the 
colored tiling T~ and the noncolored underlying tiling T~. 

Proposition 5.2. There/s r o > 0 such that, for every two congruent tiles P, P '  o f  T~, if 
the ro-maps at the base vertices o f  these tiles are congruent, then the colors o f  P and P '  
in Tf  are the same. 
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First we show how to deduce Theorem 5.1 from this proposition. Fix a tiling T 
satisfying ~r with r > r o + 2. A priori there are no colors on tiles of T. We color 
them as follows. 

Let P be a tile of T with base vertex v. The r0-ma p of  T at v is congruent to an 
r0-ma p of T~; let Q be the tile of  T~ corresponding to P under this congruence. We 
color P by the color of  Q in T~. This way we color all the tiles of T. 

If  P, P '  are tiles of  T sharing a common edge, then the colored edge configura- 
tion (P,  P ' )  is congruent to a colored edge-configuration of T~, since r > r 0 + 2. By 
Theorem 4.7 the colored tiling T belongs to ff(~tc). Hence the noncolored tiling T 
belongs to ffTr []  

It remains to prove Proposition 5.2. The idea is as follows. We define r-volumes 
which correspond to vertices with the same r-maps, and the volume of  colored tiles 
which corresponds to tiles of the same colors of Tf. For large r we prove that every 
r-volume cannot meet two different volumes of colored tiles. 

5.2. r-Volumes 

First we recall the concept of  r-volumes. In this subsection a is not necessarily 

in F"t. 
For a point x ~ p "  (Z 5) there is a unique ~ ~ 7]5 such that p~ (~ )  = x. Define 

q~(x) = p(~). The map q~ is defined only for points in p • (ys)  c tA k ~ zF'k and is not 
one-to-one. If  qffx) = v, then q~-l(v) = {x + k58 ,  k ~ 7]}. For a set X in E • we 
define i f (X) as the set ~p(X n p • (7]5)). 

Let K = p•  (y)  = Pol(e~ . . . . .  e~); it is a polyhedron in E • with 22 vertices, 40 
edges, and 20 facets (Fig. 6). The projection of  K on A is the segment [0,56]. For 

O 

Fig. 6. The polyhedron K. 
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every x E p(7/5), the set K - r  is the union of infinitely many translates of K, 
any two of them differ by a multiple of 58, hence at most two of them meets K. 

For  a regular a ~ E "  the set of vertices of T~ is ff(c~ + K).  The following 
proposit ion follows easily. 

Proposition 5.3. Two points x, x + v are vertices of  a tiling T~ if  and only i f  x belongs 
to (o{a + [K N ( K -  q~ l(v))]}. 

Now fix r > 0. Let ~ '  be an r-map at some vertex x. If x + v is a vertex of ~ ' ,  
then there is path connecting x and x + v by edges of .~'. Each edge is a translate 
of el, i = 0 . . . . .  4, hence using the path we can write v = ET=0 niei, ni E ~. This 
presentation of  v as an integer linear combination of the ei's does not  depend 
on the path in ~a~ connecting x and x + v. Let O(v) = E4=0 niei • and K ~  = K n 
(Nv K - $(v)) ,  where v runs the set of all vertices of .gL Note that ~ ( v )  is a point 
in ~ -  l(v). The set Km is called the volume of ~ ' .  An  r-volume is the volume of an 
r-map. It follows from the previous proposition: 

Proposition 5.4. The r-map of  T~ at v & congruent to ~q~ if and only if v belongs to 
(~(a + Km). 

There are only a finte number of r-maps; and the polyhedron K is part i t ioned 
into r-volumes, each corresponds to an r-map. The parti t ion can be described as 
follows. Let  cr(r)  be the set of all vectors in p(7/5) whose length is less than r. All  
the polyhedra K - p l(v),  when v ~ t r ( r )  together divide K into r-volumes. Note 
that there are only a finite number  of points in o-(r) such that K - ~ - l ( v )  meets K. 
The significance of the r-volumes is expressed in the following: 

Proposition 5.5. For a regular ~ ~ E 1 ,  two r-maps o f  T~ at vertices v, v' are 
congruent if and only if there is an r-volume Y such that both v, v' belong to (p( a + Y).  

This follows from Proposit ion 5.4. 
The polyhedron K has 20 facets, each a translate of one of ten parallelograms 

Pol(ei I , e j l ) ,  (i ,  j )  ~ M, by vectors in p i (7/5). If we use translations nle 7 + n2e ff , 
nl, n 2 ~ 7/, then the translates of Pol(ei I , e / )  cover the whole plane Ho.j) spanned 
by ei I , e ~ .  Moreover,  every compact  set in H(i ' j) can be covered by a finite number 
of such translates of  Pol(e i l ,e j l ) .  Recall  that I r =  ( .JIEM(Hj + p 1 ( 7 / 5 ) ) ( s e e  
Proposition 2.2). 

Proposition 5.6. I f  X & a polyhedron lying in K and having all facets lying in Ir, then, 
for sufficiently large r, every r-volume is either contained in X or does not meet the 
interior o f  X.  

Proof. By the observation preceding the proposition, there are a finite number  of  
points Yl . . . . .  yq e p • (7/5) such that all the facets of  X lie in the union of all the 
facets of the polyhedra K, K - Y l  . . . . .  K --yq. Let r > maxj= 1 ..... ql,p(yi)l. Then by 
construction every r -map is ei ther contained in X or does not have interior  
intersection with X. [ ]  
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Proposition 5.7. There is an r 1 such that, for  every regular a �9 E • , the rl-maps of  T~ 
at vertices o f  different indices are not congruent. 

Proof. Using the previous proposition we see that when r ~ 0% the maximal 
diameter of  r-volumes tends to zero. Hence there is r 1 such that the projection of 
every q-volume on A is a segment having length less than the length of  [0, 6 ]. The 
rl-maps of  vertices of different indices in T~ are different, because if two integer 
points having different index, then they project on A into two points whose distance 
is greater or equal to the distance between 0 and 8. []  

Remark. In fact one can take r I = 3. 

Proposition5.8. I f  X is a polygon tying in a 2-plane F,,, u �9 R, and having edges ~ying 
in I r  (~ E , ,  then for sufficiently large r the intersection o f  every r-volume with Eu is 
either contained in X or does not meet the interior of  X.  

Proof. This is a straight corollary of Proposition 5.6. [] 

Proposition 5.9 [IS]. I f  ~tt admits local rules of  type 1, then t is o f  the form m + nr  for 
some integers m, n. 

Proof. The r-maps which apear in T~, a �9 F-~t, are those which correspond to the 
r-volumes which meets the 2-planes k6 - Et, k �9 Y. Suppose t is not of the form 
m + n~'. Fix r > 0. The facets of every r-volume are in Ir, hence every vertex of it is 
the intersection point of three different 2-planes in It. It is easy to check that the 
projection of every intersection point of  three 2-planes in I r  onto A is of the form 
(m + m-)6 (see the description of I r  in Proposition 2.2). Hence the planes k8 - Et, 
k �9 2v, can never meet vertices of  any r-maps. It follows that, for t '  very close to t, 
the plane k6 - E't, meets the same r-volumes as k6 - Et does. This means every 
tiling in ~t, has the same r-maps as tilings in ffTr []  

5.3. Proof of  Proposition 5.2 

^ j ; k  We fix t = m + nz. Recall that the prototiles of ~t c are Cl, t, where I �9 M, 
j = 0,1, 2, k = 1 . . . . .  s(I, j )  (see Section 4.2). In what follows we drop the subscript 
t. Let Q~ 'k=p•  and Pj'k=p(C~"~). Then P ] ; k = p I + j e  o is a rhomb 
congruent to PI and has base vertex jeo; we color p/;k by ( j ,  k). I t  follows from 
formula (2) that Q~J; k = j'e~ - Q~; k is a polygon lying in the intersection of K with 
j6  - E r  The following proposition describes Q~; k as the "volume" of p];k. 

Proposition 5.10. Let o t e  F't be regular. A vertex v of  T f  is a base vertex of  a colored 
tile congruent to P]; k if and only i f  
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Proof. 

(4) ~ v - j e  o ~ (p(  a - Q~;k) 

r 3 ~  AIp(~)  = v - j e  o 

(since ~0(e0 ~) = e 0) 

and a + E - Qi; k contains ~c 

(since a - Q ~ ; k  c R4o)  

r 3 s  = v - j e  o and a + E m e e t s  s  ;k  

r  3 s 1 6 3  o a n d p ( s  

However, p( s + C]' k) is the colored tile congruent to Pi '  k with base point v. []  

Now we can prove Proposition 5.2. Every edge of Qi 'k lies in p•  (B(~'~), hence 
every edge of Q~' k lies in I r  N ( j~  -- E't), by (3). By Proposition 5.8 there is r 0 such 
that for every polygon QJ' k the intersection of every r0-volume with every plane 
k8 - Et, k ~ ;7, either lies in this polygon or does not have interior intersection 
with it. 

Now suppose P,  P '  are two congruent tiles of T,, with base vertices v, v ' ,  
respectively. By Proposition 5.4 both v, v '  belong to f f (a  + Y) for some ro-volume 
Y. Let the color of P be (j ,  k). Then v belongs to ff(a  + 0i  'k) by Proposition 5.10. 
Hence Y c O],k. This, in turn, implies v '  E ff(a  + Qi'k). By Proposition 5.10 the 
tile P '  has color (j ,  k), the same as P. []  

Together with Proposition 2 we have proved Theorem 5.1. 

6. The Main Technical Theorem 

Now we prove the Main Technical Theorem (Theorem 3.8). We reduce the problem 
to investigating a set of oriented lines on a plane. Similar proofs have appeared in 
[LPS1] and [LPS2]. 

Definition. An oriented line on a plane is a line equipped with an open half-plane 
divided by this line, called the positive half-plane of the oriented line. A set X of 
points is greater than an oriented line if all points of  X are in the positive 
half-plane. A set of oriented lines is compatible if there is a point greater than all of 
them. A set of oriented lines is weakly compatible if every finite subset is compatible. 

In order to prove the Main Technical Theorem we have to prove that every 
strongly connected list into ~" has to define a tiling in J ( ~ ' ) .  We need to prove that 
there is a plane parallel to E meeting all the members  of the lift (actually with some 
extra conditions for the singular case). This is equivalent to the fact that the 
projections of  all the members  of the lift onto E have a common point. Note that the 
projection of evey tile of ~ onto E is a polygon. If we orient all the lines going 
through an edge of the projection of a member  of the lift so that the interior of the 
projection is greater than this line, then it is enough to prove that there is a point 
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greater than any line or at least lying on this line. We prove an even stronger 
statement: these lines are weakly compatible. 

In what follows we introduce orientations for lines of an even larger set (it is 49), 
since it is easier to deal with this larger set. We then prove that this set of oriented 
lines is weakly compatible, using the "bootstrapped" property and the compatibility 
of every three lines meeting at a point. 

6.1. Plan of the Proof of the Main Technical Theorem 

Fix a tiling T having a strongly connected lift into ~'. First we prove: 

Proposition 6.1. For every finite set of tiles P1 . . . . .  Pm of T, the projections 
p • (I(P1)) . . . . .  p • (I(Pm)) have nonempty interior intersection. 

Then we use the following: 

Proposition 6.2. Suppose that the lift l of a colored tiling T satisfies Propositon 6.1. 
Then T is a colored tiling belonging to ff( ~'). 

Theorem 3.8 followed from these propositions. For a regular a ~ E, the colored 
tiling defined by a and ~' is denoted by T(a,  ~'). 

Proof of Proposition 6.2. We number the tiles of  T, T = {P1, P2 . . . .  } so that for 
every r the disk U r is covered by the first N tiles, here N depends on r. Since the 
polygons p • (I(P1)) . . . . .  P • (l(PN)) have nonempty interior intersection, the inter- 
section of these polygons is a polygon (with nonempty interior). There is a regular 
point c~ r ~ E belonging to this polygon. Then the colored tiling T ( a  r, ~') is the same 
as T inside the disk U~. Of course t~ r ~ a when r ~ ~ and T(ar, ~ )  ~ T when 
r .---~ o9. [ ]  

It remains to prove Proposition 6.1. Note that every edge of a polygon p•  
(I(P)), P E T, is lying on a line in qb. To prove Proposition 6.1 we introduce 
orientations on all the lines in 49 such that: 

(*)  If  the polygon p•  (l(P)), where P is a tile of T, has an edge lying on a line 
h, then the interior of this polygon is greater than h. 

(* *) The set 49 of  oriented lines is weakly compatible. 

Proposition 6.1 follows immediately from (*)  and (* *). 
Our  task is to find, for every connected lift l of a colored tiling T, a way to orient 

all the lines in 49 satisfying conditions (* )  and (* *). 

Definition. In this section a set F + U d where F is a 2-plane in 3r  is called a big 
wall. 
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6. 2. Orientations of  Lines 

We define a multivalued map p: E ~ E as follow. For  a point x which is an interior 
point of a tile P of T let p(x)  be the interior of the polygon p • (l(P)). Suppose x is 
not an interior point of any tile, let Pa,'", Pk be the tiles of T containing x and let 
Yl , . . . ,  Yk be, respectively, interior points of P1 . . . . .  Pk" Define p(x )  = I.J ki= 1 P(Yi). 

If x is an interior point  of a tile of T, then the set x + O(x) does not  meet the 
parallel boundary B(~) .  For  a set X in E we define p ( X )  as the union of all p(x )  
where x ~ X. The following is a consequence of the strong connectedness of the lift. 

Proposition 6.3. For every path-connected set X in E the set p ( X )  is connected. 

Suppose W is a big wall: W = F  i + ~ + U  d, ~ A .  Then it is a prism, its 
projection on E is a line contained in qb, and its projection on E is a strip, 

p(W) =f, .  + p(~:) + U d. 

Lemma 6.4. I f  W is a big wall, then p(p(W))  does not meet the line p • (W).  

Proof. Suppose y is a point  lying in both p(p(W))  and p • (W). Then y ~ p(x)  for 
x ~ p(W). Since d > 0 we can choose x such that it is an interior point of a tile of 
T. Then we see that x + p(x)  contains x + y which belongs to W because W is a 
prism. This means that set x + p(x)  meets W, but by condition (c) all the big walls 
are contained in B 0, and hence does not meet x + p(x). The proposit ion follows. [ ]  

Now we can introduce orientations for the lines in qb. For  every line h in qb there 
is a unique big wall W which projects into h, p • (W)  = h. By the previous lemma, 
the set p(p(W))  does not meet  the line h. Since p(p(W))  is a connected set, it lies in 
one half-plane of E separated by h. We define the orientat ion of h such that 
p(p(W))  is greater than h. 

Proposition 6.5. Suppose p• (F), p • (F'), and p • (F"), where F, F', and F" are 
2-planes in ~ ,  have a common point. Then F, F' ,  F" also have a common point. 

Proof. It  is easy to see that no two of F,  F ' ,  F"  are parallel.  Let vl, v2, v 3 be three 
intersection-points of three pairs from F,  F ' ,  F". Then they have rational coordi- 
nates and have the same projection on E, hence they must be coincident by 
Proposit ion 1.2(c). [ ]  

6.3. Property ( * ) 

Suppose C = l (P)  is a lift of a tile of T. Then p • (C)  is a polygon having edges lying 
in qb. 

Proposition 6.6. Suppose Q = p • (C) has an edge s lying on a line f in ~P. Then the 
interior o f  Q is greater than f .  
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Proof. There  is a big wall W such that  f = p ~- (W). The set p(C)  + s is a small 
wall. By condition (c) of  the Main Technical Theorem the small wall p (C)  + s and 
the big wall W have a common point  y. Let  x = p(y).  Then p(x) contains the 
interior of p • (C)  and by definition of  the orientat ion p(x) > f,  hence the interior 
of Q is greater  than f .  [ ]  

6.4. Property ( * * )  

The following is crucial. 

Proposi t ion 6.7. If several lines in ~P have a common point, then they are com- 
patible. 

Proof. Suppose p •  (F) ,  p •  ( F ' )  . . . . .  p •  (F") have a common point  where 
F,  F ' ,  . . . .  F"  are 2-planes from ~ ,  then by Proposit ion 6.5 F, F', . . . .  F" also have a 
common point  y. Let  x = p(y).  By definition the set p(x) is greater  than all the 
lines p • ( F ) ,  p • ( F ' )  . . . . .  p • (F"). [] 

Proposi t ion 6.8. The set p ( E ) / s  bounded in E. 

The boundedness  of  p(E) is an expression of the "weak local rule" in the sense of 
Levitov [Levi. The proof  is presented in the Appendix.  

Three  sets X, Y, Z are called bootstrapped if X f3 Y = X n Z = Y f3 Z. 

Proposi t ion 6.9. Every three of five sets ~0,o~11,~z,~3,J4 are bootstrapped. In other 
words, through every intersection point of 2-planes from two of three families ~i, ~jj, ~ 
passes a 2-plane from the third family. 

Proof. Every ~ contains A. It suffices to prove that if 0 _< i < j _< 4, then ~ n 
= A. We assume that i = 0 and j = 1 (the other cases are similar). Consider two 
2-planes F o + ~:o and F 1 + ~1 where ~o, ~1 ~ A. Note that F o is spanned by 
Vl = ~ 4  - -  •1 and v 2 = e 3 - e 2, and F 1 is spanned by v 3 = E 0 - e 2, v 4 = ,~4 - -  63" 
These four vectors vl, v 2, v 3, v 4 generate A as a 7J-module, so we have ~0 = E4= 1 aivi, 
~1 = E4i= 1 biv i  where ai, b i ~ 7/. Then the point  (a3v 3 + a4v 4) + (biv I + b2v 2) obvi- 
ously belongs to both F 0 and F 1 and it also belongs to A. [ ]  

D e f i n i t i o n .  Two parallel  or iented lines have the same orientation if the intersection 
of  their  positive haft-planes is a haft-plane. 

The proper ty  of the same direction is an equivalent relat ion between oriented 

parallel  lines. 
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The family q~ of  oriented lines satisfies the following: 

(i) If several lines from ~ intersect at a point, then they are compatible. 
(ii) Every three of five sets qb i are bootstrapped. 

(iii) Each family of parallel lines (I) i a r e  not of the same direction. 

(i) is Proposition 6.7, (ii) follows from Propositions 6.9 and 6.6, and (iii) follows 
from Proposition 6.8. 

Proposition 6.10. There is a point ot ~ E such that for  every line f in �9 either a ~ f 
or a is greater than f .  

Proof. We divide the proof into three steps. 

Step 1. For every pair o f  lines in dp i = p i (~ii) there is a point greater than both o f  
them. 

Proof. We may assume i = 0. We suppose the converse, then there are two lines 
f ,  f '  in 4P 0 as shown in Fig 7, where the positive half-plane is shadowed. A line h in 
(I) 1 intersects f ,  f '  at x 0 and Y0 as in Fig. 7. By (ii) there are lines in qb 2 going 
through x 0 and Y0, and by applying this again and again, we get a system of lines as 
in Fig. 8 where two horizontal lines are f and f ' ,  all the others are lines in ~1 or 
qb2, and all intersection-points are triple. There are two possible cases of orientation 
of h as indicated in Fig. 9(a) and (b). 

Consider the case in Fig. 9(a). By (i) there is a point greater than all the lines 
going through x 0. Hence the orientation of the line xoy o can be found easily. Then 
applying (i) to points x 1, Y2, x2, etc., we see that all the lines XlYl, x2Y2, x3Y3, etc., 
have the same orientation (Fig. 10). This contradicts (iii). 

In the case in Fig. 9(b) all the lines XoYo, x_lY_l ,  x 2Y_2, etc., have the same 
orientation, which is also a contradiction. []  

Fig. 7. Two noncompatible parallel lines. 
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. . . .  . 

Fig. 8. System of bootstrapping lines. 

Step 2. A line h i parallel to all the lines in t~ i exists such that for  every line f in (~i 
either h i = f o r  h i is greater than f . 

Proof. This trivially follows from the previous step and the fact that all the lines in 
(I) i c a n n o t  have the same orientation. []  

Let a be the intersection point of h 0 and h 1. 

Step 3. For every line f in dp either a ~ f or a is greater than f .  

Proof. Suppose a does not lie in f. Let Xo, x a denote the intersection-points of f 
and, respectively, h 0 and h r Because the set of projections (on E) of points from A 
is dense in f there is a point y ~ f lying between x 0 and x I and y is the projection 
of a point from A. 

There are lines from ~0 and qb I going through y (Fig. 11), and a is greater than 
them. By using (i) to point y we see that a > f. [ ]  

Now we can prove property ( * *). 

. h 

(a) 

f f 

f ,  f, 

(b) 

Fig. 9. Two cases in the proof of Step L 
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x o ~i. : 

Y0 "~ ~ ~ 

~.,. },. 

Fig. ll}. Orientation of bootstrapping line. 

Proposition 6.11. For every finite number o f  lines gl, g2 . . . . .  gm in dp there is a point 
greater than all o f  them. 

Proof. If the point  a defined above does not  belong to any of gi, i = 1 . . . . .  m, then  
the point  a of the previous proposi t ion is a point  to find. Suppose some of g~ 
contains  c~, say gl, g 2 , . . . , g , ,  where n < m. Since a is greater  than  gi for 
i = n + 1 , . . . ,  m there is a ne ighborhood V of a such that V > gi for i = n + 
1 , . . . ,  m. Since all the lines gi for i = 1 , . . . ,  n go through a ,  there is a point  greater  
than all of  them by Proposi t ion 6.7. The set of  all points greater  than  all gi for 
i = 1 . . . . .  n is a corner  (or an angle) with vertex at a and  this set has nonempty  
intersect ion with V. Hence  any point  in this intersect ion is greater  than  all gi, for 
i =  1 . . . . .  m. [ ]  

Property (* * ) is established, and Theorem 3.8 is proved. 

1 7. Concluding Remarks, Example: t = ~- 

7.1. On Local Rules o f  Type 2 

We have a cri ter ion for the existence of local rules of type 1. As for the local rules 
of type 2 we have proved only the sufficient condi t ion  for the existence: t = 

X0 

Y 

Fig. 11. a is greater than f. 
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(m + nv/'5)/q. Is this also a necessary condition? Note that there are only a 
countable number of local rules of type 2, hence only a countable number of sets ffTt 
can admit local rules of type 2. 

Conjecture. I f  gt admits a local rule o f  type 2, then t = (m + nv/5 ) / q  for some 
integers m, n, q. 

Note also that Theorem 4.7 is much stronger than Theorem 4.1. Every colored 
tiling satisfying oq~' t is a quasi-periodic colored tiling. That is, together with colors this 
tiling is still quasi-periodic, since it is the slice of  a periodic colored tiling of E4. 

7.2. On Coloring 

When t = (m + n~/5) /q  but is not of  the form m '  + n%-, then the set ~ admits 
local rules of type 2 but does not admit local rules of type 1. Proposition 5.2 means 
that in this case the coloring is not a "local" operation. 

We noted in the Introduction that, for such t, T ~ ffTt exist which have two 
different colorings such that both of the colored tilings we obtain satisfy the local 
rule -~'t- They can be constructed as follows. Take a point a belonging to p i (B(d~,tc)) 
but not belonging to p•  ( l i t) .  Such a point always exists in this case. Then a is 
regular, but E + a meets the parallel boundary of the refinement 6~. There are 
several lines in p j- (B(@t)) going through a ,  they divide F-'t into many parts. Each 
part defines a colored tiling in f f (~c)  by taking the limit as in Section 2.5. Different 
parts define different colored tilings, but these tiling, when ignoring the color, are 
coincident with T~. It follows from the proof that only those tiling described above 
can be colored in different ways. Hence there is a subset of  measure 0 in fit whose 
tilings can be colored in different ways, other tilings can be colored uniquely. 

When t = m + m-, each tiling T ~ fftt has a unique coloring as a colored tiling in 

7.3. Generalizations 

Our method can be applied to more general cases. First we introduce the following 
local rule of  type 3 which contains both types 1 and 2 as special cases. Let a local 
rule of type 3 of radius r be any finite set of  colored r-maps. A noncolored tiling 
satisfies this local rule if it can be colored so that every colored r-map of  the colored 
tiling is congruent to a colored r-map in this set. 

Suppose E is a quadratic and totally irrational n-plane in the Euclidean space 
•N, equipped with a standard base. Here "quadratic" means that E is spanned by n 
vectors v 1 . . . . .  v n with coordinates belonging to 7lye- for some natural number d, 
and "totally irrational" means that E des not contain any rational point except 0. Let 

be the n-plane spanned by n vectors which are the conjugates of v 1 . . . . .  v,. Then 
E n F, = {0} and R u = E �9 F,, �9 A where A is a rational ( N  - 2n)-plane. For each 
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t ~ A let ~-t be the closure (under the operat ion "l imit")  of the set of all tilings T o 
and their translates, where a is regular and belongs to E, + t. 

Theorem 7.1. I f  t has coordinates lying in Ovrd, then ~tt admits a local rule of type 3. 

This is a generalization of Theorem 4.1 to higher-dimensional cases, the proof  is 
essentially the same. As for local rules of type 1, the situation is more complicated 
because of the boots t rapped condition. Some necessary conditions for the existence 
of local rules of  type 1 are presented in [Lev] and [Lel]. 

1 7.4. The Case t = 

I We present here a local rule of type 3 for the case t = ~-. This case enjoy as much 
symmetry as the case t = 0: both have the dihedral  group D 5 as the symmetry group 
in the sense that D 5 preserves the same local isomorphism class. However,  the lat ter  

1 has a local rule of type 1 while the case t = ~- does not. 
In order  to reduce the number of prototiles we have to refine the proof  of 

Theorem 4.7. The price for this is that we do not get a local rule of type 2, but we get 
a local rule (of type 3) in which star-configurations play the role of edge-configura- 
tions. 

Consider the six colored rhombs in Fig. 12(a). A tiling of the plane by images of 
the six colored rhombs under isometries of the plane (reflections are allowed) is said 

S/S J$ 
{a) 

Fig. 12. 

(b) 

Local rule for t = �89 
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to be admissible if arrows on edges and marks at vertices are matched. Here  
matching at edges means every edge has a definite arrow, and matching at vertices 
means only marked vertices can meet  and at every marked vertex the marks from all 
the rhombs incident to this vertex form a "key"  like in Fig. 12(b). 

The claim is that every admissible tiling, after some rotation, belongs to Jll/2" 
Conversely, every tiling in ~9~1/2 can be colored to become an admissible tiling. 

Of  course this is a local rule of  type 3. This looks similar to the Ammann  
matching rules for the set of tilings having eight-fold symmetry (see [AGS] and 
[Le2]) and Socolar local rule for the set of tilings having twelve-fold symmetry [Sol]. 
However, the methods to derive them are quite different. If  we ignore the marks at 
vertices we get the Kleman-Pavlovi tch matching rule (see [KP]). 

There is a subset of measure 0 in ~1/2 such that every tiling in this subset can be 
colored to become an admissible tiling in two or four different ways, while every 
other tiling can be colored in a unique way. The key of Fig. 12(b) can appear  in ten 
directions. 

Remark.  J. Socolar suggests that there is an interpretation of the vertex key in terms 
of Ammann ' s  lines as in the cases of  eight-fold and twelve-fold tilings (see [Sol]). 

Here  is a sketch of the way we arrive at this local rule. First we refine the oblique 
periodic tiling #'1/2 to the oblique periodic colored tiling G1~2 whose parallel 
boundary contains all the five sets ~qr_ e i / 2  ' i = 0 . . . . .  4. Geometrically the re- 
finement looks as follows. Every tile of @1/2 is the sum of a rhomb in E and a 
polygon in El/2. The latter is either a triangle or a hexagon; each hexagon has two 
long and one short diagonals. The refinement corresponds to dividing the hexagon 
into four parts by the two long diagonals and keeping all the triangles untouched. 
This refinement defines a set of colored tilings 3(~ /2  ). 

The following fact, which relates admissible tilings to the refinement, can be 
verified by analyzing the vertex-configuration of colored tilings in ff'(6e~ 2) and by 
inspection. 

Proposition 7.2. Every admissible tiling is a colored tilings whose vertex-configurations 
- -  C C  are translates o f  vertex-configurations of  a colored tiling in J(del/2).  

Up to isometry and colors there are two rhombs: a thick one and a thin one. For 
a colored tiling let the thick part  be the union of all the thick tiles. The following is 
trivial: 

1.emma 7.3. I f  two admissible tilings are coincident on the thick part, they they are the 
same. 

We consider the 2-planes in 9 - _  ~i/2  as the big wall of ~ff2; all of  them have 
width 0. We call a tile of  Ga/2 a thick tile if its projection on E is a thick rhombs. 
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Note that the refinement ~1c>2 is weaker than the refinement ~'~/2 in Section 4. 
Now Proposition 4.6 is not valid for @1c~2 but it is still valid if the small wall w 
projects onto a thick rhomb in E: 

Lemma 7.4. The parallel boundary o f  ~1c~2 contains all the 2-plane from U ~= o(J r -  
~i/2). I f  the projection on E l o f  a small wall w of  a thick tile o f  ~1/2 lies on the 
projection o f  a 2-plane F from IJ 4=0(9--  el~2) , then w and F have nonempty 
intersection. 

The lemma is proved easily by considering all the thick tiles of ~1~2 which are 
finite up to translations. 

Now suppose T is a colored tilings whose vertex-configurations are the same as 
those of a tiling of J(G~/2) .  Then T has a strongly connected lift into @~/2- Let p be 
the multivalued mapping defined as in Section 6.2. If F is a 2-plane from U 4=0(9--  
8i /2 )  , then p(p(F))  does not intersect the  line p • (F )  (see Proposition 6.4). The 
proof  of Proposition 6.4 does not go through here (since the width d of the big wall 
is 0), but this follows easily from the fact that not only edge-configurations but also 
the vertex-configurations of T are the same as those of colored tilings of  ~ @ ~ 2 ) .  
The zero width of the big wall is the reason why we have to use vertex-configuration 
instead of edge-configuration. 

Hence we can orient the line p : - ( F )  such that p(p-L (F))  lies in the positive 
half-plane. 

Note that the set U 4=0(3r- ~i /2)  does not have the bootstrapped property as 
formulated in Section 6.4, but it does satisfy the following weaker version: for every 
two parallel lines h 1, h 2 in p i (  U 4= 0(~r_ ei/2)) there are two sequences of distinct 
lines li, l' i, i ~ 7/in p • ( [.J 4= 0(~r_ ei /2))  such that: 

(a) All lines l i are parallel, all lines l~ are parallel, none of them is parallel to 
either of h 1, h 2. 

(b) l i, l I, and h I have a common point and l i, l'i+ 1 have a common point for every 
i ~ 7 7 .  

Now the proof  of Theorem 4.1 shows that there is a colored tiling T '  of J(~ ' f~2) 
such that T = T '  on the thick part. Lemma 7.3 says that T and T '  are the same. 
This means every admissible tiling belongs to J(Gf~2).  
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Appendix 

We prove Proposition 6.8. This proof is a modification of an (unpublished) proof of 
Levitov. The author learned of  this proof through V. Sadov, but the proof that he 
learned from V. Sadov (for the class of  quasi-crystals having eight-fold symmetry) 
contains a gap. In what follows we overcome the mistake and at the same time apply 
the proof to our cases. 

Lemma A.1. For every two points x, y ~ E, i f  Ix - y [  < 1, then the Hausdorff 
distance between p(x )  and p(y )  is less than a number Q, not depending on x and y. 

Proof. This follows form the finiteness of  the prototiles of U. [] 

Lemma A.2. There is a constant c 2 such that for every line h parallel to p ( F )  where F 
is a 2-plane from ~ ,  the set p(h)  is contained in the c2-neighborhood o f  a line h'  
parallel to p • ( F ). 

Proof. Suppose F c ~0- Let V be the set p •  0 n p - l ( h  + U1/2)). This set V is a 
discrete family of lines parallel to p-L (F). There is a constant d such that the least 
distance between two lines in V is greater than d. The set X = p(x  + U1/2), where 
x is a point of h, is bounded, and the diameter of X is less than 2c 1. If H is a 
2-plane in ~o such that p ( H )  intersects x + Ur, then there is a point of  X greater 
than p • (H) .  Hence if X does not meets p • (H) ,  then X is greater than p x (H).  

Let h i, h' 2 be two lines from V such that X lies between them and every line 
from V lying between them must intersect X. Then the distance between h '  1 and 
h '  2 is less than 2c i + 2d (see Fig. 13). 

Suppose H i , / / 2  are 2-planes from ~0 such that p • (Hi)  = h'~, p i (Ha) = h'2. Let 
h i = p ( H  1) and h 1 = p(H2). 

By definition p(h 1) > h'l, p(hz)  > h'2. Since the distance between h and h 1 (or 
h 2) is less than �89 from Lemma A.1 it follows that p(h)  lies between two lines l i and 
12 where l 1 (resp. l 2) is the line in E parallel to h' 1 and lying in the nonpositive 
half-plane of  h' 1 (resp. h'2) and having distance to h'l (resp. h'2) equal to Q. The 
distance between l I and 12 is less than c2 = 3 q  + 2d. []  

Fig. 13. Proof of Lemma A.2. 
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Proof of Boundedness of p(E).  Choose the coordinate  systems (a  1, a 2) in E and 

(bl ,  b2) in F, such that f l  is given by {a 1 = 0}, f2 by {a 2 = 0}, f4 by {a 1 - a 2 = 0}, f l  
is given by {b 1 = 0}, f2 by {b 2 = 0}, f4 by {b 1 - b E = 0}. 

T h e n  it can be checked that f3 is given by {a 1 + "ra 2 = 0} and  f3 by {Tb I + b 2 = 
0}. 

For  a pair  of  funct ions ~ and u on  E, let the sign /z - v m e a n  that I/x - vl < 
const. In  o ther  words, the distance be tween /~(x) and v ( x )  is less than  a constant  for 
every x ~ E. If t~ is a mul t ivalued funct ion on  E (i.e., tz(x) is a subset  of ~), then 
the distance be tween  /z(x) and  v ( x )  is unders tood as the Hausdorf f  distance. 

Note  that  O is a mul t ivalued map from E to E. Put  

bl (X) = {bal3b 2 such that ( b l ,  b 2) E p (x)} ,  

b2(x)  = {b213b 1 such that (b  1, b 2) ~ p (x )} .  

Both bl(X) , b2(x)  are mult ivalued funct ion on E. By applying L e m m a  A.2 to lines 
parallel  to f l  we see that  b l (a l ,  a 2) - /z(a 1) for some funct ion tx on  E, depend ing  
only on  al ,  and  hence  can be regarded as a funct ion on  ~. Similarly b2(al ,  a 2) = 
v(a2). By applying L e m m a  A.2 to f4 we have /~ (a  l) - v(a z) =- tr(a 1 - a 2) for some 
funct ion tr. 

Put t ing a 2 = 0 we see that /~ - tr. Putt ing a~ = 0 we get v -=- tr. Hence  p, --- v --- 
O ' .  

In  addi t ion /~ also satisfies L e m m a  A.1. F rom this it is not  difficult to prove that 
for a fixed cons tant  c we have ~(cx)  -= cry(x). 

Finally, by applying L e mma  A.2 to f3, we h a v e / z ( a  1) + rlx(a z) = O("ra 1 + a 2) for 
some funct ion 0; put t ing a 2 = 0 we get jz - 0. Then  

(1 - "r)bt(a 1) ------ ( r -  1)/.t(a2). 

Because ~" 4 :1  (this is the expression of "completeness"  defined in [LPS1] and  [Lel]) 
it follows that /z --- 0. This  means  that p is bounded .  [ ]  

Boundedness  of p •  means  the local rule is a "weak local rule" in the 
sense of Levitov. For  every t ~ ~ one  can easily construct  a local rule of type 1 such 
that every tiling satisfying this local rule has a strongly connected lift into 4 -  Using 
a similar proof  as the above it can be proved that this local rule is a "weak  local 
rule" in the sense of Levitov. A similar method  works in the h igher-dimensional  case 
as well. The existence of  weak local rules for ff~-t, has also been  proved by Levitov 
[Lev] by a different  method.  
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