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Correction to "uniqueness for the harmonic map flow from surfaces to 
general targets" 
(Comment. Math. Helvetici 70 (1995) 310-338) 

A. FREIRE 

The calculation leading to estimate (3.8) in the paper is incorrect. Thus the 
construction of adapted p-frames described in the paper is not valid, and the 
existence of such frames adapted to a general time-dependent map (Theorem 3.1) 
remains in doubt. What is possible to obtain are tangent frames which are 'optimal' 
in a certain sense, but only for each fixed time. As described below, this turns out 
to be sufficient to prove the main theorem 1.1 as stated in the paper. For 
convenience of the reader, we recall its statement. We consider weak solutions of 
the heat flow for harmonic maps with initial data Uo ~ H~(M; N), where N is a 
k-dimensional compact embedded submanifold of R p, with the induced Riemannian 
metric. Define: 

V r =  H~(M • [0, T]; N)nL~~ T]; Hi(M;  N ) ) n  L2([0, T]; H2(M, N)). 

By work of M. Struwe [ 1], a solution v ~ V r exists for sufficiently small T > 0 
(depending on Uo), and may be continued to a global weak solution with finite 
singular set in M x (0, oc). We refer to v as the 'almost regular solution'. 

T H E O R E M  1.1. Let u ~ H l ( M  • [0, T]; N) be a weak solution o f  the harmonic 

map f low with initial conditions Uo ~ HI (M,  N). Assume Eu(t) < Eu o a.e. in I = [0, T]. 
Then there exists T' ~ (0, T) such that u ~ V r'. 

The proof  proceeds in two steps. First, using a modified 'optimal frames' 
construction for each constant time (Lemma A) and a lemma of  Hrlein [16] 
(Lemma D), we obtain a regularity result for each u(t) (Lemma B). Then 
we conclude the proof  by the same 'perturbation argument' used in the paper 
(Lemma 2.2). 

Theorems, lemmas, equations and references in the paper are referred to here by 
the same number. The notation is the same, with the following additional conven- 
tions. F k,p denotes the space of  orthonormal k-flames in •P. In the notation of 
flames ei and connection forms o~ij the indices i, j are usually omitted for brevity. 
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c > 0 denotes a generic positive constant whose value may depend on M, N, a given 
smooth tangent orthonormal frame d on N, and on Uo. 

For  simplicity the argument below is given in the case of  surfaces without 
boundary. 

The statement and proof  of Theorem 3.1 (existence of adapted frames) should 
be changed as follows. 

Let d = (di)~= a, d E L~ H~(M; Oz"P)), be tlae 'background' adapted frame ob- 
tained by composing a smooth orthonormal frame tangent to N with u(x, t). Since 
u(t) ~ Uo strongly in H~(M; N) as t ~ 0  (by the energy bound hypothesized in the 
theorem), we also have d(t) ~ ( 0 )  strongly in HI(M; ~:k,p). Let �9 > 0 be given. We 
define 7", ~ (0, T) as follows. Since dim(M) = 2, we may write: 

d(o) = d ' (o)  + g2(o), 

where d2(0) e C~(M; F ~'p) and da(0) e (H a c~L~ ~P) satisfies IIda(o)I1., < �9 
Fix T~ > 0 such that l id( t)-  a0)]t u, < �9 for all t ~  [0, 7",] such that e ( t ) e H  a. 
Then, setting da(t) = d(t) - ~ ( 0 ) ,  we have: 

lie'(t) ]l.x < �9 

for all t ~ [0, T,] such that d(t) e H ~. 
The result that replaces theorem 3.1 is: 

LEMMA A. Let �9 > 0 be given, and choose T, > 0 as above. Fix t ~ [0, 7',] such 
that u(t) ~ HI(M; N). We may find a tangent orthonormal frame e(t) e Ha(M; ~:ku,) 
adapted to u(t), whose connection 1-form o9~j = (dei, ej ) admits the decomposition: 

m(t) = ml(t) +~o2(t), 

with 6co a(t) = O, 11 co a(t) 112 < E and co 2(t) e L o~12 a(M) | so(k), with norm bounded by a 
constant independent of  t. 

Proof. Let o3~(t) = {<dd)(t), dj(t)>), o3~(t) = {(dd,.2(0), dj(t)>}. Consider a 'gauge 
transformation' g ~ H1; SO(k)) which minimizes the functional F(g) given by: 

F(g) = f u  Idgg' + gffg'(t)g']2 dx, 

where the superscript 't' denotes 'transpose'. A minimizer clearly exists. The 
Euler-Lagrange equation for F is: 
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6co 1( 0 = 0, 

where: col(t) = dggt+ g(ol(t)gt. Since g is a minimizer, 

[Icol(t) I1~ ~ II~l(t) I1= < E. 

Let et(t) = E: g;j~j (t). The connection 1-forms co of e(t) = (ei)(t) may be decom- 
posed as: 

co(t) = dgg t + g(o(t)g t = co l(t) + co2(t), 

where o92(0 =g(oZ(t)g '. Since II~/t)[l~ IId 7(o)II  c, this concludes the proof. 

Remark A. o91 is not the connection 1-form of a frame. However, defining 
e I =g~l ,  we have (since (g, e ) = g ' ) :  

(de 1, e )  = dg(~  1, e )  +g(dY 1, e )  

= dgg t - dg(~ 2, e )  + g(d~  1, ~)(~, e )  

= dgg t + g(o lgt _ dg (~2, e) ;  

so o91 = {(de i, e )  + dg(~ 2, e)}. (In this calculation we have denoted, for instance, 
by (~1, e )  the matrix with 0'-th entry ( ~ ,  ej ).) 

Lemma A gives no control on the connection 1-forms C0ia (ei tangential, e~ 
normal). Thus the proof of theorem 1.1 must be modified. This is accomplished by 
using a lemma of  Hrlein, which allows us to give a simpler proof than the argument 
attempted in the paper. The main step is the following lemma. 

LEMMA B. Consider a solution u: M x I ~ N o f  the harmonic map flow to N 
satisfying the assumptions o f  theorem 1.1. There exists El > 0 with the following 
property. Define T,~ > 0  as in the paragraph preceding Lemma A. Let  t e(O, T,~] 
satisfy Ut(t ) E L2(M; R~), u(t) ~ H I ( M ,  N). Then du(t) ~ L 4g21M and 

Ildu(t) I[, ~ c(1 + Ilu,(t)112), 

for  a constant c independent o f  t. In particular, du eL2([0, T,,]; L4) .  

The conclusion of lemma B is 'higher regularity of u in space directions'. It is 
then easy to conclude u is in the class V z~ (for some T' < T) as claimed in theorem 
1.1, by means of  a 'perturbation argument' based on linear parabolic theory. This 
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is accomplished in the following lemma (which is essentially a restatement of 
Lemma 2.2 in the paper). 

Consider the general non-homogeneous linear parabolic system of the form: 

(L) { 4,  - A4  = - ( d 4 .  ~o)e + f (x ,  t) on M x I 
4( , 0 ) = 0  inM,  

LEMMA C. There exists ~2 > 0 (depending on M and T) with the following 
property. Let I ' = [ 0 ,  T'], where T'~(0,  T] is arbitrary. Let feL4(I ' ,L4i3) ,  
co ~ L~( I  ', L 2f2 ~) and e ~ L ~ ( M  x I'), []e I1 ~ < 1. Assume ]]e~ I[L~tr.L 2) < %. Let 4 be 
a solution of  (L) in ( H l c ~ L ~ ) ( M x I ' ) ,  such that I[V411L,tM~eL2(I'). Then 
4 ~ L4(I ', W2'4/3). (Note: E 2 is independent o f  T'.) 

Proof  The first part of the proof of Lemma 2.2 shows that, for each p e (1, 4], 
there exists E(p) > 0 such that system (L) has unique solutions in Lg(I', W2'4/3). In 
particular one may find e2>0 such that (L) has a unique solution 4~e 
L g ( I ' ,  W2'4/3), and also a unique solution in L2(I ', ~V2'4/3). The latter must coincide 
with the given gs, since II V4 t[L'(~ e L2(I ') implies (by linear theory, Theorem 2.1) 
4 ~ L~(I', W2:/3). Since L4(I ', I4 ~'4/3) c}L2(I ', W2:/3), uniqueness in L2o(I ', W 2'4/3) 

implies 4 = 4~. 

Proof o f  Theorem 1.1. Using the background frame {g~ }~= ~, we write the 
equation for u in the form (2.4a): 

u, - Au = - ~  <du . ,b~, g, >go. 
i,a 

Let ~2 be given by lemma C. Choose T' < min{T,, ,  T,=}. Then for t e [0, T'] the 
following decomposition holds: 

~,a( t )  = ~O~a(t) + ~O~,a(t), 

where [[tS~a(t)]l= < el and t52~ ~ L~176 x [0, T']). Letting v: M x [0, To] + R p be the 
solution of the linear heat equation with initial data Uo, we obtain for w = u - o: 

w, - aw = - ~  <dw. &L, ~,>~ + f (x ,  t), 
i,a 

w ( .  , O) = o, 

where: 

f ( x ,  t) = <dr. r E~ )g~ + (dw. ~ ,  el>g~ ~ L4([0, T'], L4/3). 
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Indeed we have (as in subsection 2.3): 

II dw" ~,~ II~,,><~,, <- < II dw I1~:<~,)II <~,~o I1~,<~,,), 

which implies: 

4 4 2 cT, tldw 4 

By lemma B, dw eL2([0,  T'], L4). Thus we may apply lemma C to w and 
conclude w E Lg([0, T'], W2'4/3), hence u e L4([0, T'], W2'4/3). From the embedding 
W2,4/3% W ~,4 and the equation of the flow this implies u ~ L2([0, T'], H2), as 

claimed in the theorem. 

Proof of  lemma B. (1) Let e~ =c1%, where Cl is the constant defined in 
paragraph (4) below and E0 is given by Lemma D below. Let T,, > 0 be chosen as 
in Lemma A above. Fix t E (0, T,~] such that u~(t) ~ L 2, and let e(t) = (ei)(t) be the 
adapted frame given by Lemma A, whose connection 1-forms decompose as in its 
statement: co(t)= 091(0 + c02(t). Since &ol( t )= 0, we have the Hodge decomposi- 

tion: 

co~(t) =fiB(t) +H(t) ,  

where B(t) ~ HI~2 2 |  satisfies SM B(t) = 0 and: 

lIB I1,,,-< c Ilco'dt2 < c, ,  

and H(t) is a harmonic 1-form on M. 
(2) In order to use Hrlein's lemma we must localize the problem. Cover M by 

open sets {U~ }~= i, such that: 

(i) there exist conformal coordinate charts ~p~ : D 2 ~ M ,  q ~ ( D 2 )  --- Us; 
(ii) M c UN=, V~, V~ = cp,(Dl/2). 

We denote by Dr the open disk with radius r centered at the origin in C(D = D I), 
endowed with the metric ds 2 = 22[dz[ 2, pulled back from M via the local charts ~o~. 
Fix an index �9 for the remainder of  the proof, and for simplicity of notation 
identify the maps u, ei, etc. with their pullbacks to D2 under ~o~. 
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Let 

1 
o~i(t ) = (Uz, ei(t) ) = ~ (U x -- iUy, ei(t) ) E L2(D2), 

aij = ( (ei(t))s, es(t) ) 

1 
= ~ [(coij)(~?x) + i~oij(c~y)] e L2(D2) 

(with L 2 norm independent  of  t in both  cases). Then: 

(o~i) z = (Uzz , e i )  -[- (Uz, (ei)~ ) 

1 (22Au, e l )  + ~  o:jaij, 
4 j 

(A denotes the Laplacian in the Euclidean metric) so: 

2 2 
(1) (~i)~ + Y', as, a: = ~- (u, ,  el) .  

J 

(3) By remark A above,  we have: 

AB = dr = {de I /~ de - dg A d(e2,  e ) } _  e W)o~(D2). 

2.1 CO(D2) (W~oc denotes a local Ha rdy  space, as in [16]). Therefore  B ~ Wtoc(D2) c 
and: 

IIB Iq w2.,,~,, < c( tlde' ll2 llde l[2 + Ildg ll21le ll,~, ). 

We also have the estimates (in D~): 

[I de(t) 112 = tl ~ l(t)g(t) - g(t)co'(t) 112 -< 2 II o31(0112 < 2e, 

[]del(t)tl2 = H(dg)e I + gde'H2 < c(]}dg]t 2 + II~lllH,) < c,, 

so we conclude IlSllw:,,(o., < c,.  
(4) Corresponding to the decomposi t ion:  

e) = 6 B  +co2 + H, 
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we set: 

o9(~) = a(t) = al(t) + a2(t) + a3(t), 

where (and here we define cl): 

a~(t) = 6B(#~) e W~'~(D), 

aZ(t) = co2(Oz) e L ~(D), 

a3(t) = H( t ) (~ )  ~ L~(D),  

A. FREIRE 

Ita'IIw,, < c,~, 

with L ~ norm bounded independently of t in the last two cases. 
We may rewrite (1) in the form: 

(2) (~i)i + ~ a),aj = f  
J 

where: 

22 
f~. = --~ (ut(t),  ei(t) ) + E (a~ + a3)~j(t) ~ L2(D), 

J 

with: 

IIf/(0 IIL=<o) -< c(llu,(t)l]L2(o) + [](du, ei(t) } I]c2(o)) 

(3) < c(1 + I[u,(t)11~2(o~). 

(5) L E M M A  D. (H~lein [16]) There exist constants % > O, Co > 0 such that i f  
aa ~ WIn(D),  [la,j II w , ,  < ,0, one may f ind  solutions flk ~ L ~ Cn), k = 1 . . . . .  n o f  
the system: 

(fl,)~ = ~ aoflj ' flk = (f ir)7*,  
J 

and a map M = (mij) ~ L~176 GL(n, C)) such that: 

tlMIILo+IIM-'II~e0 I l P J - b ~ l l ~ e 0  

and b k =  E~-I mkj~ j, where b 1 . . . . .  b ~ is the standard basis o f  C ~. 
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(6) We have (as in [16]): 

~J = E ~ji~i = E mJkfl~, = E mjk ~k, 
i k , i  k 

where 7 k = Ei flki~i and (2) implies: 

i 

(4) = ~ fl~f ~ L 2(D) 
i 

By elliptic regularity for {, this implies: 

7k(t) ~ H~(DI/2), 

and hence 7~(t) (and therefore ~j) is in LP(D1/2) for each 1 < p  < oo. In particular, 
this clearly implies du(t)~L4(V~)) for each ~. Thus duGZ4~21M. The estimate 
claimed in the lemma follows from (3) and (4). 
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