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On an  I n f i n i t e  Interval  B o u n d a r y  V a l u e  P r o b l e m  (*). 

ADRIAN CONSTANTIN 

1. - Introduction. 

We will present an existence result for a second order nonlinear differential 
equation 

r t _  
y - f ( t , y , y ' ) ,  O~<t< 

with the boundary condition 

ay(O)  - f ly  ' ( 0 )  = r 

where a > 0, fl I> 0, r E R are given constants and f :  R + x R 2 __~ R is continuous. Under 
certain growth conditions (suggested by the finite interval case [4]) on the nonlinearity 
f we establish that the considered boundary value problem--that we denote by 
(P)--has bounded solutions. 

We apply our results to a plane membrane problem and to a boundary value 
problem which occurs in the theory of semiconductor devices. 

Our approach is based on the topological transversality theorem. We briefly review 
the topological results we will use (for further details, see [6[). 

Let C be a convex subset of a Banach space, X a metric space and F:  X - - * C  a 
continuous map. We say that F is compact if F ( X )  is contained in a compact subset of C. 
A homotopy { ~ :  X-oC}~[0,  1] is called compact if the map ~ :  X • [0, 1] --)C given 
by 

:)C(x, ;t) = ~ ( x ) ,  (x, 2 ) e X x  [0, 1], 

is compact. 
Let now Ur C be open in C. We say that a compact (continuous) map F:  U--*C is 

admissible if it is fLxed point free on the boundary, ~U, of U. It is called inessential if 
there is a fLxed point free compact map from U to C such that its restriction to ~U is the 
same as the restriction of F to aU. An admissible map which is not inessential is called 

(*) Entrata in Redazione il 9 aprile 1998. 
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CH-8057, Switzerland. 
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essential. In this context, let us note that the constant map Fu: U--~C, Fu 
where u e U, is essential. 

The main result we need is 

- - U  o n  U ,  

TOPOLOGICAL TRANSVERSALITY THEOREM. - Let F,  G: U-->C be admissible and 
such that there exists a compact homotopy {M~: U-~C}x~[o, 1j for which F = :)Co, G = 
= :)Q, and :)Q is admissible for each ~ ~ [0, 1]. Then one of the maps is essential i f  the 
other is. 

Before proceeding let us introduce the following notation: let BC~(R+) be the space 
of all functions u(t) on R§ with u(i)(t) bounded and continuous on R§ for i = 
=0 ,  1, 2. 

2. - S o l u t i o n s  to  the  boundary  va lue  problem.  

The following lemma with the Arzela-Ascoli theorem will imply our basic existence 
theorem for (P): 

LEMMA 1. - Assume f ( t ,  x, y) is continuous on R+ • R 2 and satisfies 

(i) there is a constant M > 0  such that xf(t,  x, O)>O for Ixl ~ M; 

(ii) there are functions A(t,  x), B(t, x) > 0 which are bounded when x varies in 
a bounded interval and t varies in R+ such that 

If(t ,  x, Y) I <~A(t, x) w(y 2) + B(t, x) 
c~ 

where weC(R+,(O,  ~ ) )  is nondecreasing and ~ ds/w(s)= ~ .  
o 

Let n be a positive integer and consider the boundary value problem 

(2.1.n) y " = f ( t , y , y ' ) ,  O<~t<<.n, a y ( O ) - f l y ' ( O ) = r ,  y ( n ) = 0 .  

Then (2.1.n) has at least one solution Yn ~ C2[ 0, n] and there is a constant K > 0 
independent of n such that 

sup {lYn(t) I, ly~(t) l, ly~'(t) l} ~<K. 
t ~ [0, n] 

PROOF. - Let us first show that there is an K1 > 0  such that if y~C2[O, n] is a 
solution of 

y " = ~ f ( t , y , y ' ) ,  O<~t<.n, a y ( O ) - f l y ' ( O ) = r ,  y(n) = 0 .  

for some ) ~  (0, 1), then 

, I t  t sup {lyn(t) I lye(t) I ]Yn( )I}~<K, �9 
t e [0, n] 

Observe that y2 must have a maximum at a point toe [0 ,  n]. If  t o = 0  then 
0 I> y(0) y '(0) thus 0 I> fly(O) y'(O) = ay2(O) - y(O) r and we get ly(t) I <- Ir l /a ,  
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t � 9  [0, n]. If t0 =n we immediately have that y(t) = 0, t � 9  [0, n]. In the case to �9  (0, n) 
we have y(to) y'(to) = 0 and y(to) y"(to) <- 0 thus 

0 >I y(to)f(to, y(to), 0) 

and by (i) we get l y(to) I ~< M. All this enables us to write 

sup { ,y( t ) ,}  ~<max{ ,r, ,M}  = M 1 .  
t ~ [0, n]  C~ 

If  y2 has a maximum in (0, n) then y '  vanishes at least once in (0, n). If the 
maximum of y2 on [0, n] is at t = 0  and fl;~0, then [y'(0)] ~< ]r -ay(O)] / f l<.  
<~ (Jr I + aM1)/fl, whereas if fl = 0 by the mean value theorem there is a point to �9 
�9 (0, n) with ]y'(to) I = lY(n) - y(O) I/n <. M~. Clearly if the maximum of y2 on [0, n] 
occurs at t = n ,  then y ( t )=0 ,  t � 9  n]. In any case, there is a constant M 2 > 0  
(independent of n) such that there is a point to �9 [0, n] with l y '( to) ] < M2. We deduce 
that each t e [ 0 ,  n] with ]y'(t) I >M2 belongs to some interval [a, b ] r  n] with 
]y'(s) ] > Me for a < s < b and ]y'(a) ] = M2 or ]y'(b) I = 1142. Suppose y'(a) = Me and 
y'(t) > M2 on (a, b)--the other cases are similar. If 

n = sup {n(t ,  x)}, B = sup {B(t, x)}, 
teR+, Ix1 <-M1 t~R+, 1~I <-ML 

we obtain 

y" ( t )<-Aw( (y ' ( t ) )2 )+B ,  a < t < b ,  

thus 

2y '(t) y"(t) 
w((y'  (t))2) + 1 

~<2(A + B )  y ' ( t ) ,  a < t < b ,  

and an integration on [a, t] yields 

(y ' ( t ) )2  t 
ds 

~< 2(A + B) [ y 
I w(s) + 1 

M~ a 
' (s) ds ~< 4(A + B) M1, a<. t<.b .  

Now, the hypotheses on w imply (see [3]) that 

ds 

thus there is a constant M3 > 0 (independent of a, b, n) such that 

]y'(t)] <.M3, a<-t<-b.  

We get 

sup {]y ' ( t )  l} ~<max{M2, M3} = M r .  
t e [0, n]  
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By (ii) we obtain 

l y" ( t ) l  < ~ A w ( M ~ ) + B ,  O<~t<<.n, 

thus if K1 = max{M1, M4, Aw(M~)  + B }  then 

sup { Jy~(t) l, ly~(t) l, ly"(t) I } < g  1 . 
te [0, n] 

Let now 

and 

C~ = {u e C2[0, n]: au(O) - f iu ' (O)  = r,  u (n )  = 0},  

Vn: [uEC2: ,~sUP[o, n]{ l u ( t ) [ '  lu'(t) l' Inn(t)  I } <K1 j- 1 } r  

The operator Ln: C~---)C[O, n] defined by L u  = u"  is one-to-one and onto. Let us 
define 

F:  C1[0, n]--)C[0,  n],  Fy( t )  = f ( t ,  y(t), y ' ( t ) ) ,  0 ~ t <~ n ,  

and let j~: C~--* C 1[0, n] be the natural embedding (which is completely continuous). 
We also consider the function l~ e U, 

One can see that 

- -  ~ : c  nr 
l , ( x ) - - -  + -  

na  + fl na  + fl'  
O < x < n .  

:)C: Un • [0, 1]--->Cn 2 , ~C(u, 2 ) = ~ L n l F j ~ ( u ) + ( 1 - , ~ ) I ~ ,  

is a compact homotopy. A fixed point u of 3C~ must satisfy ~ r j n  (n) = Ln u because L n In ---- 
= 0 and therefore, by the choice of K1, the map 3Cx is fixed point free on ~U~. Since l~ e Un, 
we have that M0 --- l~ is essential and by topological transversality, 3Cl will be essential, 
so 3Cl has a fixed point. This fixed point is a solution to (1.2.n). �9 

THEOREM 1. - I f  f satisfies the conditions of  L e m m a  1 then the problem (P) has at 
least one solution in BC2(R+). 

P R O O F .  - Let K be the constant from Lemma 1 and let n be a positive integer, 
Consider the problem (2.1.n). By Lemma 1 there exists a solution uneC2[O,  n] to 
(2.1.n) with lu(i)(t) I << . K,  t e [0, n], 0 ~< i ~< 2. Define Yn(t) = u~(t), t e [0, n], and 
yn(t)  = O, t >I n.  By the Arzela-Ascoli theorem there exists a sequence nj--> cr and a 
continuously differentiable function Zl on [0, 1] such that y(~!)(t)-->z(li)(t) uniformly on 
[0, 1] as n j - - ) ~  for i = 0, 1. Again by the Arzela-~coli theorem there is a 
subsequence n ] - - ) ~  of {nj} and a continuously differentiable function z2eCl [0 ,  2] 

(i) __> (i) such that y~] (t) z~ (t) uniformly on [0, 2] as n 1--) r162 for i = 0, 1. Note that z2(t) = 

----Zl(t) for t e  [0, 1]. Inductively we can define zk on [0, k] for every integer k. 
Now define y(t)  = zk(t) for t eR+  where k = [t] + 1. From the above construction 
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y e C l ( R + )  is well defined and ay(O) -f ly '(O) =r .  Fix tER+ and let k = [t] + 1. We 
have 

t 

' t  ' f Yn( ) - y ~ ( 0 )  = f(s ,  y~(s), Yn(S))d8 
0 

and since there is a sequence n~---> ~ such that  y(~2(t)---)z(ki)(t) uniformly on [0, 1] as 
n~---> ~ for i = 0, 1, we have 

t 

z ; ( t ) -  z;(O) = f f ( x ,  zk(s), z;(s))ds 
0 

that  is 

t 

y ' ( t ) -  y'(O) = f f ( s ,  y(s), y ' ( s ) ) d s .  
o 

Since t e R +  was arbitrary we deduce that  y~Ce(R+)  is a solution to (P). Also, by 
construction, 

sup{ly( t )  l, l y ' ( t )  l, ly"( t)  l} ~<K, 
t ~ R +  

thus y~BC~(R+). �9 

As a particular case of Theorem 1 (for w linear) we obtain a result  of GRANAS, 
G U E N T H E R ,  LEE and O'REGAN [ 8 ] .  The following example shows that  our result  has a 
wider applicability than the results from [8]. 

EXAMPLE. - Consider the boundary value problem 

x " = x + ( x ' ) 2 1 n ( l + ( x ' ) Z ) ,  0 ~ < t <  ~ , x ( 0 ) - x ' ( 0 )  = 0 .  

By Theorem 1 this problem has at least one solution in BCe(R+) but we cannot apply 
the results of[8]. Since l i m  If(0,  0, y ) l / ( y l n ( y ) ) =  ~ the result o f [ l ]  is also not 

applicable be the considered problem. �9 

THEOREM 2. - I f  f satisfies the conditions of Lemma 1 and if  ueBC2(R+)  is a 
solution of (P) with lim u(t) = 0 then lim u'(t) = O. 

t --~ ~ t--~ ~ 

PROOF. - Let  us define 

~p(t) = sup{lu( t)  l},  t t>0.  
s>~t 

Then ~f is a decreasing continuous function with lu(t) I <~ ~p(t), t >i O, and lim ~(t)  = 0. 
t - ~  

Since lim u(t) = 0 we have that  for each e > 0 and for each s > 0 there exists t > s 
t - ~  

such that  lu'(t) l <~ ~ (apply the mean-value theorem). Fix e > 0 and let s e R +  be such 
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that  l u ' (s)  I ~< e. In view of what  we jus t  said there  is an interval [s, So] such that  u '  has 
a fixed sign on [s, So] and lu'(so) I <~ e. Without loss of general i ty we assume u'(t) >I 0 
on [s, So]. Define 

A = sup {A(t,  x)} ,  B = sup {B(t,  x)} ,  
teR+, Ixl ~<~p(0) teR+, Ixl ~<~p(0) 

We obtain 

2 u ' ( t )  u " ( t )  

w((u'  (t))2) + 1 
~< 2(A + B )  u ' ( t ) ,  s<~t<~so, 

and integrating from t to So we get  

-H((u ' (so))2)  + U((u'( t))2)  ~< 2(A + B)(yJ(t) + ~P(So)) ~< 4(A + B) ~p(t) 

X 

because ~f is decreasing, where we denoted H(x) = ~ds/(w(s)+ 1), x ~  > 0. Since w e  
oo J oo 

I o I eC(R+,(O, ~ ) )  is such that  ds/w(s) = ~ we have (see [3]) that  ds/(w(s) + 1) = ~ 
0 0 

thus H :  R + ~ R + is a homeomorphism. 
We have thus 

l u ' ( t )  12 <~ H - l [ 4 ( A  + B) ~fl(t) + H(lu ' (so)  l 2)] ~< H - 1  [4(A + B) ~fl(t) + H(e2)] ,  

s <~ t <~ so . 

Repeating the argument  we deduce that  

lu ' ( t )  12<~H-l[4(A+B)~p(t)+H(e2)] ,  t>~s. 

Since lira H -114(A + B) ~p(t)] = 0 we deduce that  lim u'(t) = O. �9 
t - - ~  t - - ~  

To show that  the problem (P) has a solution y e BC2(R+) satisfying tlim y(t) = 0 

fur ther  more delicate considerations are needed. We show how to do this in Section 4 
for a nonlinear semiconductor problem. 

LEMMA 3. - Assume f ( t ,  x,  y) is continuous on R+ • R 2 and satisfies 

(i) there is a constant M > 0  such that xf(t ,  x, O) >O for Ixl >~M; 

(ii) there are continuous functions A(t ,  x), B(t,  x) > 0 such that 

I f( t ,  x, Y) I <.A(t, x )w(y  2) + B(t,  x) 
c o  

where w ~ C(R+, (0, r162 is nondecreasing and ~ ds/w(s) = ~ .  
0 

Then (P) has at least a bounded solution y e C2(R+). 

PROOF. - Similar to the proof of Lemma 1 one can show that  for any n e N the 



ADRIAN CONSTANTIN: On an infinite interval boundary value problem 385 

problem (2.1.n) has a t  least one solution Yn�9 n] such that 

/ } sup { lyn(t) I } ~< max Irl 
t e  [0, n] (~ 

and 

sup { ly~( t ) l ,  lyn'(t) l} ~<Kn 
t e [ 0 ,  n] 

where Kn > 0 is a constant depending on n. A construction similar to the one made in 
the proof of Theorem I works with the difference that the obtained function is no more 
in BC2(R+) but only in C2(R+) and bounded by max{M, ]r]/a}. �9 

In [2] the problem of the existence of a bounded solution for the boundary value 
problem 

y" =f ( t ,  y),  0 <~ t < ~ ,  y(0) = r ,  

where r �9 R is given, was considered. To establish the consistency of our result with 
respect to [2] we give the following 

EXAMPLE. - The boundary value problem 

1 
y, ,_  y 3 ,  0~<t<  ~ , y(0) = 1, 

t + l  

has a bounded solution by Theorem 3. Since lim If(t, y) - f ( t ,  O)I/lYl = 0 we cannot 
t---) c~ 

apply the result of [2]. �9 

3. - Appl i ca t ions  to  n o n l i n e a r  m e c h a n i c s .  

Consider a circular membrane of radius R and thickness r subjected to a normal 
uniform pressure p. We assume that the deformation is rotationally symmetric. Let x 
be the radial coordinate. The membrane equations can be reduced (see [9]) to the 
nonlinear ordinary differential equation for the dimensionless radial stress y(x), 

k 3 
(3.1) y" - - -y '  , 0 < x ~ < l ,  

y2 x 

where k > 0 is a constant. To complete the formulation, conditions are required at the 
center x = 0 and at the edge of the plate, x = 1. The assumed symmetry and regularity 
imply that y(0) is regular and y'(0) = 0. At the edge we consider the condition y(1) = 
= ~t > 0 where the prescribed constant )L is proportional to the radial stress applied to the 
boundary. We have thus the boundary conditions 

(3.2) y( 1 ) = )~, 

(3.3) y '  (0)  = 0 ,  

and y(0) should be regular. 
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Making a change of variables we replace the problem (3.1)-(3.2) with a boundary  
value problem on 0 ~< t < ~ and using our results we prove the existence of a bounded 
solution. Returning to the initial variable it turns out that  the solution satisfies also the 
condition (3.3) and y(0)  is regular. 

Le t  us first prove 

LEMMA 2 . -  Suppose f e C(R+ • R 2, R)  is such that f ( t ,  x,  y) is strictly increasing 
as a funct ion of x and nondecreasing as a funct ion of y for f ixed t. Let  a > O, fl >1 O, 
r e R .  I f  Ul, WeeC2(R+) satisfy 

aul(O) - f l u ; ( O )  ~ r ,  awe(O)-flwe'(O) <.r,  

and on the set { t e R +  : ul(t)~< we(t)} we have 

ui' <.f(t, ul ,  u { ) ,  u~' >~f(t, we, u2'), 

then we(to) > ul(to) for some to >I 0 implies lira (u2(t) - u l ( t ) )  = ~ .  
t - -> ov 

PROOF. - Define u(t) = we(t) - ul( t) ,  t t> 0. 
Le t  us first show that  u'(t)  > 0 for t I> to. 
Fix tl I> to and suppose u'( t l)  ~< 0. Since u(to) > 0 we have that  u attains a positive 

maximum on [0, tl] at some point tr e [0, tl]. I f  t2 = 0 we would have u ' (0 )  < 0 thus, 
since au(O) - flu'(O) <~ O, we obtain u(0)  ~< 0, contradicting the positivity of the 
maximum. We deduce that  tee  (0, tl] with u'( t2)= we'(te)-  u{( t2)= 0 so that  u(t2)= 
= u2(t2) - ul(t2) > 0 implies 

0 ~ u"(t2) = u~'(t2) -u i ' ( t2 )  ~f ( t2 ,  we(t~.), we'(t2)) - f ( t 2 ,  ul(t2), Ul' ( t2 ) )  > 0 

contradiction. 
Thus u'( t)  > O, t >t to, so u(t) = we(t) - u l ( t )  t> u(to) > O, t >I to. We obtain that  

u"( t )  >~f(t, we(t), u~ (t))  - f ( t ,  u~(t), u{ (t)) > O, t >t to, 

thus u'( t)  >I u'(to) > 0 for t I> to and we get  

u(t) - u(to) >I u ' (to)(t - to) ---) oo 

a s  t - - - >  ~ .  �9 

THEOREM 4 . -  The problem (3.1)-(3.2) has a solution y EC2[0,  1] satisfying 

k 
2~<y(x )~<2+  ( 1 - x  2) 0~<x~<l  

822 ' �9 

PROOF. - Let  us change independent variables with x = 1 / ( t  + 1), 0 ~< t < ~ .  The 
problem (3.1)-(3.2) is t ransformed to 

k 1 1 
(3.4) y"  - + y ' ,  0 ~< t < ~ ,  

(t + 1)4 y2 t + l  

(3.5) y(0)  = 2 ,  
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We cannot apply Theorem 1 immediately because of the singularity of (3.4) at 
y = O .  

Let y2(t) = 2, t t> 0. Observe that 

k 1 1 
y~' I> + y2', t ~> 0 .  

( t + l )  4 y~ t + l  

Also, if we denote yl(t) = 4  + (k/842)(1 - 1 / ( t +  1)2), t>~0, we see that yl(0)  = 4  
and 

k 1 1 
y~"~< + yl ' ,  t~>0. 

( t + l ) 4  yl 2 t + l  

Let us consider the modified problem of (3.4)-(3.5), 

(3.6) y" = f ( t ,  y ,  y ' ) ,  0 <~ t < ~ , 

(3.7) y(0)  = 4 ,  

where 

k 1 
(t + 1) 4 y2 

k 1 
f ( t ,  y ,  z) = (t + 1) 4 y2 

k 1 
(t + 1) 4 42 

1 
+ z + y - y l ( t ) ,  if y > y l ( t ) ,  

t + l  

1 
+ - - z ,  i f y l ( t ) > y > ~ 4 ,  

t + l  

1 
+ - - z + y - 2 ,  if y~<4.  

t + l  

One can easily verify that f satisfies the conditions of Theorem 1 and for each f'Lxed t we 
have that f ( t ,  y ,  z) is strictly increasing as a function of y and z. 

Theorem 1 now applies to the problem (3.6)-(3.7) to guarantee the existence of a 
solution y ~ BC e ( R  + ). 

By Lemma 2 we have that y(t)~<yl(t) ,  t~>0 (otherwise we would have that 
lim (y( t)  - y l ( t ) )  = ~ which contradicts the boundedness of y). The same argument 

t---> ~ 

and Lemma 2 shows that y(t)  >I y2(t) = 2, t I> 0, and so y is a solution to the unmodified 
problem (3.4)-(3.5). 

Returning to the problem (3.1)-(3.2) we obtain a solution y eC2(0,  1] with 

k 
(3.8) 2~<y(x) ~<2+ ( 1 - x 2 ) ,  0 < x ~ < l  

842 

Multiplying now (3.1) by x s and integrating from 1 to x, we find 

x 3 

x S y ' ( x ) - y ' ( 1 )  = - k [  s~ds 0 < x ~ < l .  
i j y2(s)  ' 
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Dividing by x 3 and integrating again from 1 to x, we get (in view of (3.2)) 

= - dt 0 < x ~ < l .  
2 -~  -~ iJ y2(s) ' 

At this point an integration by parts yields 

2 ~-~ d- ~-'~X2 1 Y2(s) 2 1" y2(8) ' 0 < x ~< 1.  

Multiplying by x 2 we get 

x2y(x) = 2X 2 + ' k ~s3ds  k 27 sds y (1 ) (x  2 _ 1 ) + _  - -  - -x  - -  , 
2 - 2 i j y2(s) 2 i j y2(s) 

Letting x--~ 0 (in view of (3.8)) we find that  

0 < x ~ < l .  

1 s3ds 
y ' ( 1 )  = - k ~  

0 Y2(S) 

and replacing this in (3.9) yields 

k ~s3ds  k ~s3ds  k ~  sds 
(3.10) y(x) = 2 - -~oj y-~s) + ~ o  J y-~s) + -2 y2(s) ' 0 < x <~ 1. 

so that  y(0) is regular. 
The fact that  y e C2[0, 1] and y ' (0)  = 0 follows upon successive differentiation of 

(3.10) and use of l'HSpital's rule. �9 

The problem (3.1)-(3.3) has been treated in [5]. The method of DICKEY [5] consisted 
in using an iterative scheme for the integral equation (3.10). Our method shows the 
existence of a solution for all 2 > 0 whereas the method of Dickey applies only to 2 s > 
> 4/j121 (here Jll is the smallest root of the Bessel function of first order). 

4. - Appl icat ions  to  s e m i c o n d u c t o r  devices .  

In studying the theory of semiconductor devices one is led to the boundary value 
problem 

(4. !) y" =f(t ,  y) ,  0 ~< t < ~ ,  

(4.2) y ' (0)  - ay(O) = r ,  

(4.3) lim y(t) = 0,  
t - - - )  oo 

where a > 0 and r e R are given constants. 
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Examples of functions fwhich appear in semiconductor applications are f ( t ,  y)  = ;~y 
and f ( t ,  y ) = A s i n h ( 2 y )  with A, ; t>  0 constants. For a physical discussion of the 
problem (4.1)-(4.3) we refer to [10]. 

Our results enable us to give an existence theorem for the problem (4.1)-(4.3). Our 
hypotheses guarantee also uniqueness of the solution. 

THEOREM 5. - A s s u m e  that f e  C(R§ x R ,  R )  satisfies: 

(i) (~f /ay)( t ,  y) exists and there is a constant k > 0 such that (a f /ay) ( t ,  y)  >>- k 
on R+ •  

(ii) lira f ( t ,  O) = O. 
t---> oo 

Then the problem (4.1)-(4.3) has a unique solution. 

PROOF. - By the mean-value theorem we have 

xf( t ,  x) = x[ f ( t ,  x ) - f ( t ,  O)] + x f ( t ,  O) >~ kx2 + xf ( t ,  0), t e R +  , x e R  . 

Since lim f ( t ,  0) = 0 we have that the hypotheses of Lemma 3 are satisfied and so 
t-.= 

there exists a bounded function y e C2(R+) which satsfies (4.1), (4.2). 
We will show that lim y(t)  = O. 

t---> oo 

By quadrature we see that the boundary value problem 

(4.4) x " = k x + g ( t ) ,  O ~ < t < ~ ,  x ' ( O ) - ax( O ) = ro , lim x( t ) = O, 
t ---~ oo 

where g e C(R+) is such that lim g(t) = 0, has a unique solution given by 
t---> oo 

(4.5) x( t )=  - 

o v  

ro + f e - v ~  g(s) ds 
o e -xSt _ 

a + V ~  

t i: ] - ~e -v~(t-8) e -v~(~-8) g(v) dv ds ,  

0 s 

t E S +  . 

The above formula shows that x is nonnegative (nonpositive) on R+ if ro ~< 0 and g(t) <<. 
<.0, t e R +  (respectively r0~>0 and g(t) 3 0 ,  t e R + ) .  

Let ui be the solution of (4.4) with ro = r - I r I, g(t) = f ( t ,  O) - I f ( t ,  O) I, t �9 R~_. We 
have that u i ( t ) / > 0 ,  t e R + ,  and since f ( t ,  x) is strictly increasing in x for fLxed t 
and 

f ( t , x ) > . k x + f ( t , O ) > ~ k x + f ( t , O )  - I f ( t , O ) l ,  t e R + ,  x ~ R §  
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(by the mean-value theorem) we deduce by Lemma 2 (U 1 and y being bounded on R +) 
that 

y(t) <-ul(t), t e R +  . 

Let now we be the solution of (4.4) with r o = r +  Irl,  g ( t ) = f ( t , O ) +  I f( t ,O) l, 
t e R + .  We have that we(t)~<0, t e R + ,  and since 

f ( t , x ) < ~ k x + f ( t , O ) < ~ k x + f ( t , O ) +  l f ( t ,O) l  , t e R §  x<~O, 

we deduce by Lemma 2 that 

thus 

we(t) ~<y(t), t e R + ,  

we(t) <~y(t) ~< ul( t) ,  t e R + .  

Now, since lim Ul(t)----- lim u 2 ( t ) =  0 we obtain that lim y( t )= 0, thus y satisfies 
( 4 . 3 ) .  t - ~  ~ t - ~  | t --~ 

In order to complete the proof we have to show that y is the unique solution of 
(4.1)-(4.3). 

Suppose Yl is another solution of (4.1)-(4.3) and define z(t) = (y(t) - y l ( t ) )  2, t ~ R §  
In view of (4.3), if z is not identically zero on R§ it must have a positive maximum at 
some point toeR+.  We cannot have to = 0  (this would imply 0 >~z'(O)= 2az (0 )>  0) 
thus to > 0 and we obtain z'(to) = 0 and 

0 >I z"(to) = 2(y(t0) - yl(to))[f(to, y(to)) - f ( to ,  Yl(t0))] I> 2kz(to) > 0 

contradiction and this shows that the solution is unique. �9 

If in Theorem 5 we assume the additional condition that f ( t ,  y) is bounded when y 
varies in a bounded interval and t e R § we can apply Theorem 1 (instead of Theorem 3) 
to deduce that (4.1)-(4.3) has a unique solution y and yEBC2(R+).  Moreover, by 
Theorem 2 we have that lim y'(t) = O. 

t ---> oo 

C O R O L L A R Y  [ 8 ] ,  - In  addition to the hypotheses of  Theorem 5 assume that 
( af/3y)(t, y) is bounded for t ~ R+ and y varying in bounded intervals. Then (4.1)-(4.3) 
has a unique solution and 

lira y ' ( t )  = l i m  y " ( t )  = O.  
t - - ~  r162 t---~ ~ 

PROOF. - An application of the mean-value theorem shows that f ( t ,  y) is bounded for 
t e R§ and y varying in bounded intervals since 

f(t, y)-f(t, o)--y[[ 

for some I~1 ~> lYl and lim f ( t ,  O) =0.  
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In view of the previous remarks all we have to show is that lim y"(t)= 0 
holds, t--* 

The differential equation yields 

y"(t) = [f(t ,  y(t) ) - f ( t ,  0)] + f ( t ,  O) = y(t) [ ~f (t, ~(t))] +f( t ,  0), 
3y 

where (af/~y)(t,  ~(t)) is obtained by the mean-value theorem, and this proves our 
claim. �9 

EXAMPLE. - Consider the problem 

y" =  (t + 1)(y + y3), O~<t<oo ,  y ' ( O ) = y ( O ) ,  l i m y ( t ) = O .  
t - - ~  oo 

By Theorem 5 we have that there is a unique solution to this problem. The results 
from [8] are not applicable. �9 

T H E O R E M  6.  - Assume that f e  C(R+ x R,  R) satisfies: 

(i) (~f/3y)(t, y) exists and there is a constant k > 0 such that (af/~y)(t, y) >>- k 
on R+ x R; 

(ii) f ( t ,  O) eLI(R+).  

Then the problem (4.1)-(4.3) has a unique solution. 

PROOF. - In order to repeat the steps of the proof of Theorem 5 all we have to show 
is that if g e L l ( R + ) N  C(R+) then lim x(t) = 0 where x is given by (4.5). 

t - - ~  or 

It is clear that if g e L 1 (R +) then x is well defined and bounded on R +. Let us first 
prove that x e L l ( R + ) .  

An integration by parts shows that 

e -V~ t j  e2v~ s e -V~g(r )  dr ds = 

1 -Y~t~ - -  e e -V~g(s)  ds + - -  
2 V ~  o 

oo 

1 V~tf e e -V~g(s)  ds + 

t 

1 - ~ t [ e V ~ g ( s )  ds t >I 0 
+ - ~ - - ~  e 0 ' " 

Again by integration by parts we see that 

J e v~t e -V~ lg ( s )  lds dt<~ 
t 

oo 

T~>0, 
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and 

f e-v t I e-V~8 ig(s )[ds  
o d 

This shows that  x ~ L I ( R + ) .  
Suppose that  

oo 

dt<~ - - ~ r  ~ Ig(s) l ds , T>~O, 

lim sup Ix(t) I = A > O . 
t - - -)  ao 

Since x e L 1 (R +) we have that  

lim infix(t)  I = 0 
t - - ~  oo 

thus there is a strictly increasing sequence tn--~ ~ as n---~ ~ such that  

A A 
x(t2n) > - -  , Ix(t2n+l)l < - -  n ~  l ,  

2 2 

o r  

A A 
x( t2n)< - - - -  , Ix(t2n+l)l < - -  n > ~ l ,  

2 2 

and l i m  Ix(ten) l = A .  Let  us assume that  x ( t 2 n ) > A / 2 ,  n1> 1 (the other case is 

similar). 
By the continuity of x we have that  each t~n belongs to some maximal closed interval 

In = [an, b j  such that  x(t) > A / 2 ,  an < t < bn. Moreover, since {tn}n~>l is strictly 
increasing we have that  Ii and Ij are disjoint if i ~ j .  

On In the function x has a maximum at some point cn �9 (an, bn) since x(an) = x(bn) = 
= A / 2 .  We have that  

Cn 

x(cn) - X(an) = (cn - an) x '  (Cn) - f (t - an) x" ( t )  dt 
an 

and since x'(cn) = 0 we get 

Cn 

IX(Cn) -- x(an) l <~ f ( t  -- an ) IX" ( t ) Id t  <~ 2(bn - an) 2 sup { [x ' ( t )  I }. 
an t ~ [an, bn] 

The boundedness of x and the fact that  g e L I ( R + ) A C ( R + )  show that  x '  is also 
bounded on R+.  Let  M > 0  be such that  I x ' ( t )  l < .M/2 ,  t E R + .  We have 

M(bn - an) 2 >I Ix(cn) - X(an) [ , n >I 1.  
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Since l i m  x(t~) = A and x(a~) = A /2  we deduce that  l i m  X(Cn) = A (it can't be more 

than A) so that  

A 
(4.6) lim_~f(b~ - a~) ~ I> - -  > 0 .  

2M 

On the other hand we have that  x ( t ) > A / 2 ,  as < t < b~, n ~> 1, thus 

A 
Ix(t) Idt >1 ~ ~ Ix(t)Idt  >I --Z ~ (b~ - as) 

n>~l  ,~ n ~ l  
0 In 

and since x ELI(R+)  we deduce that  nl im(bn-  a s ) =  0 which is in contradiction with 
(4.6). 

We proved so that  lira x(t) = O. 
t - ~  

A repetition of the arguments of the proof of Theorem 5 enables us to 
conclude. �9 

I f  in Theorem 6 we assume the additional condition that  f ( t ,  y) is bounded when y 
varies in a bounded interval and t e R+,  we obtain (applying Theorem 1 instead of 
Theorem 3) that  (4.1)-(4.3i has a unique solution y and y eBC2(R+). Moreover, by 
Theorem 2 we get tlim y'(t) = O. 

EXAMPLE. - Let  h ~ C(R+) N L I(R+). The problem 

1 
y . . . .  ( y S + y + l ) + h ( t ) ,  0 ~ < t <  r162 y ' ( O ) - y ( O ) = l ,  

( t +  1) 

has a unique solution y and yeBC2(R+)  with lim y ' ( t ) = 0 .  �9 
t - - '>  ~ 

Observe that  the common examples 

f ( t ,  y) = 2y , and f ( t ,  y) = A sinh ()~y) 

with A, 2 > 0 satisfy the conditions of Theorem 5 and Theorem 6. 

lim y( t ) = O, 
$---) oo 
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