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Abelian Integrals for Cubic Vector Fields (*). 

YULIN ZHAO - ZHIFEN ZHANG(**) 

Abstract. - It  is proved in this paper that the lowest upper bound o f  the number  o f  the isolated ze- 
ros of  the Abelian integral 

I(h) = ~(a + fix + 7x 2) y d x  

Fh 

/s two for he(-1/12,0) ,  where F h is the compact component of  H(x ,  y)= (1/2)y2+ 
+ (1/3)x3 + ( 1 / 4 ) x 4 = h ,  and a, fl, 7 are arbitrary constants. 

1.  - I n t r o d u c t i o n .  

Consider the Abelian integral 

(1.1) I ( h )  = ~ Y d x  - X d y  , 

Fh 

where H,  X and Y are real polynomials of x and y, Fh is the compact component of 
H = h. Finding the lowest upper bound for the number of zeros of I (h )  is called the 
weakened Hilbert 16th problem, posed by V. I. Arnold [1], and this problem is closely 
related to determining the number of limit cycles of the perturbed system 

(1.2) 

dx 9H 
- - -  + e X ( x ,  y ) ,  

dt  cgy 

dy aH 
- - -  + e Y ( x ,  y),  

dt  ~x  

where 0 < [el<<l. 

(*) Entrata in Redazione il 4 dicembre 1997. 
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In particular, suppose [2] 

1 
(1.3) H(x, y) = = 

z 
y2 + U(x) = h ,  

where U(x) is a real polynomial of x with degree n. Finding the number  of zeros of I(h) 
is one of ten problems in [2]. When n = 3, this problem was solved by [9], [11], [13] etc. 
When n = 4, some results were given by [7], [12], [14], but  this case is far from com- 
pletely solved. In this paper, we consider the case n = 4 and the Hamiltonian vector 
field dH = 0 possesses two critical points, one of which is a center and the other  is a 
cusp; then (1.3) can be reduced to 

1 ye 1 1 x4 (1.4) H ( x ,  y )  = -~ + -3 x3 + -4 = h . 

The per turbed system has the following form 

(1.5)~ 
{~ = Y '  

= - x 2 - x  ~+ e(a +fix+ ~x 2) y ,  

where a ,  fl, 7 are arbi trary constants, 0 < le l<<l .  
The unperturbed system (1.5)o has the first integral (1.4) and the closed level sets 

Fh = {(x, y ) I H  = h, h e  ( - 1 / 1 2 ,  0) U (0, oo)} are shown in fig. 1.1. The origin (0,0) is 
a cuspidal point which has two hyperbolic sectors and two separatrices: unstable F~ 
and stable F~o. F-Ill2 and F0 correspond to the center ( -  1, 0) and cuspidal loop with 
F~ = r~  respectively. 

Y 

x 

Fig. 1.1. 
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Denote 

(1.6) I i ( h )  = ~ x i y d x ,  i = 0 ,  1 , 2 ,  
Fh 

(1.7) I(h) = aI  o + ~I 1 + ~I2 , 

where h e  ( -1 /12 ,  0 )U (0, + 0r The central result of this paper is the following: 

THEOREM 1.1. - Either the Abelian integral I(h) vanishes identically, or the lowest 
upper bound of the number of its zeros is two in the interval ( -  1/12, 0). 

For system (1.5)~, we have 

THEOREM 1.1". - For all sufficiently small s, either the system (1.5)~ is Hamiltoni- 
an, or the lowest upper bound for the number of limit cycles of (1.5)~ bifurcating f rom 
Fh is two for h e  ( -1 /12 ,  0). 

For the homoclinic loop F~o of a hyperbolic saddle, there is the well known asymp- 
totic expansion of R. Roussarie [15] 

I(h) = co + cl(h - ho) ln(h - ho) + c2(h - ho) + . . . .  

However, it seems that no one has given an asymptotic expansion of I(h) in the neigh- 
bourhood of a cuspidal loop. In this paper, using analytic theory of ordinary differential 
equations, we get 

THEOREM 1.2. - For system (1.5)~, near the value h = 0 corresponding to cuspidal 
loop, I(h) has the following asymptotic expansion: 

(1.8) I ( h ) = d o + d l l h l S / 6 + d ~ h +  ~ ak(a, fl, r)  lh lS /6hk~ bk(a, fl,~,)lhlT/6h k, 
k = l  k=0 

and the following statements are equivalent: 

i) do = dl  = d2 --- O, 

ii) a = fl = 7 = O, 

iii) I(h) - O, 

where Ihl < 1/12, do = (4/27) V ~ z a  - (10/81) V~xfl + (28/243) V ~ ? ,  dl = aC1, d2 - - - -  

= - 2 Q ~ f l  + (4/3) V ~ y ,  and ak(a, fl, ?), bk(a, fl, ~) are linear functions of a, fl, ~, 
C1 is a constant with C1 < 0 for h < 0 and CI > 0 for h > O. 

The relationship between the expansion (1.8) and the number of limit cycles of (1.5)~ 
near F0 is still open. We may conjecture as follows: If do = 0 (resp. do = dl = 0) and 
d l r  0 (resp. d~ ~ 0), then there exists a neighbourhood of the loop Fo containing at 
most 1 limit cycle of (1.5)~ (resp. 2) for 0 < I~1<< 1. 

The paper is organized as follows: In sect. 2, the monotonicity of P(h) = I1 (h)/Io(h), 
Q(h) = I2(h)/Io(h) and R(h) = I~(h)/Ii(h) is proved, which implies that the curve t9 = 
= {(P, Q) IP = P(h), Q = Q(h)} can be defined in PQ-p lane .  In sect. 8, the asymptotic 



254 YULIN ZHAO - ZHIFEN ZHANG: Abelian integrals for cubic vector fields 

expansions of I(h) near its endpoints are given and Theorem 1.2 is proved, which shows 
that  the lowest upper bound of the number of zeros of I(h) is at least 2. A simple but im- 
portant fact is that  the ratio g(h) = I"(h)/I~'(h) satisfies a Riccati equation and I"(h) 
can be denoted as a linear combination of Ig'(h) and I~'(h). This is crucial for our analy- 
sis. From the beginning of sect. 5, instead of estimating the number of zeros of I(h), we 
will prove that  I(h) has at most two inflection points, i.e., I"(h) has at most two zeros in 
( -  1/12, 0), which implies that the lowest upper bound of the number of zeros of I(h) 
does not exceed three. Qualitative analysis of Riccati equation of I~'(h)/I~'(h) yields the 
monotonicity of I~'(h)/Ig'(h), which gives the upper bound of the number of zeros of 
I"(h) in most cases. In sect. 6, by applying the fact that  the zeros ofg(h)  equal the zeros 
of I"(h) ,  we estimate the upper bound of the number of zeros of I"(h) in those cases 
which are not discussed in sect. 5. Finally, the asymptotic expansion of I(h) near its 
endpoints shows the main results of this paper. 

2. - Monotonic i ty  of  P(h), Q(h) and R(h). 

Let  

I1(h) I2(h) I2(h) 
(2.1) P(h) = , Q(h) - - - ,  R(h) - 

Io(h) Io(h) I~ (h) 

I t  follows from Green's formula that  

LEMMA 2.1. - For  h �9 ( - 1/12, 0), 

i) Io(h) > 0 ,  Ii(h) < 0 ,  Ie(h) > 0 ,  Ig(h) > 0 ,  I~(h) > 0 ,  

ii) P(h) < 0, Q(h) > O. 

Rewrite (1.4) in the form 

l y 2 + ( p ( x )  h ,  
(2.2) 2 

where r  = xa /3 + x4/4 satisfying 

(4) 
(2.3) ( P ' ( x ) ( x + I ) > 0 ,  for x � 9  - ~ ,  - 1  U ( - 1 , 0 ) .  

For  any x � 9  ( - 4 / 3 ,  - 1 ) ,  there exists a unique ~ � 9  ( - 1 ,  0), such that  

4 
(2.4) O(x) = r  - - < x < - 1 < & < 0 .  

3 

Therefore, we can define a function ~ = ~(x) for x �9 ( - 4 / 3 ,  - 1) satisfying (2.4). The in- 
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equality (2.3) implies 

(2.5) 
d2 r  (x) 

dx 4)(2) 
- - < 0 .  

Define 

(2.6) ~ km (x) = 
x k r  2 k O ' ( x )  

xm r  (2) - 2 m r  (x) 

where  k = 1 , 2 ,  m = 0 , 1 .  
By Theorem 1 of [10], we have 

LEMMA 2.2. - If ~ ( X )  > 0 (resp. < 0), then u~(h) < 0 (resp. > 0),  where 
u ~ ( h )  = Ik(h)/Im(h). 

THEOREM 2.3. - F o r  h e  ( - 1 / 1 2 ,  0), P' (h )  > 0  , Q'(h)  < 0 ,  R ' ( h )  > 0 .  

PROOF. - For  P(h) = I~(h)/Io(h), 

xr (2) - 2 O '  (x) x2(1 + x + 2) 
~lo(X) = = , 

4 ) ' (2 )  - r  2 2 + x 2 + 2 x + x + 2  

~io(X) = 
A(x,  2) 

( 2 2 + x 2 + x  2 + x + 2 )  2 ' 

where  

A(x,  2) = [2(1 + x + 2) + x - -  

- 22 + 2 x + 2 + x - - + l +  x 2 ( l + x + ~ c ) =  
dx 

d~ 
= 22(2 + 1)(2 + 1 + 2x)  + x2(x + 1)(x + 1 + 22) - -  . 

dx 

I t  follows from (2.4), (2.5) that  2 + 1 > 0, x + 1 < 0, 2 + 2x  + 1 = (x + 2) + (x + 1) < 0, 
x + 1 + 22 < 0, d~/dx < 0, which implies A(x ,  2) < 0, i.e., ~o(X)  < 0. Hence, by  L e m m a  
2.2, P '  (h) > 0. 

Fo r  Q(h) and R(h), 

X2 (~)' (2) -- 22 (~)' (X) X222 
~2o(X) = = 

r  - r  2 + x + 22 + x2 + x 2 ' 
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and 

where 

~ o ( x )  = 

B(x, 2) 

( x + 2 + ~ 2 + x ~ + x 2 ) 2  ' 

x2r  x2 
~ z ~ ( x )  = - , 

xq~' (2) - ~ ' ( x )  1 + x + ~c 

C(x, 2) 
r  - -  

(1 + x + 2 )  2 ' 

B ( x , ~ ) = x 2  2 ( 2 + l ) ( x + 2 2 ) + x ~ ( x + l ) ( 2 + 2 x )  > 0 ,  

x d2 C(x, 2 ) = ~ ( 1 + 2 ) + x ( 1 +  )--~ < 0 ,  

which implies ~ ( x ) > 0 ,  ~ l ( x ) < 0 .  Therefore,  by Lemma 2.2, Q ' ( h ) < 0  and 
R' (h )  > O. 

3 . -  Pieard-Fuehs equation and the asymptotic  behaviour of  I(h) near its 
endpoints.  

In this section, we shall derive Picard-Fuchs equation of Ii(h), i = 0, 1, 2 and de- 
scribe the behaviour of I(h) near  h = 0 and h = - 1/12. 

LEMMA 3.1. 

i) I i ( - -  (1 /12)+)  = 0, P ( -  (1/12) + ) = - 1 ,  Q ( -  (1/12) + ) = 1, 

ii) Io(0) = (4/27) V ~ z ,  I1(0) = - ( 1 0 / 8 1 )  V ~ z , / 2 ( 0 )  = (28/243) h / 2 z ,  P (0 )  = 
-- - 5 / 6 ,  Q(O) = 7/9, 

iii) F o r  h e  [ - 1 / 1 2 ,  0], - 1  <~P(h) <~ - 5 / 6 ,  7/9 ~< Q(h) <<. 1. 

PROOF. - The results i) and ii) are obtained by direct computation. The conclusion iii) 
follows from the results i), ii) and Theorem 2.3. 

PROPOSITION 3.2. - Io(h), I i (h) ,  I2(h) satisfy the following Picard-Fuchs equa- 
tion 

(3.1) 

1/6 54 , ,o ,  
h(12h+1)~ Z~ = 1 2 h + 7 / 6  5/4 I /Z1] ,  

Iz - 2h  15h I ~Iel 
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which  is  equiva len t  to 

(3.2) 

r 31 o = 4 hlg + -~ 12 , 

1 1 , 
411 = 4 h i ;  - -~ I o - -~ 12 , 

1 2 
512 = (4h + ~ ) 12' - ~I~ + 

1 
I ~  �9 

PROOF. - I t  follows from (1.4) that 

(3.3) 
3y 1 

~h y 

and 

(3.4) ~Y + x 2 + x S = O  y ~--~ 

Obviously, (3.3) implies that 

(3.5) I i ' (h )  = ~ x ~ y - I  d x ,  i = O, 1, 2 .  

Fh 

Multiplying (3.4) by x ' ~ - S y - 1  and integrating by parts over Fh give the following 
equality 

(3.6) 

This implies 

(3.7) 

~ x ~ y - l d x : ( n - 3 ) ~ x ~ - 4 y d x -  ~ x ' - l y - l d x .  

Fh Fh Fa 

la' (h) = -12' (h),  

(3.8) I~ (h) = Io(h)  + I~ (h) , 

(3.9) I~ (h) = 211(h) - Io(h)  - I~ (h ) .  

Using (1.4) and (3.5) again,we get 

~ xky 2 
(3.101 Ik (h )  = dx  = 

rh Y 

,~ x k ( 2 h  - (2/3) x s - (1/2) x 4) 

r~ Y 

2 1 
dx  = 2hI~ - - I~ + a - - I~ + 4 . 

Z 
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On the other hand, integrating by parts and using (3.4), (3.5), we have 

X 2 -~- X 3 1 

(3 .11)  Ik (h)  - k + 1 1", k +----~ rh Y k + 1 

Eliminating Ik+4 from (3.10) and (3.11), we obtain 

- - -  ( h ' + 3  +I;+4). 

1 
(3.12) (k + 3) Ik = 4 h i ;  - = Ik'+3 �9 

3 

Taking k = 0, 1, 2, we have 

(3.13) 

1 
"3Io = 4h id  - -~ I~ , 

1 , 
411 - - - -  4 h i {  - -~ I~ , 

1 , 
5/2 = 4hI~ - - I 5  �9 

3 

Substituting (3.7)-(3.9) into (3.13), we obtain (3.2), which implies (3.1). 

PROPOSITION 3.3 (Behaviour near h = 0 and h = -1/12).  
i )  

(3.14) I 1 (h) 

12 (h) 

1 - (35/88) h + "'i) 
=C11hl 5/6 (21/44) h + .. 

- (6/11)  h + ... 

+ 

1 - (385/208) h + . .  / 

fh,7,o/-2 + ( 5/26)h + i ] -(30/13) h + ... 

+ 
(4/27) V ~  / 

-(10/81) V~z~-2  V ~ z h  ],  

(28/243) V ~  + (4/3)V~x~h] 

where  Ci is real constant,  i = 1 , 2 ,  C l < 0 f o r  h < 0  and C1>0 for h > 0 ,  I h l <  
< 1/12. 
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and 

(3.15) 

ii) Let lh + 1/12 1 <1/12,  then I~(h) ( i=O,  1, 2) /s holomorphic at h = - 1 / 1 2  

(1)[()  ( ) 1 31 1 2 10465 h + + 
I o ( h ) = I g - h + --~ + - ~  h + - ~  + 17--~ - ~  "'" ' 

( ) [ ( ) ( )  1 1 7 1 2 206,5 h+- + 
Ii(h)=Io' - ~ -  - h + ~  - ~ h + ~  17~ ~ " '  

( 1 ) [ (  1 )  5 ( 1 )  2 695 ( h +  1 ) 3  ] 
I2(h) = Id - --~ h +  --~ - ~ h +  --~ 1728 ~ + . . . .  

PROOF. - (i) Consider the analytic continuation of Ii(h) from ( -  1/12, 0) L) (0, + oo ) 
to the complex domain C. Using analytic theory of ordinary differential equation [5], 
[6], we obtain asymptotic expansions of Ii(h), i = 0, 1, 2, 

(3.16) | / , (h )}  = ~1h5/6 (21/44) h + . . .  + 

\ I2(h)] - (6 /11)  h + ... 

+ ~ 2 h T / 6 ~ - 2 + ( 5 5 / 2 6 )  h +  i + - C 3 - 1 5 - 2 4 3 h  

-(30/13)  h + ... \ 14 + 162h 

where C~ (i = 0, 1, 2) is a complex or real constant, h e C ,  0 < Ihl < 1/12. We notice 
that Ii(h) is real for h e ( - 1/12, 0), hence the imaginary part of Ii(h) equals zero in 
(3.16), which implies -C1 = e-(~/6)~C1, ~2 = e-(7/6)~C 2 (C1, C 2 axe real constants) for 
h < 0, and Ci is real for h > 0. From Lemma 3.1 and Ig (h) > 0, we have ~s = 2 ~ zv/243 
and C1 > 0 for h > 0. Therefore, I~(h) is denoted as (3.14). 

For h < 0, it follows from (3.14) that 

5 45 27 h 63 ihl7/6 
P ( h )  = - - + - -  V ~ C 1  I h l  5/6 - - - -  V ~ C 2  + . . . .  

6 167~ 2 16zr 

Therefore, 

P ' ( h )  75 V~cI lhl-,/6 27 . . . . .  + o(1). 
32 2 

If C 1 - - 0 ,  then P ' ( h ) = - 2 7 / 2 +  o ( 1 ) < 0  as h--*0- .  This contradicts Theorem 2.3. 
Using Theorem 2.3 again, we have C1 < 0 for h < 0. 

(ii) Using the same argument as above, we can get ii). 
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PROOF OF THEOREM 1.2 .  - (1.8) follows from Proposition 3.3. do = d, 
only if 

28 
' 4 V ~ z a  10 V"2:rfl + - -  V '2z7 = 0 
-2~  - 8-T 243 ' 

aC1 = 0 , 

4 V ~ a 7  = 0 

= do = 0 if and 

Noting C 1 < 0 a n d  

4 V ~  

C1 

10 V ~  
81 

0 

- 2 V ~  

28 
- - V ~ z  
243 

3 

32 

243 
- -  F/-2C1 ; ~ 0 ,  

therefore,  do = dl = do = 0 if and only if a = fl = 7 = 0, which implies I(h)  - O. Con- 
versely, if I ( h ) -  O, then di(i = 0, 1, 2) must  equal zero. The theorem is proved. 

The intersection points of the lines a + tiP + 7Q = 0 with the curve ~ correspond to 
the zeros of I(h), where 

(3.17) 
{ (1)} 

Y2= ( P , Q )  I P = P ( h ) , Q = Q ( h ) , h e  - - ~ , 0  , 

or Q = Q(h(P)) ,  and h = h(P) is the inverse function of P = P(h),  cf. Theorem 2.3. 

PROPOSITION 3.4. - The lowest upper bound N for  the number  of  zeros of  I(h)  is at 
least two for  hE  ( - 1 / 1 2 ,  0). 

PROOF. - Theorem 2.3 yields N t> 1. Suppose N = 1, which implies that  ~ is a 

straight line in ( - 1 / 1 2 ,  0). Assume ~ :  ~ + f iR  + ~Q = 0 and [al + Ifll + [7[ ~ o, then 
I(h) = 5Io + flI1 + ~I2 =- 0, which contradicts Theorem 1.2. Therefore,  N 1> 2. 

4 .  - R i c c a t i  e q u a t i o n  o f  I"(h)/Ig'(h). 

From this section, we begin to estimate the number  of inflection points of I(h),  i.e. 
the zeros of I" (h) ,  which determine the upper  bound of the number  of zeros of I(h). We 
will derive the Riccati equation satisfied by I"(h)/Ig'(h),  which is based on I~'(h) ~ 0, 
h E ( -  1/12, 0), proved by S.N. Chow and L. Gavrilov in [3] [8]. Theorem 2.3 implies 
that  I(h) has at most one zero for h e ( - 1/12, 0) if afly = 0, a 2 + f12 + 72 ;~ 0. Hence, 
from now on, without loss of generality, we suppose fl = 1 unless the opposite is 
claimed. 
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LEMMA 4.1. 

(4.1) 

(4.2) 

2 
i) 4 hI~' - Id - 4 hI~', 

3 

ii) I f ' =  6hIg'  + 18hI~' . 

PROOF. - Differentiate once the fh'st two equations in (3.2), 

1 
(4.3) 4 hI~' + -~ I f '  = - I~ , 

1 1 
(4.4) 4 h I ~ ' -  -~ I~ - -~ I f ' =  O.  

Eliminating I~ ' (h)  (resp. Io') from (4.3) and (4.4) yields (4.1) (resp. (4.2)). 

LEMMA 4.2. - The  i n t e g r a l  Io, Ia s a t i s f y  the  f o l l o w i n g  e q u a t i o n  

(',i) (4.5) 2h(12h + 1) = 5/3]\Ii']" 

PROOF. - Differentiate twice the second and third equation of (3.2) to get  

1 1 I~', (4.6) 4 h i ; '=  -~ I ; ' -  4 Ii '  + -~ 

Differentiating (4.3) once, we have 

,, 1 ,, 
I~'= -3I~ '  + ~I1 - -~Io.  

(4.8) I'~'(h) = - 151~' - 12 hI~'. 

Substituting (4.2) and (4.8) into (4.6) and (4.7), we have 

7 
(4.9) 2 h i ; ' =  - -~ I~' - 2I~' - 2hI~' ,  

3 I0 + 27h I1 , 

which implies (4.5). 

LEMMA 4.3. - A s s u m e  v = I1 + 712, w = u"/I~' ,  t h e n  w ( h  ) s a t i s f i e s  the  f o l l o w i n g  R i c -  
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cati equation 

(4.11) 2h (12h+  1)(1+ 18yh) w ' =  /27h 1 / _ _ _ W 2 §  

3 / 

[ 2] 
+ 2 1 6 y h 2 + ( 4 4 ~ - 3 0 ) h + ~  w + ( - 6 0 ~ 2 + 7 2 5 ) h 2 + ( 8 y - 7 ) h .  

PROOF. - Substituting 11 = v -  ~I2 into (4.5), we get 

(4.12) 

( 7).,(2. 1) 2h(12h + 1) I~'= - 21h - ~ ~ ( v " -  rI~'), 

2h(12h + l ) v " =  2rh(12h + l)  I~'- 7hl~' + ( - 5 1 h -  5 ) (v" -y I~ ' ) .  

Eliminating I~' from I~'= v " -y I~ '  and (4.2), we have 

1 
(4.13) I~' - (6hI~' + 18hv"). 

1 + 18~h 

Substituting (4.13) into (4.12) yields 

(4.14) 

"2h(12h + 1)(1 + 18yh)Ig'= 

2h(12h + 1)(1 + 18~,h)v" = 

Noticing w ' =  (v"Ig' - v"I'~l(Ig') ~, the equation (4.11) follows from (4.14). 
Define 

(4.15) g ( h ) -  Ig'(h) ' h e  - - -~  , 0 . 

Obviously, g = a + w. Theorem 4.4 follows from Lemma 4.3: 
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THEOREM 4.4. - g(h) satisfies the following Riccati equation 

(4.16) 2h(12h + 1)(1 + 185h) g'= 

(1) [  ] 
= -  2 7 h -  g2+ 216~,h2+(Nla+44~_30) h + _ ( 1 _ a )  g+F(h)  

where 

(4.17) F(h) = ( - 6 0 y  2 - 216~,a + 72~) h 2 + 

1 
+[  - 2 7 a  2 + ( - 4 4 ~  + 30) a + 8y  - 7] h + -~ a(a - 2) .  

5. - M o n o t o n i c i t y  o f  I~'/Ig' a n d  r e l e v a n t  r e s u l t s .  

Define 

r(h) - (1) , h e  - 0 
I~' ] 2 '  " 

LEMMA 5.1. - r(h) satisfies the following Riccati equation 

( ) ( : )  1 r 2+ - 3 0 h +  r - 7 h  (5.1) 2 h ( 1 2 h + 1 ) r ' = -  2 7 h - ~  . 

PROOF. - (5.1) follows from (4.11) by taking $ = 0. 

Consider the system 

(5.2) 
i 2 h ( 1 2 h +  1),  1) 

The zero isocline r • (h) of system (5.2) is determined by the algebraic curve 

(5.3) . . . .  r - 7 h = 0  
3 
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w h e r e  

45h - 1 + 3 ~r 2 - (23 /3 )  h + 1/9 
(5.4) r § (h)  = 

1 - 81h  

(5.5) r - (h)  = 
45h  - 1 - 3 ~v/36h 2 - (23 /3)  h + 1/9 

1 - 81h  

Obviously,  36h  2 - (23 /3)  h + 1/9 > 0 for  h e ( - ~ ,  0). 

LEMMA 5.2. 

i) r + 
7 ( 1 )  

- -  - -  - -  , r - 

31 ]-2 

dr +(h) [ _ 770 

ii) dh h= -1112 961 

= - 1 ,  r §  r - ( O ) = - 2 ,  

PROOF. - D i r ec t  computa t ion .  

LEMMA 5.3. -- ( dr + ( h ) )/dh > O , ( dr - ( h ) )/dh < O for h e ( - ~ ,  0). 

PROOF. - A s s u m e  (dr • (h))/dh = 0 a t  h = h .  D i f f e r e n t i a t i ng  (5.3) wi th  r e s p e c t  h ,  we 
have  

1 7 
(5.6) r • (h)  - or  r • (~)  - 

3 9 

However ,  G(h, - 1 / 3 ) =  - 5 / 2 7  ;~ 0, G(~ ,  - 7 / 9 ) =  - 7 7 / 2 4 3  ;~ 0, which  c o n t r a d i c t s  to 
the  def ini t ion of  r -~ (h)  (see  (5.3)). This  impl ies  (dr ' -(h)) /dh ~ O. B y  L e m m a  5.2 i), we  
g e t  (dr + (h))/dh > 0, (dr - (h))/dh < O. 

THEOREM 5.4. - For h e  ( - 1 / 1 2 ,  0),  

i ) - ~ -  I'-~ 

ii) 7 I t '  - - - < - - < 0 .  
31 14' 

PROOF. - I t  follows f rom Propos i t i on  3.3 t h a t  

- - + -  h +  + o  h +  + 
I~' 31 961 1-2 "'" 
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as h --~ - ( 1/12) +, which implies 

(5.7) 
(1) 7 r( 1) 5 

r - ~-~ -- 31 ~ 961 

Similarly, Proposition 3.3 gives 

I;'(h) 
(5.8) lim r(h) = lim - -  = 0 .  

h-~o- ~-~o- Ig'(h) 

It is known that r(h) = (Ii'(h))/(Ig'(h)) satisfies (5.2), which has four critical points: 
two saddles at B(0,  - 2 )  and D( - 1 / 1 2 ,  -7 /31) ,  an unstable node at A(0,  0 ) ,  a stable 
node at C ( - 1 / 1 2 ,  1). From (5.7) and (5.8), the graph r(h) = (Ii'(h))/(Ig'(h)) is the tra- 
jectory of (5.2) starting from the unstable node A to the saddle point D.  On the other 
hand, the zero isoclines r + (h) and r -  (h) are monotonically increasing and decreasing 
respectively (cf. Lemma 5.3). In the phase plane of system (5.2), the region {(h, r) I 
- 1 / 1 2  ~< h ~< 0} is divided into three parts by the curve r+(h)  , r - ( h )  and the 
invariant lines h =O, h =  -1 /12 .  It  follows from Lemma 5.2 ii) and (5.7) that  
(dr + (h) )/dhl~: -1/12 > (dr(h) )/dh]h= -1/12. Hence, the graph of r(h) = I~'/I~' must  s tay 
in the region {(h, r) I - 1/12 ~< h ~< 0, r -  (h) < r < r + (h)}, which implies 

d ( l~' l _  dr(h) _ - ( 2 7 h - 1 / 3 ) ( r - r  + ) ( r - r - )  > 0  

It-- ] d-h 2h(12h + 1) 

for h E ( - 1/12, 0), see fig. 5.1. The conclusion ii) follows from i), (5.7) and (5.8). 

D 
..-) 

C 

f 

% 

-4" 

A 

B 

~ h  

Fig. 5.1. 



266 YULIN ZHAO - ZHIFEN ZHANG: Abelian integrals for cubic vector fields 

Denote 

(5.9) q(h) = f ( h )  + I~' 
I; '  

where h e  ( - 1 / 1 2 ,  0) and 

(5.10) f (h )  - 
a + 6~,h 

1 + 187h 

Since f ' ( h )  = ( - 18~(a - 1 /3)) / (1  + 18~h) 2, we have f ' ( h )  > 0 for ~(a - 1/3) < 0 and 
f ' ( h )  < 0  for r ( a -  1/3) > 0  

LEMMA 5.5. 

i) I"(h)  = (a + 6~h) Ig' + (1 + 18~h) I~', 

ii) I"(  - 1/18~) ~ 0 for a ~ 1/3, which implies that the number of zeros of I(h) 
equals the number of zeros of q(h) for  a ~ 1/3. 

PROOF. - The equality i) follows from Lemma 4.1 ii). The conclusion ii) follows from 
i) and Ig'(h) 4 0  for h e  ( - 1 / 1 2 ,  0 )U  (0, + ~) .  

REMARK. - Lemma 5.5 is important  for our analysis. We may estimate the number  of 
zeros of q(h) instead of the number  of zeros of I"(h).  

COROLLARY 5 . 6 . -  I f  a = 1/3, h e  ( - 1 / 1 2 ,  0), then 

i) h =  - 1 / 1 8 ~  is the unique zero of I"(h)  for  ~ > 2 / 3 ,  

ii) I"(h)  has no zero for ), <~ 2/3. 

PROOF. - When a = 1/3, I(h) = (1 + 18yh)(1/3 + Ii'/Ig'). I t  follows from Theorem 5.4 
ii) that  1/3 + I['/Ig' > 0. Noting that  - 1/18~ e ( - 1/12, 0) for ~ > 2/3 and - 1/18~ 
~ ( - 1 / 1 2 ,  0) for ~, ~<2/3, the results are proved. 

COROLLARY 5.7. - i) I f y  > 2/3, then I"(h)  has at most two zeros for  0 < a < 1/3 and  
at most one zero for a <~ 0, h e ( - 1/12, 0). 

ii) I f  ~ < 0 ,  a > 1/3, then I"(h)  has at most  one zero in ( - 1 / 1 2 ,  0). 

PROOF. - i) I t  follows from Theorem 5.4 and f ' ( h ) >  0 that  q ' ( h ) >  0, i.e., q(h) is 
monotonically increasing function in ( - 1/12, - 1/18~) U ( - 1/185, 0), so q(h) has at 
most two zeros in ( - 1 / 1 2 ,  0). However, if a ~< 0, then f (h )  = (a + 6~h)/(1 + 18~h) < 0 
for h e ( - 1/18y, 0). Theorem 5.4 ii) yields q(h) < 0 for h e ( - 1/18~, 0). Therefore,  q(h) 
has at most  one zero in ( - 1 / 1 2 ,  -1 /18~) .  The result  follows from Lemma 5.5 ii). 

ii) In this case, - 1 / 1 8 ~  ~t ( - 1 / 1 2 ,  0) and q ' ( h ) > 0 ,  which implies ii). 
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COROLLARY 5.8. - I f  0 • ~/ ~ 2/3, h e ( - 1/12, 0), then 

i) I"(h)  has at most one zero for 0 < a < 1/3, 

ii) I"(h)  has no zero for a <. O. 

PROOF.- In the case of 0 < ~ ~< 2/3, a < 1/3, we have - 1 / 1 8  y ~< - 1 / 1 2 , f ' ( h )  > 0. I t  
follows from Theorem 5.4 that  q ' (h)  > 0 for h e ( - 1 / 1 2 ,  0 ) ,  which implies i). However,  
i f a  ~< 0, noting (a  + 67h)/(1 + 18~h) < 0 and Theorem 5.4 ii), we conclude that  q(h) < 0 
for h e  ( - 1 / 1 2 ,  0), the result  ii) follows. 

COROLLARY 5.9. - i) I"(h)  has no zero in ( - 1 / 1 2 ,  0) f o r  0 < ~ ~< 2/3, a > 1/3. 

ii) I"(h)  has no zero in ( - 1 / 1 8 ~ ,  0 ) f o r  ~ > 2 / 3 ,  a > 1/3. 

PROOF. - i) In this case, f (h )  is a continuous and monotonically decreasing function 
in ( - 1 / 1 2 ,  0), hence f(h)  > f ( 0 ) ,  i.e. f (h )  > a > 1/3 for h e  ( - 1 / 1 2 ,  0). By Theorem 5.4 
ii), we obtain q(h) = f (h )  + I~'/Ig' > 0, i.e., I"(h)  has no zero in ( - 1/12, 0). 

ii) Using the same argument  as above. 

6. - P r o o f  o f  T h e o r e m  1.1. 

PROPOSITION 6 . 1 . -  i) I f  a ~<0, ~ ~<0, then I(h) has no zero in ( - 1 / 1 2 ,  0), 

ii) I f  y>2~3 ,  a ~ 3 / 8 ,  then I(h) has no zero in ( - 1 / 1 2 ,  0 ) U  (0, + ~ ) .  

PROOF. - i) Lemma 2.1 and a ~< 0, ~ ~< 0 implies I(h) < O. 

ii) Recall system (1.5)~ (taking fl = 1) 

{ i c ] = y = X ( x , y ) ,  

- x  2 - x 3 + c(a + x + yx2)y  = ~'(x, y ) .  

I t  follows from ~ > 2/3, a >~ 3/8 that  1 - 4~a  < 0, which implies div (X, Y) = e(a + x + 
+ ~x 2) ~ 0. Therefore,  system (1.5)~ has no limit cycle in the phase plane, i.e., I(h) has no 
zero in ( - 1 / 1 2 ,  0 )U  (0, + ~) .  

By Theorem 4.4, g(h)= I"/I'~' satisfies the following equation 

(6.1) {i( 1)[ 1 
= 2h(12h + 1 ) ( 1 +  18~h), 

2 
= -  2 7 h -  g 2 +  2 1 6 y h 2 + ( 5 4 a + 4 4 y _ 3 0 ) h + _ ( 1 _ a )  g + F ( h ) .  

LEMMA 6.2. - i) In  the case of $ > 2/3, system (6.1) has six critical points: two un- 
stable nodes at A(  O, a) and C ( -  1/12, a + ~, - 1 ), a stable node at E ( -  1/18 y,  a - 1/3), 
three saddles at B(O, a - 2), D ( -  1/12, a - (5y  + 7)/31) and  F (  - 1/18~, a + ( - 3 3  + 
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+ 347)/(3(9 + 27) ) ) .  The ordinates of  critical points C, D, E, F satisfy 

5 7 + 7  1 - 3 3 + 3 4  7 
a < a - - - < a + 7 - 1 < . . . a +  

31 3 3(9 + 27)  

for 2/3 < 7<.3/2,  and 

5~, + 7 1 - 3 3  + 347 
a < a - - - < a +  < a + 7 - 1  

31 3 3(9 + 27) 

for 7 > 3 / 2 .  

ii) In  the case of 7 < 2/3, system (6.1) has four  critical points in the region 
{(h, g) I - 1/12 ~< h <~ 0}: an unstable node at A(O, a), two saddle points at B(O, a - 
- 2 )  and  D ( -  1/12, a - (5y  + 7)/31), a stable node at C ( -  1/12, a + y - 1). The ordi- 
nates of C, D satisfy 

a + 7 - 1 < a  
5 7 + 7  

31 

iii) I f  7 ;~ 0, then system (6.1) has three invariant straight lines h = 0, h = - 1/12 
and h = - 1/187. 

LEMMA 6.3. - i) In  the case of 7 > 2 / 3 ,  the critical points A, E, D are on the curve 
g(h) = I"/Ig', h e  [ - 1 / 1 2 ,  0]. 

ii) In the case of 7 < 2/3, the critical points A and D are on the curve g(h) = 
=I"/Ig',  h e  [ - 1 / 1 2 ,  0]. 

PROOF. - F rom Lemma 5.5 i), we have 

(6.2) 
I "  I~' 

g(h) = --I~' = a + 67h + (1 + 187h) ~7 �9 

I t  follows from (5.7), (5.8) and (6.2) that  

(1)12 1 - - ~  = a  - - ,  g ( 0 ) = a ,  g - = a - - ,  
31 3 

which implies i) and ii). 

Obviously, since Ig'(h) ~ 0, the number  of zeros of g(h) equals the number  of zeros 
of I"(h).  I t  follows from (6.1) that  

(6.3) [719 = o = F(h) ,  

which implies that  the trajectories of system (6.1) contact the h-axis at most at two 
points, on which the vector field is horizontal. On the other  hand, the abscissa of the in- 
tersection point of curve g(h) and the h-axis is the zero of g(h). We will use these facts 
and system (6.1) to estimate the upper  bound of the number  of zeros of I"(h).  
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C 

P~ ~ P~ h~ Ps 

D 

Fig. 6.1. 

) h  

B 

PROPOSITION 6.4. - S u p p o s e  ? > 2/3, 1/3 < a < 3/8, then  

i) I " ( h )  has  one zero i n  ( - 1/12, 0) f o r  a - (57  + 7)/31 < 0, 

ii) I " ( h )  has  no zero i n  ( - 1 / 1 2 ,  0 ) f o r  a - ( 5 7 + 7 ) / 3 1  1>0. 

PROOF. - Assume that  h-axis intersects the lines h = - 1 / 1 2 ,  h = - 1 / 1 8 7 ,  h = 0 at 
P1, P2 and Ps respectively. Lemma 6.2 shows that  A,  F ,  C and E are in the upper  half- 
plane. By Corollary 5.9 ii) and Lemma 6.3, g(h)  does not intersect  the h-axis at 

( - 1/187, 0) and g(h)  consists of AE  and D E ,  w h e r e A E  and D E  are t rajectories of the 
system (6.1) in the phase-plane. 

i) In the case of a - (57  + 7)/31 < 0, D and B are under  the h-axis, and other  
critical points are in the upper  half-plane. We can determine the directions of three in- 
variant straight lines at P1, P2 and Ps by Lemma 6.2 i) (see fig. 6.1), which implies 
F(0)  < 0, F( - 1/187) > 0, F( - 1/12) < 0 (cf. formula (6.1),(6.3), (4.17)). Noticing that  
F ( h )  has at most two zeros in ( - ~ ,  + ~) ,  there  must  exist hi e ( - 1 / 1 2 ,  - 1 / 1 8 7 )  and 
h2e ( - 1 / 1 8 7 ,  0), such that  F ( h i )  = 0, i = 1, 2. I t  follows that  the trajectories of the 
system (6.1) cross the h-axis from the lower half-plane to the upper  one for h e  (h~, h2) 

and go in the opposite direction for h e  ( - ~ ,  h~) (J (h2, + oo). Hence D E  must  inter- 
sect the h-axis only once and the result  follows. 

ii) Using the same arguments as above, one gets the result  ii). 

PROPOSITION 6.5. - S u p p o s e  0 < a < 1/3, ? < 0, t hen  

i) I " ( h )  has  one zero f o r  a - (5?  + 7)/31 < 0, 

ii) I " ( h )  has  at  m o s t  two zeros f o r  a - (5?  + 7)/31 t> 0. 
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PROOF. - Using the same arguments as for Proposition 6.4. 

LEMMA 6.6 (Behaviour near the endpoints). 

(1) (1) 1 
- - ~  =Ig ]-~ ( a + 7 - 1 ) ,  I"  - = - - T~ -i~ io' g~ a ~i ' 

ii) I(O-) ~ 6 g 7  x/-~, 

I ' (h)  = - ~C1 - + -3 V"2:~7 + o(1), 

5 
I"(h) = - 3--6 Cl alhl  -7/~ + o( [h 1-7/~) 

as h---*O-, where h e  ( -1 /12 ,  0), I(h) = aI o + 11 + 712. 

PROOF. - It  follows from Proposition 3.3 ii) and Theorem 1.2. 

PROOF OF THEOREM 1.1. - Let  I(h) = aIo +flI1 + yI2. Suppose I ( h ) ~ 0 ,  which im- 
plies a2 § -{- 72 ;e 0. 

i) Assume aft7 = 0. I t  follows from Lemma 2.1 and Theorem 2.3 that  I(h) has at 
most one zero in ( - 1 / 1 2 ,  0). 

ii) Assume aft7 ~ O. Without loss of generality, suppose fl = 1. I t  follows from 
Corollaries 5.6-5.9 and Proposition 6.1, 6.4, 6.5 that either I(h) has no zero or I"(h) has 
at most two zeros, i.e., I(h) has at most two inflection points for h e ( -  1/12, 0). Since 
I ( -  1/12) = 0, this implies that  I(h) has at most three zeros in ( -  1/12, 0). 

Assuming that  I(h) has three zeros in ( -  1/12, 0), the graph of I(h) must  be one of 
curves drawn in fig. 6.2. 

(a) In the case of fig. 6.2 (a), it follows from convexity, monotonicity and function 
value of I(h) near its endpoints h = 0, h = -1 /12  that  

(6.4) 

c 1_ (1) 
I '  - l i m  I ' (h )  < 0 Ig' 

h--*0 ' " ~  ~ 12 ]~>0 ,  

[hlimo_ I" (0)  < O, I(0) < O. 

~<0, 

By Lemma 6.6, we have 

5 7 + 7  5 7 
a + 7 - 1 ~> 0 ,  a < O ,  a - - ~ < 0 , 3 1  a - - - + 6  ~ 7  < 0  . 
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! 

~ h  

" I 

M 
I 

(a) - (b) 

Fig. 6.2. 

~h 

The first two inequalities imply a < 0, 7 > 0. When a < 0, 7 > 0, it follows from Corol- 
lary 5.7 i) and Corollary 5.8 that  I(h) has at most one inflection point in ( -  1/12, 0), 
which contradicts to the assumption. 

(b) In the case of fig. 6.2 (b), using the same argument  as (a), we have 

5 7 + 7  5 7 
a + 7 - 1 ~< 0 ,  a > O ,  a - - ~ > 0 , 3 1  a - - + 6  ~ 7  > 0  , 

which implies 

2 5 7 
7 <  ~ , a > O ,  a > - - -  6 -~7. 

In the case of 0 < 7 ~< 2/3, a > 0, it follows from Corollary 5.8 i), Corollary 5.9 i) and 
Corollary 5.6 ii) that  I"(h) has at most one zero in ( - 1/12, 0). This contradicts to the 
assumption again. 

In the case of 7 < 0, a > 5/6 - (7/9) 7 > 1/3, Corollary 5.7 ii) implies that  I"(h) has 
at most one zero for h e  ( - 1 / 1 2 ,  0), which contradicts to the assumption, too. 

Summing up the above discussion, we conclude that  I(h) has at most two zeros in 
( -  1/12, 0). Theorem 1.1 follows from this result  and Proposition 3.4. 

PROOF OF THEOREM 1.1". - I t  follows from Theorem 1.1 and Theorem 1.2. 
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