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Global Random Attractors are Uniquely 
Determined by Attracting Deterministic Compact Sets (*). 

HANS CRAUEL (**) 

A b s t r a c t .  - It is shown that for continuous dynamical systems an analogue of the Poincard re- 
currence theorem holds for t~-limit sets. A similar result is proved for Y2-limit sets of random 
dynamical systems (RDS) on Polish spaces. This is used to derive that a random set which 
attracts every (deterministic) compact set has full measure with respect to every invariant 
probability measure for the RDS. Then we show that a random attractor coincides with the 
t~-limit set of a (nonrandom) compact set with probability arbitrarily close to one, and even 
almost surely in case the base flaw is ergodic. This is used to derive uniqueness of attractor~ 
even in case the base flow is not ergodic. 

1. - I n t r o d u c t i o n .  

Given a measurable dynamical system with an invariant measure, the measure of 
the points which re turn  infinitely often to a set is not smaller than the measure of the 
set itself. This is the Poincar~ recurrence theorem. Given a continuous dynamical sys- 
tem, one can introduce the ~-limit  set of a set in the state space. This is the set of all 
points which are approached arbitrari ly close by orbits start ing from the initial set. I t  
can be considered as ,,the opposite,  of the set of recur ren t  points. We show fLrSt that  
for an invariant measure for a flow of continuous maps on a topological state space the 
measure of the ~-limit set is not smaller than the measure of the set itself. Then we ex- 
tend the result  to random dynamical systems. This is then used to derive that  for ran- 
dom dynamical systems on Polish spaces which have a (random) at t ractor  every invari- 
ant measure is supported by the attractor.  This already holds ff the at t ractor  at tracts 
only compact sets (and not necessarily bounded sets, which makes a difference for infi- 
nite-dimensional systems). 

We then address the question whether  ~-limit sets of deterministic bounded sets 
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already give the whole random attractor.  We obtain that  there  exist even compact sets 
whose t2-1imit sets almost surely give the whole attractor,  provided the base flow is er- 
godic. Fur thermore ,  on hand of a (one-dimensional) example it is shown that  ergodicity 
of the base flow cannot be dispensed with. Still it is possible to find compact nonrandom 
sets such that the random at t ractor  is contained in their  tg-limit set with probability ar- 
bitrarily close to one, even if the base flow is not ergodic. These results are interest ing 
for numerical investigations. Usually there  an ergodic base flow is assumed, so it suf- 
fices to find a compact set in the state space with the proper ty  that  the random attrac- 
tor  is contained in this set with positive probability. Calculating the t2-1imit set of this 
deterministic compact set then gives the whole random attractor.  

Another consequence is uniqueness of the attractor.  Uniqueness even holds for the 
weaker notion of at t ractors  for compact sets, and even in the case of a non-ergodic base 
flow. 

The paper  is organized as follows. In Section 2 we consider first the detei'ministic 
case. Here  the result  holds for general topological spaces. Then we recall the concept of 
a random dynamical system (RDS) and derive the result  for this case in Section 3. 
Here  we assume the state space to be a Polish space in fact: Suslin su f f i ce s - in  order  
to get measurability of ~9-1imit sets. The result  for RDS contains the deterministic one 
as a special case but only for Suslin state spaces. Since, fur thermore,  the RDS case 
needs considerably more notation it seems justified to develop the idea for classical dy- 
namical systems separately in order  to exhibit the s t ructure  of the argument.  In Sec- 
tion 4 we show that  random attractors support  invariant measures.  Finally, in Section 5 
it is proved that  a random at t ractor  coincides with the ~-limit  set of a compact deter-  
ministic set with probability arbitrari ly close to one, and even almost surely provided 
the base flow is ergodic. This is then used to derive uniqueness of the global random 
attractor.  

2. - C l a s s i c a l  d y n a m i c a l  s y s t e m s .  

Suppose X is a topological space, and ~vt: X->X, t~ T, is a family of continuous 
maps, where T is either R +, R, N or Z,  and cft + .~ = q~ t ~ qJ .~ for all t, s ~ T, and q~ o = id. 
Clearly, if T is two-sided (R or Z)  then cft is a homeomorphism with ~ [ 1 = q~ _ t. I f  T is 
discrete (N or Z)  then q~ ~ =e l  ~. 

2.1. DEFINITION. - For any B c X the t2-limit set of B is 

~R: N U ~,B, 
t ~ O  r ~ t  

where D stands for the closure of D in X. 

For  X a metric space another  characterization of the Q-limit set is 

t2R= { x e X :  there  exist t~eT, b~eB, n e N ,  such that  x =  l i m  cf l t , , (bu)  } . 
n - ~ o o  

The Q-limit set ~9 8 r X is defined for any B r X; it is by definition closed. 
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We will need the following two elementary properties of maps in an essential 
way. 

For an arbitrary map f :  Y--~Z from any set Y to any other set Z 

(1) A o f - '  ( f (A))  

for any A r Y. If Y and Z are topological spaces then f is continuous (if and) only if 

(2) f -  1 (A) c f  -1 (.4) 

for every A r Z. 
The following result is an analogue to the Poincar6 recurrence theorem. Usually it 

is stated for discrete time only. But it is completely immediate that it holds for continu- 
ous time (semi-) flows. It suffices to note that the set of recurrent points along any (ad- 
ditive) sequence of discrete times is contained in the set of recurrent points along arbit- 
rary real times. This holds just as well in the present case of ~9-1imit sets. We neverthe- 
less formulate everything without referring to a particular choice of discrete or contin- 
uous time. 

2.2 THEOREM. - Suppose tx is an invariant Borel probability measure for (q~ t)teT" 
Then 

(i) ix(Y2 B) -->IX(B) for any B c X ,  

(ii) IX(~gB A B) =IX(B)for any Borel set B c X .  

PROOF. - Choose BoX.  For t I> 0 put 

Ct = U q~B.  
T>~t 

Then C~Ct  for any 0 ~< s ~< t, so Ct ,~ Coo = ~B.  Since ix is finite, this implies ix(Ct) ----> 
--*tKQ B) for t o  oo (it suffices to let t go through N). We now claim that Ctc 921Ct+s for 
any s >I 0. In fact, 

Ct= O ~ B =  U rg~_,Bc 
r>~t ~>~ t~s  

( -1 U g ~ B ) c  c~>t.,U 9.;-~(9~(9~_,B))=~>t+,U rP~-~(9~B) = 9 ,  ~>t+., 

u ) ~ - t + s q ~ B  =cp21Ct+,, 

where we used (1) and (2) for the first and the second inclusion, respectively. Now this 
implies 

~(G) -< ~(q~;~ G+, )  = ix(Ct +,) 

for every s/> O, using invariance of ix for the identity. On the other hand Ct +., r Ct, hence 
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/~(Ct+8) <<-tt(Ct) for any t, s/> O. We thus obtain, for any 0 ~< s ~< t,/~(Ct) =/z(Cs) and 
consequently 

(3) t , (c ,  \ c t )  = o . 

To obtain (i) note that  

tt I ~ )  = ~( Co) = tt( Ct) ---> /Z(19 B ) 
\r~>0 / 

for t---)oo, hence /~(Co)=/~(19B). Since BcCo,  and consequently Br  we get  
~(B) <-- ~(19B). 

To obtain (ii) suppose B o X  is a Borel set. From (3) we obtain for any 0 ~<s ~<t 

tt(C8 A B) = It(Ct f3 B) + tt(( C, \Ct) fq B) = It( Ct A B) ,  

h e n c e t t ( B ) = t t ( C o N B ) = t t ( C t f q B ) = t t ( 1 9 ~ A B ) f o r a l l t > l O .  �9 

Of course, for Borel sets B we immediately get/~(19B) ~>tt(B) ~>tt(B) from (i). The 
argument of the proof in fact yields that  for every Borel set D r  we have tt(Co A D) = 
= tt(19 B N D). Thus for every Borel set D c Co we get it(19 B N D) = tt(D). Applying this, 
e.g., to ~,  yields/~(19~ n ~)  =/~(J~) for any B o X .  But note that  possibly/~(19~ n B) < 
</~(B). Take, e.g., ~ = id on X =  [0, 1],/~ the Lebesgue measure, and B = Q A  [0, 1], 
then 198 = [0, 1]. 

3. - R a n d o m  d y n a m i c a l  s y s t e m s .  

Let  { 0 t: 19 ~ 19 }, t �9 Z or t �9 R, be a family of measure preserving transformations 
of a probability space (19, 5 ~, P)  such that  (t, w) ~ O t w  is measurable (with respect to 
the Borel-a-algebra on R), 00 = id, and Ot+~ = Ot o 0~ for all t, s. Thus (Ot)t~7 is a flow, 
and ((19, ,if:, P), (Ot)t~T) is a (measurable) dynamical system. Of course, the measurabil- 
ity condition is automatic for discrete time. Note also that  time is a priori assumed to be 
two-sided here.  In particular, Ot is assumed to be measurably invertible, O t  1 = 0 - t .  

Notation: we sometimes write ( 0 0  instead of (Ot)t~T when referring to properties 
of the whole family instead of a single Or. 

For  a topological space Y we denote by t~(Y) or just  ,(8 the o-algebra of Borel sets 
of Y. 

3.1. DEFINITION. - Suppose X is a topological space, and T is either R § R, N or Z,  
and suppose (Or) on (19, 5, P)  is given as above with time R if T = R + or R and with 
time Z if T = N or Z. A random dynamical system (RDS) with time T on X over (Or) 
on (19, 5, P) is a map 

q~ : T x X • X , 

(t, x,  ~o) ~q~(t ,  ~o) x ,  

such that  
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e X ,  

(4) 

(i) (t, o9)~q~(t, og)x is measurable (with respect to 2 ( T ) |  for every x e  

(ii) x~q~(t ,  o9) x is continuous for every (t, o9) e T • tg, 

(iii) q~(O, w) = idlx (identity on X) and 

cf(t+s,  co) = q~(t, 0~o9) oqo(s, o9) 

P-a.s. for every t, s e T, where o means composition. 
We will often speak of an RDS ~, not mentioning 

(Q, ~, P). 
the base flow (v~ t) on 

3.2. REMARK. - (i) The time for the base flow (Or) is always assumed to be two-sided, 
even if ~v is defined for nonnegative time only. Furthermore,  the maps ~v(t, o9): X--~X 
are not assumed to be invertible a priori. The cocycle property implies that  for two sid- 
ed time (T = R or T = Z)  ~(t ,  o9) is automatically invertible P-a.s. for every t e T. In 
fact, in this case qg(t, o9)-1 = 9 ( - t ,  Otw) with probability one for every t e T. 

(ii) Definition 3.1 (i) and (ii) imply measurability of (t, x, o9) ~ r  o9)x as soon 
as X is separable and metrizable, see Crauel [5] Lemma 2.1. The definition of an RDS in 
the literature does not always assume continuity of ~v(t, o9) on X, but only measurability 
of ~ in all three components. 

(iii) A family of maps ~(t,  o9), (t, o9)e T • t2, satisfying (4) is called a (crude) co- 
cycle (with respect to (v~t) on (C2, ,~, P)), and (4) is the cocycle property. The family is 
said to be a perfect cocycle if (4) is satisfied for all t, s e T and o9 from a (Ot)-invariant 
set of full measure (or for all o9 e tg). For  details see Arnold and Scheutzow [2]. We do 
not need a perfect cocycle here. 

(iv) Very often continuous time RDS are induced by stochastic differential equa- 
tions (SDE). Then the map ~v(t, o9) coincides with the stochastic flow X0. t(og) induced 
by the SDE. The map cp(t, Osog) then coincides with the stochastic flow evaluated in the 
times s and s + t, so r  Osw) = X,, ~+t(og) for P-almost all o9. Here the exceptional set 
depends on s in general, so the stochastic flow generates a crude cocycle. The problem 
of perfecting crude cocycles induced by SDE is currently under investigation. For  SDE 
which allow solutions for two-sided time this has been carried out by Arnold and 
Scheutzow [2]. In particular, for an RDS ~ induced by an SDE t ~ ~0(t, w) is continuous 
(which is used as a short hand notation for continuity of (t, x) ~ ~v(t, o9) x). 

(v) Under suitable conditions an SDE on a finite dimensional space generates a 
cocycle of homeomorphisms or even diffeomorphisms. In this case the (perfect) cocycle 
property implies that  t ~ cp(t, D -t o9) = cf-1( _ t,  o9) is continuous P-almost surely. 

For  a detailed account on the contemporary state of the art  in the theory of RDS 
see Arnold [1]. 

We aim at a similar result as Theorem 2.2 for RDS instead of classical dynamical 
systems. We need the notions of invariant measures and of tg-limit sets. 

Denote by Pr(X) the space of Borel probability measures on X, equipped with the 
smallest topology such that  ~) ~ f fd4) is continuous for every f :  X--~ R bounded and 
continuous (often referred to as X-narrow,) or ,,weak*,) or ,,topology of weak conver- 
gence,  on Pr(X)). 
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3.3. DEFINITION. - A random measure is a measurable map ~: Q---)Pr(X), w ~t~,,  
(with respect  to the Borel a-algebra of the narrow topology on Pr(X)),  where two such 
maps are identified if they coincide for P-almost all a~. An invariant measure for cf is a 
random measure/~ such that 

~(t ,  w ) ~  = # o , ~  

P-a.s. for every t I> 0. 
The above definition of cp-invariant measures only makes sense for a two-sided time 

flow (v~t); see, e.g., Crauel [4] p. 160. 
Any random measure w ~ f f ~  induces a measure on the product  space ( X •  t2, 

~ |  by 

(5) /a(B) = l i t  ~ (B(w)) dP(o)), 
YJ 

where B o X •  t2 is given by its sections B(og)= { x � 9  co) � 9  w � 9  Fur ther -  
more, It is uniquely determined by its values on product  sets, 

~(B x F) = ft~ ~,(B) dP(w) 
F 

for B �9 ~ and F �9 ~ This only needs a measurable s t ructure on X (and, of course, on tg). 
In order  to disintegrate a measure/x on the product  space to obtain a random measure 
w ~ t t ~  satisfying (5) needs more s tructure on X. I t  suffices, e.g., to have ~ countably 
generated and Zxtt  compactly approximable (see Gfinssler und Stute [8] Satz 5.3.21, 
p. 198); here Zx:  X x Y2---~X denotes the projection. In particular, for X Polish this is 
satisfied. 

In order  to introduce Q-limit sets for RDS we need some notations. Given B r X x 
• t2, we denote by B- the set with sections B(w) = B(o) .  A map B: t9 --* 2 x is said to be a 
random set, if the associated B = {(x, w): xeB(oJ )}  is a measurable subset of the 
product  space, i.e., if B �9 ~ | ~. Clearly a random set can only take values in ,~ r 2 x. 

F rom now on we assume X to be a Polish space, i.e., X is separable and there  exists a 
complete metric inducing the topology. Denote by d such a metric. A map C: t2 ~ 2 x is 
said to be a closed random set if C(w) is closed for P-almost all w, and if w ~ d(x, C(w)) 
is measurable for any x � 9  where d(x, B ) =  inf d(x, b) for x � 9  and B o X  (so 

beB 
d(x, B) = d(x, B)). The notion of a closed random set does not depend on the choice of 
the metric d. Fur thermore ,  every non-empty closed random set w ~ C(w) admits a se- 

quence of measurable selections cn: t2--~X, n�9 such that  C ( w ) =  {cn(oJ): n � 9  

see Castaing and Valadier [3] Theorem III.8, p. 66. A closed random set is more than a 
random set which has closed sections. However, any random set with closed sections is 
a closed random set as soon as r universally measurable, so, in particular, if ~ i s  com- 
plete with respect  to P; see Castaing and Valadier [3] Theorem III.30, p. 80. 

In general intersections of closed random sets need not give a closed random set 
again. But if ( C t ) t e  T is a decreasing family of compact random sets (i.e., Ctr C~ for s ~< t), 
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then C = lim Ct = 9 Ct is a closed random set again. In fact, n Ct = I1 C,, hence for 
x 6 X  t ~ N  

(6) d(x, C) = lim d(x, C,) .  
n---~ oo 

_We__need another  elementary observation. I f  ~:  X___~X is any_continuous map, then 
c f B c C B  for any B o X ,  so d(x, q~B) =d(x ,  q~B) >ld(x, ~B) >Id(x, ~B), hence 

d(x, ~B) = d(x, q~B). In particular, 

(7) 

for any B,  D c X with D = B. 

d(x, q~B) = d(x, of D) 

3.4. DEFINITION. - For  any B c X • Y2 put 

9 ~(co) = n U of(s, O_~co) B(O_~co), 
t ~ O  s > ~ t  

co e Q. Then co ~ ~'~B(O) is said to be the ~-l imit  set of B. 
The present  notion of ~9-1imit sets for RDS has been introduced for the study of 

random attractors by Crauel and Flandoli [7]. There  it has been shown that  the tg-limit 
set of a bounded deterministic set is a closed random set at least with respect  to the 
universal completion of :~ The following resul t  extends this slightly for nondeterminis- 
tic B such that  B is a closed random set. 

For  an RDS ~ put  

5=<_o=O{co~q~(t, v~_~oJ) x: O<<.t<~s, x e X } r  

The a-algebra ,~_< o is said to be the past of the system or the past of of. 

3.5. LEMMA. - Suppose cf is an RDS on a Polish space X. For every B: ~9 ---> 2 x such 
that co ~ B(o  ) is a closed random set with respect to the universal completion -3:of the 
past 5:<_o of q~ the Q-limit set co ~ D B(co) is a closed random set with respect to J:(so, in 
particular, t2 ~ is a closed random set with respect to , ~  o as soon as ~<_ o is complete 
with respect to P). 

PROOF. - Suppose B is a random set such that  B- is a closed random set with respect  
to if< 0 or :#,, respectively. Let  { bn: n e N } be a sequence of measurable selections with 

respect  to 5~_~ 0 or ~, resp., with B(co) = { bn(co): n e N} for every  w e ~9. F rom (7) we get 
for any x e X and for any t E T 

d(x, q~(t, O-tco) B(O-tco)) = d(x, q~(t, O_tco){bn(O_t~o): n e N } ) =  

= inf d(x, (f(t, 0 -tco) b , ( O - t w ) )  �9 
~ e N  

Thus (t, c o ) ~ d ( x ,  q~(t, ~_~og)B(v~_,co)) is measurable with respect  to ~ ( T ) |  
~ (T)  | ,~_< 0, respectively. (For  T discrete measurabili ty in t is, of course, trivial.) Now 
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for any t e T 

= inf d(x, cp(s, v~-soJ) B(O-sw)) .  
s > ~ t  

B 

In the particular cases where T is discrete and B is a closed random set with respect to 
~.<0, or where t~q~(t, O-t.w) is continuous and B is nonrandom, it is thus immediate 
that w ~ [J q~(s, ~ - s o )  B(O -sw) is a closed random set with respect to if-<0. 

s ~ t  

In the general case, joint measurability of (t, w) ~ d ( x ,  ~(t, 0 _ tco)B(0- tw))  im- 
plies 

D = {(t, w): d(x, O(t, 0 - tw)  B(O-tw)) < a} �9 ~8(T)| 

for any a > 0,  so the projection theorem (see Castaing and Valadier [3] Theorem III.23, 
p. 75) yields 

{w: inf d(x, r 0 -sw) B(O -so)) < a} = z~ (D N ([t, ~ )  • t~)) �9 
s > ~ t  

for every a > 0, where z a :  X •  ~2--. ~ is the projection. Thus w ~ d ( x ,  C~(w)) is mea- 
surable (with respect to ~ for every x e X ,  where Ct(w) = [.J q~(s, O_sw)B(O_sw). 

s ~ t  

Thus Ct is a closed random set with respect to ~ for any t >I 0. Since the intersection 
Q B = ~ Ct of the decreasing sequence of closed random sets Ct is a closed random set 

t ~ 0  

again, the proof is complete. �9 

3.6. REMARK. - (i) Often also tg-limit sets of B with B not measurable will be closed 
random sets. But for r w) -- id one has ~gB = B f o r  every B, so in general measurabil- 
ity of B cannot be discarded with. 

(ii) For a discussion of continuity of t ~ r 0 - t w )  see Remark 3.2 (v). The as- 
sumption of a nonrandom B can be replaced by assuming suitable regularity of 
s ~  B(O -saO. 

(iii) The arguments of the previous Lemma go through for the original a-algebra 
5 ~ instead of the past ~_, 0 when starting with a general random set B. But then, of 
course, the ~-limit set need not be a closed random set with respect to the past, but 
just with respect to the whole a-algebra. 

(iv) Essentially the method of Lemma 3.5 gives measurability of Q-limit sets in 
Suslin instead of Polish spaces. However, in this case also the discrete time case needs 
completion. 

3.7. REMARK. - Given an RDS r for any two deterministic sets CoD it is immediate 
that P-almost surely • c r Q D. But note that for two random sets C and D one does not 
get existence of a set of full P-measure in which C(w)r  implies ~ c ( W ) r  ~2D(W). 
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In fact, on non-compact X one easily gets C and D with 0 < P(C = D) <~ P ( C c D ) ,  but 
P(t-2cr OD) = O. Just  let q~ be a (possibly even deterministic) RDS with two different 
fLxed points c and d, and a transient set, i.e., a set with empty t2-1imit set. Put  C(w) = 
= {c} and D( o)  = {d} for w �9 F r  t2 with 0 < P(F)  < 1. On F ~ let C(o)  = D ( o )  equal the 
transient set. If  (Dr) is ergodic, then, P-almost surely, t2c(W) = {c}, whereas t'2D(W) = 
= {d}, whence, in the present case, 

P( t2 c = ~ D ) ~ P( t'2 c c ff'~ D ) = P (  ff2 D C ff2 C ) <~ P($2c f3 ~"~ D ~ O) = 0 < P( C = D ) . 

One can even have P(C = D ) ~  1 -  5 for (~ > 0 arbitrarily small, and still Y2 C A 
A ~ D ---- 0 with probability one. 

The argument  of the proof of the following result goes very much along the lines of 
the arguments used to obtain Theorem 2.2. Nevertheless we go through the complete 
argument  in order to point out the places where the argument  has to be modified. 

3.8. THEOREM. - Suppose tt is an invariant  measure for  an R D S  q). Then 

(i) tt(t~B) ~> tt(B) for  any B o X •  t~ with B e : ~ |  

(ii) p(Y2 B A B)  = ~(B) for  any  B �9 ~ | ~.. 

P R O O F .  - For t t> 0 put 

Ct(w) = U ~o(r, O_,aO B(# _ ,w) .  
r~>t  

Then C,(w) ~ Ct(w) for any 0 ~< s ~< t. Consequently, denoting the associated subsets of 
the product space X •  ~ by Ct = {(x, w): x e C t ( w ) } ,  also C ~ C t ,  and Ct J, Y2B for t--) 
--* ~ .  Since tt is finite, this implies tt(Ct) -->tt(~B) for t--) ~ .  We now claim that  

Ct (oJ) c q0(s, w)-  1Ct +, (0 ~ ~o) 

for any s i> 0. In fact, 

Ct(w) = O (p(r, O_~w) B(v~_~w) = U ~ ( r - s ,  # ._~w)  B(O.'_~w)r 
v>~t v>~t+s 

c U q~(s, w)-l(q~(s, w) q~(r-s,  # ~ _ , w ) B ( # , _ , w ) )  = 
r>~t+s 

= U ~(s, ~o)-1(r Os_,oJ)B(O~_~o~)) = (r oJ) -~ U ~(~, a 8 _ ~ o ~ ) B ( ~ , _ ~ ) ) c  
r>~t+8 r>~t+8 

r ~ t + s  - r  - v  

where we used (1) and (2) for the first and the second inclusion, respectively. Now this 
implies 

Integrating with respect to P yields tt(Ct) < tt(Ct + ,). On the other hand Ct § ~ c Ct, hence 
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tt(Ct+.O <~/~(Ct) for any s, t t> 0. We thus get, for 0 ~< s ~< t arbitrary,/~(Ct) =/~(C~) and 
consequently 

(8) 

To obtain (i) note that  

#(C~ \Ct) = O. 

/~(Co) - / ~ ( C )  --*~(tO ~) 

for t o  ~r hence/~(Co) =/~(to~). Since 

B ( ~ ) c C o ( ~ ) =  U ~(r ,  ~ _ ~ o ) B ( t ~ _ ~ ) ,  
r ~ > 0  

and consequently B(w) c Co(~), we get p(B-) ~</~(tOs). 
To obtain (ii) suppose B �9 ~ | ,~. From (8) we obtain for any 0 ~ s ~< t 

/~(C~ (~ B) = tt(Ct n B) + tt((C~ \Ct) n B) = tt(Ct n B) ,  

hence/~(B) =p(C0 n B) -/~(CtnB) -It(tOBNB) for all t~>0. �9 

Of course, for B � 9 1 7 4  immediately get /~(tOB)~>tt(B-)~>/~(B) from (i). The 
argument  of the proof in fact yields that  for every D �9 ,(B | ,4 we have/~(C0 n D) = 
/~(tO B A D). Thus for every D �9 ~ | ~ with D r Co we get/~(Q B n D) =/~(D). Applying 
this, e.g., to B, yields/~(tO~ N B--) =/~(B--) for any B with B � 9  53 | ,~. 

3.9. COROLLARY. - Suppose q~ is an RDS on a Polish space X, and suppose there 
exists a random set w ~--,A(w) such that P-almost surely tO KCA for every compact Kr  
r X. Then every invariant measure for cf is supported by A. 

PROOF. - Suppose/~ is invariant for (;. Since X is Polish,/~ is tight, i.e., for every e > 0 
there exists K = K~cX compact such tha t /~(K • tO) I> 1 - e (Crauel [5] Lemma 4.27, 
p. 29). For  any such K Theorem 3.8 (i) yields 

/~(A) ~>t~(tOK) ~> it(K)/> 1 - e .  

Since e is arbitrary we have/~(A) = 1, which gives the assertion. �9 

4. - I n v a r i a n t  m e a s u r e s  are  s u p p o r t e d  by r a n d o m  a t t r a c t o r s .  

The notion of a random attractor has found interest in several applications. See 
Crauel and Flandoli [7] and Crauel, Debussche and Flandoli [6]. We will show that  ran- 
dom attractors as introduced in [7] and [6] satisfy the condition of Corollary 3.9. 

We say that  a random set A attracts another random set B if 

(9) lim d(cf(t, 0 - tw)  B(v~ _t~o), A(o~)) = 0 ,  P-a.s., 
t ---~ ov 

where d ( B , A ) = s u p { d ( b , A ) : b E B }  is the Hausdorff  semi-distance, defined for 
A,  B o X  arbitrary. Note that  d(B, A)  = d(B, A), and for A closed d(B, A) = 0 if and 
only if B r A. 
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4.1. LEMMA. - I r a  random set A attracts another random set B then 

t ~ c A ,  P-a.s. 

PROOF. - Since A attracts B, (9) gives that  for any e > 0 there  is r (=  r(co)) with 
d(~(t ,  0 _too) B(O _too), A(co)) < e for all t/> r. Thus 

= sup d(q~(s, ~ _~co) B ( 0  _sco), A(co)) ~< e'. 

Since ~2B(CO) C U q~(s, 0 _,co) B(O - so )  for every t I> 0, we have d ( ~  B(CO), A(co)) < 
s>~t 

< ~ for e > 0 arbitrary,  hence D ~ c A .  �9 

Note that  t2 B C A does not imply that  A attracts B. I t  does as soon B is absorbed by 
a bounded set, where a (random) set D is said to absorb B if ~(t ,  v ~ _too)B(O_tco)r 
cD(co) for all t sufficiently big. 

4.2. DEFINITION. - A closed random set A is said to be a (global random) attractor 
(for bounded deterministic sets) or jus t  a global attractor for  an RDS ~ on a Polish 
space, equipped with a complete metric, if 

- A(co) is compact for P-almost all co e Q, 

- A is strictly invariant, i.e., (p(t, co)A(co) = A(Otco) for P-almost all co, for every  
t~>0, 

- . c o ~ A ( c o )  at tracts every bounded deterministic set, i.e., d(cf(t, g_ tco)B,  
A(co))--)0 for t-~or for P-almost all co, for every bounded deterministic BoX.  

We speak of a (global) a t t ractor  for compact deterministic sets if A is compact and 
strictly invariant, and if it at tracts every compact (instead of bounded) set. In finite di- 
mensions this does not make a difference. In infinite dimensional Banach or Hilbert  
spaces attraction of all compact sets is a considerably weaker  proper ty  than attraction 
of all bounded sets. Speaking of bounded sets refers  to the choice of a metric, whereas 
speaking of compact sets refers  to the topology only. 

Note that  a random set can at t ract  all other  sets without being an at t ractor  in the 
sense of Definition 4.2. I t  need neither be compact nor invariant. Theorem 3.11 of 
Crauel and Flandoli [7] together  with 'Proposition 2.3 of Crauel, Debussche and Flan- 
doll [6] give 

4.3. THEOREM. - Suppose cf is an RDS on a metric complete separable space X. I f  
there exists a compact random set K which absorbs every bounded deterministic set 
then there exists a global random attractor w ~-~A(co), and co ~--~A(co) is measurable 
with respect to :7:<_0, the past of the system. I f(Or) is ergodic, there exists a bounded de- 
terministic set B such that P-almost surely ~ R = A. In  particular, in this case the at- 
tractor is P-a.s. unique. 
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The proof of the above result proceeds by showing that, provided bounded sets are 
compactly absorbed, the union of all O B with B bounded (non-random) gives an attrac- 
tor. So it goes the other direction of Lemma 4.1. 

Existence of attractors can be proved for several classes of infinite dimensional 
stochastic differential equations coming from mathematical physics, see [6] and [7]. 

We formulate the consequences for random attractors as a corollary. 

4.4. COROLLARY. - Suppose q~ is an RDS which has a global random attractor 
w ~ A ( o ) f o r  compact deterministic sets. Then for  every invariant  probability mea- 
sure tt for  q9 

tt(A) = f t t ~ ( A ( w ) ) d P ( w )  = 1,  

so tt is supported by A. 

PROOF. - Immediate from Corollary 3.9 in view of Lemma 4.1. �9 

Of course, this also applies for deterministic ~, saying that a global attractor sup- 
ports every invariant probability measure. But this can be derived more directly, with- 
out mentioning RDS, by using Theorem 2.2. It seems that this has not been published 
previously. 

5. - Random attractors are unique. 

Suppose <p is an RDS on a Polish space X with a random attractor A. We will show 
that for every s > 0 there exists a deterministic compact Kr X such that A coincides 
with the O-limit set of K with probability not smaller than 1 - s. Furthermore, as soon 
as (Ot) is ergodic, there exist compact K c X  such that A = OK with probability 
one. 

We will need the fact that O-limit sets are invariant (they need not be strictly in- 
variant in general). This already appears in Crauel and Flandoli [7] Lemma 3.2, p. 368. 
We give a different formulation of the proof. 

5.1. LEMMA. - The O-limit  set of  any  Be53|  is invariant, i.e., 

(p(t, o~) O8(~)  r O~(Otw) 

for  all t >~ O. 

PROOF. - For any B r X, t/> 0 and w 

<p(t, ~o) tgB(~) = w(t, ~) 13 U r 0 _ , ~ )  B(t~ _~oJ) c 
8 ~ 0  r~>s 

c n (p(t,w) u q~(r,v~_~w)B(v~_~oDc n u (p(t, oDq~(r,v~_~w)B(O_~w)= 
s~>0 r~>s s~>0 r~>s 
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= [7 U q ~ ( t + r , O _ . w ) B ( O _ . w ) =  17 U qo(t+v,O(_t_,)oOtos)B(O(_t_,)oOtoo)= 
s>~O v>~s s ~ O  v>>-s 

= 91 U ~o(r, O_,oOt~o)B(O_,oOtOs)= 
s>-O v > ~ s + t  

= [7 U ~ ( r ,  O_,oOteo)B(O_,oOtOO) = g 2 B ( O t w ) ,  
s ~ t  r>~s 

where we have used f ( 0  Aa ) r  ~ f(Aa) for arbitrary f, and f(A)c)~-A) for f continuous 
to obtain the two inclusions. �9 

An argument similar to that of the following result has been used to obtain Proposi- 
tion 2.3, p. 11-12, of Crauel, Debussche and Flandoli [6]. 

5.2. Proposition. - S u p p o s e  w ~  I(w) is a strictly invariant random set, i.e., 

qo(t, w) l(w) = I(Otw) 

P-almost surely for every t >I O. Then 

P { o  : I(eo) cD(w)} ~< P{w : I(w) c Do(w)} ,  

or, for short, 

P(I  c D) <~ P(I  c s 

for any random set D ~ ~ | ~. 

PROOF. - Put F = {w : I ( w ) c D ( o ) } .  Then the classical Poincar6 recurrence theo- 
rem, applied to the discrete time family { 0 _ , : n e N }  = { 0 " _ l : n e N }  (which is, of 
course, induced by the P-preserving 0 _~: g2--* g2), yields that 

F| = 17 U 0 n F = { w : 0 _ ~ w �9 F infinitely often } 
N ~ N  n>~N 

satisfies P(F| ) >I P(F). Now for w �9 F .  we know that I (0  _. ~o) c D(0 _. w) for infinite- 
ly many n �9 N, hence, by strict invariance of I, 

I(w) = qg(n, 0 _.w) I(0 _.w)  c ~(n, 0_ .oJ)  D(O _.w) 

for infinitely many n �9 N. Consequently, 

I (w)  c U 
n>~N 

r  0 _~w) D(0 _ .w)  

for every N �9 N, hence 

I (w)c  A U qo(n,O_neo)D(O_~oo)c 
N e N  n ~ N  

c N U ~(s,O_~)D(O_,~)c N U ~(s,O_,~)D(O_,~)=Oo(~). 
N E N  s > ~ N , s ~ R  N e N  s ~ N  
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This means Foo c {09: I(09) c t2D(09)}, hence 

P(Ic ~~ D) ~ P(F~ ) >>- P(F)  = P ( I c D ) ,  

which is the assertion. �9 

Compare Remark 3.7 to see that invariance of I is essential for Proposition 5.2. 

5.3. Corollary. - Suppose q~ is an RDS over an ergodic base f low (Or). I f  I is a strict- 
ly invariant  random set for  q~, then 

P ( I  C Y2 D) = 1 

for  every D ~ ,<B | ,~ with P( I c D) > O. 

PROOF. - Suppose D is a random set with P( I  c D) > 0. Put  F = { 09: I(09) c t2 D (09) }. 
For  co e F we get, using strict invariance of I and invariance of t2 D (see Lemma 5.1), 

I (Otw)  = ~(t ,  w) 1(09) c q~(t, oa) ~D(09) c ff2D(t~t09). 

Consequently, F c t g t l F  for every t~>0, hence P ( F A t S ~ F ) = P ( t ~ [ I F \ F ) = 0  for 
every t t> 0. This means that  F is in the o-algebra of invariant sets with respect  to (0~). 
Proposition 5.2 gives P(F)  = P ( I c  t2ij) >>- P ( I c  D) > 0. By ergodicity of (~t)  any invari- 
ant set with positive measure must have full measure,  so P ( I c  t2D) = 1. �9 

5.4 COROLLARY. - Suppose q~ is an RDS, and I is a strictly invariant  compact ran- 
dom set. Then for  every ~ > 0 there exists a compact nonrandom K r X with 

P ( I c t 2  K)/> 1 - e .  

In  particular, i f  (Or) is 
P ( I  r Y2 K) = 1, and this 
P( I  c K) ~ O. 

ergodic then there exist compact nonrandom K c X  with 
holds already for  every compact nonrandom K provided 

PROOF. - Since 09 ~ I(09) is a compact random set, for every  e > 0 there  exists a com- 
pact nonrandom K = K ~ c X  with P { o :  I (09)cK}  I> 1 - e, see Crauel[5] Proposi- 
tion 3.15, p. 15-16. Consequently, Proposition 5.2 gives 

P(ICt2K)  >~ P ( I c K )  >I 1 - e .  

In case (Or) is ergodic, P ( I c  ~r = 1 for any K with P ( I c K ) ; ~  0 is immediate from 
Corollary 5.3. �9 

5.5. COROLLARY. - -  Suppose q: is an RDS, and suppose that 09 ~A(0 9 )  is a global at- 
tractor for  bounded or for  compact sets, respectively. Then 

(i) i f  the base f low (t~ t) is ergodic, then 

P (A  = f2 D) = 1 

for  every (nourandom) bounded or compact, resp., D c X with P(A  c D) > O. 
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(ii) In  particular, i f  (0 t )  is ergodic then there exists a compact nonrandom K c  
r  such that A ( o )  = ~ K(w) for  P-almost  all w ~ ~. 

(iii) Even i f  (Or) is not ergodic, still for  every t > 0 there exists a compact non- 
random K = K~ r X wi th  

P(A  = ~2 K) >>- 1 -- e .  

PROOF. - Fi r s t  note that  A, by assumption, a t t racts  every  bounded or compact  set, 
respectively. Thus 

(10) P ( t ) n c A )  = 1 

for every bounded or compact, resp., (nonrandom) B c X by L e m m a  4.1. On the other  
hand, A is strictly invariant, hence Corollary 5.3 yields P ( A c  t2 D) = 1 for every D c X  
with P ( A c D )  > 0 as soon as (t~t) is ergodic. Thus P(A  = tgD) = 1 for every D bounded 
or compact,  resp., with P(A  c D) > 0, which gives (i). 

Fu r the rmore ,  o~ ~ A ( o J )  being compact  P-a.s., Corollary 5.4 gives for every c > 0 ex- 
istence of a compact nonrandom K c X  with P ( A c  Y2K) ~> 1 - ~, and P ( A c  t9 K) = 1 in 
case (Or) is ergodic. Together  with (10) this gives P(A  = t)K) ~> 1 - e in general  and 
P(A  = t2K) = 1 in case (Or) is ergodic. �9 

5.6. REMARK. - I f  (0 ~) is not ergodic, then in general  there  is no bounded B c X with 
A = ~r~ B almost surely. Take, e.g., ~2 = R with the Borel sets, t~ t -- id, and P the stan- 
dard normal distribution (or any other  probabil i ty measure  with noncompact  support).  
Le t  c;(t, w) be the semiflow induced by the differential equation 

= (x - w) - (x - ~)'~ 

on the state space X =  R. Then A ( o )  = [w - 1, w + 1], and t2~(w) ~ A ( o )  for all w 
with sup B < w or inf B < ~, which have positive probabili ty for every bounded nonran- 
dom B. 

5.7. COROLLARY. - Suppose q~ is an RDS on a Polish space X which h ~  a global at- 
tractor o~ ~A(~o)  for compact sets. Then every strictly invariant  compact random set 
09 ~ I( w ) for  q~ satisfies 

P ( I c A )  = 1 

(also in case (Or) is not ergodic). 

PROOF. - By Corollary 5.4, for any t > 0 there  exists K = K(e) c X compact  such tha t  
P ( I c ~ g )  i> 1 - e. N o w A  at t racts  K, so by L e m m a  4.1 P ( Q K c A )  = 1, whence 

P ( I c A )  >! 1 - ~. 

This holds for t > 0 arbi t rary,  hence P-a lmost  surely I c A. �9 

Compactness  of I is needed to get  P ( I c A )  = 1. Fo r  instance, often the whole s tate  
space X is strictly invariant  for ~0. 
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5.8. COROLLARY. - Suppose cf is an RDS on a Polish space X. I f  A~ and A2 are ran- 
dom attractors for compact nonrandom sets, then P-almost surely A1 = A2. Thus a 
random attractor is almost surely unique. 

PROOF. - Corollary 5.7 gives P(AlcA2)  = 1 as well as P(AzcA1)  = 1. �9 

5.9. REMARK. - (i) The previous result strengthens Theorem 4.3 insofar uniqueness 
of the at tractor is obtained even if (v~t) is not ergodic. Furthermore,  the random a t t rac- .  
tor A is uniquely determined already by the property of attracting compact determinis- 
tic sets (and, of course, being strictly invariant and compact). 

(ii) Corollary 5.8 also shows that a random attractor for bounded sets does not de- 
pend on the choice of a metric on X. Choosing a metric on X, then either there exists an at- 
tractor or not. In case there exist attractors for two different metrics (both inducing the 
topology of the Polish space, of course), then the two attractors must coincide already. 

(iii) By Corollary 5.5 a random attractor is always measurable with respect to the 
past, i.e., it is a closed random set with respect to (the universal completion of) ~ 0. For  
(0 t) ergodic this is, of course, immediate from A = ~9 K almost surely for a suitable com- 
pact K c X  by Corollary 5.5, since ~gK is measurable with respect to the past by Lemma 
3.5. If  (Or) is not ergodic, choose an increasing sequence K, ,  n e N, of compact sets with 
P(A = Y2K~) >I 1 -- 1 /n  (again by Corollary 5.5). Then tgK, is measurable with respect to 
the past for every n e N, again by Lemma 3.5, and the sequence t9 ~ ,  n e N, is increas- 
ing (the Kn are nonrandom; see Remark 3.7). Furthermore,  A = [.J ~J ~ almost surely. 
Thus, for any x �9 X, 

w ~ d ( x ,  A ( w ) ) =  inf d(x, QK,(W))= lim d(x, tgKn(W)) 

is measurable with respect to the past, hence A is a closed random set with respect to 
(the universal completion of) 5~_~ 0. 
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