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On the Dynamics of Deformable Ferromagnets 
I. Global Weak Solutions for Soft Ferromagnets at Rest (*). 

M. BERTSCH - P. PODIO GUIDUGLI - V. VALENTE 

Abstract .  - The paper begins with a fairly detailed presentation of a general mathematical model for the 
dynamics of ferromagnetic bodies undergoing arbitrarily large deformations. Next, a mathematical 
study is presented of the evolution problem for the magnetization field in a r162 ferromagnetic body 
which is ,r at rest~. No matter how special and simple this problem within the frame- 
work of the full theory, the governing equation is interesting: it is identical to the dynamic version of 
the harmonic-map equation usually referred to in the mathematical literature as the Gilbert form of 
the Landau-Lifshitz equation. Motivated by recent nonuniqueness results for the dynamic harmonic- 
map equation, we give a new proof of global existence of weak solutions to the Gilbert-Landau-Lif- 
shitz equation. 

1. - I n t r o d u c t i o n .  

The general object of the dynamics of ferromagnets is the formulation and the study of 
the evolution problem for ferromagnetic bodies undergoing arbitrarily large deformations. 
In this paper we begin our mathematical study of the model recently proposed by DeSimone 
and Podio-Guidugli [13, 14, 15]. 

1.1. Plan of the paper. Results. 

A generalized account of the model of [13, 14, 15] is given in Section 2. This model is a 
nonlinear, dynamic version of micromagnetics, the variational model--essentially due to 
W.F. Brown [7, 8]--describing the statics of deformable ferromagnets; its most relevant fea- 
ture is full consistency with the principles of rational continuum thermodynamics. The 
mathematical structure of the resulting evolution system is far too complex to be studied in 
complete generality. Hence we have chosen to consider here the special case of ~soft>> ferro- 
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magnetic material bodies that are <<mechanically at rest>> (Section 3). Since this paper is 
meant as the first of a series, we have structured Sections 2 and 3 in such a way that they can 
be used in future papers as a reference for the basic concepts from continuum physics and 
their mathematical formulation. 

For softferromagnets at rest the general evolution system reduces to a single equation for 
the magnetization m(x,  t) alone, namely, 

( 1 . 1 )  m =  - a m x f n + m x A m ,  Iml = 1 .  

Here a is a positive material parameter, the so-called Gilbert damping (in fact this equation 
is often referred to as the Gilbert equation), while other material parameters irrelevant to the 
mathematical analysis of the equation are lumped into a rescaling of the space variable (Sub- 
section 3.3). Equation (1.1) is assumed to hold in the space-time cylinder 83 x (0, T], with T 
a given positive number and 83 a nice three-dimensional region with boundary 883 of outer 
normal n, and is supplemented by the following initial and boundary conditions: 

(1.2)1 m ( x , O ) = m o ( x )  in 03, I m o l = l ;  

(1.2) 2 8, m(x ,  t) = 0 in 803 X (0, T]. 

A physical interpretation of equation (1.1)1 is that, at each fixed point x e 03, the magne- 
tization m progresses with an unforced, damped movement of precession with respect to the 
magnetic field A m  (the general model of Section 2 incorporates such features as precession 
and dissipation without any recourse to, respectively, analogy or ad hoc reasoning). As 
shown in Appendix A, three equivalent forms of (1.1)1 are: the Landau-Lifshitz equation [23, 
29, 30] 

(1.3) 

the equation [1] 

fn = m x A m  - am  x (m x A m )  ; (1) 

(1.4) m = m x A m  + a ( A m  + IVml2m); 

and the equation whose weak form we study, namely, 

(1.1)' =.4m + IVml2m.(2) 

(1) In 1935 Landau and Lifshitz [24] derived the following equation to describe the evolution of 
spin fields in ferromagnets: 

& = m x (h~e - am x hell), 

where heft, the effective magnetic field, has an expression more general than the one we here consider, 
that is, modulo the indicated rescalings, heff = Am. 

(2) Cf, respectively, equations (A.6)-(A.7), (A.8), and (A.10). In all of (1.3), (1.4), and (1.1)' time 
has been rescaled by the factor (1 + a2). 
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Existence of weak solutions to the Landau-Lifshitz equation coupled with Maxwell 
equations has been established by Visintin [29] in 1985. In 1992 Alouges and Soyeur [1] 
have proven that Problem (1.1)-(1.2) has a solution in a generalized sense (cf. also the work 
of Guo and Hong [17]), but that the solution is not always unique. In this paper we prove 
the following theorem of global existence for weak solutions (Section 4). 

GLOBAL-WEAK EXISTENCE THEOREM. -- Choose 83, an open, bounded region with smooth 
boundary, and choose a vector field mo ~ H 1 (83; R 3 ), with I mo [ = 1 a.e. in 83, and with finite 
energy: 

IV,.o12 < 
83 

For each T >  0, there is a global-weak solution of Problem (1.1)-(1.2), i.e., a vector field 
ra eH1(83 x ( 0 ,  T]; R 3) such that 

(i) for each zeC~(~B x [0, T]) vanishing at t =  0 and t =  T, 

T T T 

-f fm.z:af fMm-z+ f fMW, Vz 
0 88 0 83 0 L8 

(here M is the skew matrix uniquely associated with the vector m); 

(ii) [~1 = 1  a.e. in 83 x ( 0 ,  T]; 

(iii) m(-, t)--~mo(') in L2(83; R 3) as t - ~ 0 .  

The main idea of our proof is to modify equation (1.1)' by introducing two positive small 
parameters, E and r: 

(1.5) a m - m  x m - v / l r ~  = A m -  e -1 ( Iml  2 -  1) m.  

The r-regularization allows us to treat (1.5) as an ODE in an appropriate function space, 
while the e-1-penalization replaces the magnitude constraint, [ m ] =  1. A virtue of our 
model is that the v-regularization can be assigned the physical meaning of an additional dis- 
sipation mechanism (although we know of no experiment supporting the inclusion of that 
term in the case of magnetostrictive materials). Taking the cross product of (1.5) by m, we 
obtain a modified version of equation (1.1), for which we are able to pass to the limit up to 
subsequences for (e, r) --> (0, 0) along whatever smooth path. Our proof is flexible enough 
to treat slightly more complicated equations [28]. However, it is unclear to us whether dif- 
ferent limiting procedures in (1.5) may lead to different solutions. We expand on the issue at 
the end of the next subsection. 

1.2. Singularities in statics and nonuniqueness in dynamics. Facts and conjectures. 

..... The fact that Problem (1.1)-(1.2) may have nonclassical solutions has been known since a 
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few years. For example, if 83 is a ball centered at a point Xo e R 3, then the field 

(1.6) m(x)  - x -  Xo 
I x - x o l  ' 

which solves the harmonic-map equation 

(1.7) Am + IVml2m = 0,  Iml = 1, 

is a static solution of Problem (1.1)-(1.2), with finite energy ~- 

point singularity at x = Xo. Equation (1.7) has been extensively studied (see, e.g., Brezis, 
Coron, and Lieb [6]), not only because it is mathematically interesting per se but also be- 
cause it offers a simplified and yet often qualitatively reliable model for the static theory of 
points and line defects in nematic liquid crystals. It is easy to see that (1.7) possesses infinite- 
ly many other solutions with a point singularity at a given point Xo, of less symmetric struc- 
ture than (1.6). Alouges and Soyeur [1] have taken a singular solution of this less symmetric 
sort as the initial datum, and shown that there is then another, not static solution of Problem 
(1.1)-(1.2); Coron [ 11] and Bethuel, Coron, Ghidaglia, and Soyeur [5 ] have obtained similar 
results for the equation 

(1.8) a m = A m +  IVml2m, Iml = 1 ,  

which is posited as the <<heat flow>> of the harmonic-map equation (as to this last equation, 
see the recent review article by Hardt [20] and the references listed therein, especially the 
papers by Struwe [26] and Chang, Ding, and Ye [9]). 

Thus, in R 3 nonuniqueness and point singularities turn out to be closely related. Very re- 
cently Bertsch, Dal Passo, and Van der Hout [4] have demonstrated a similar relation in R 2 
in the case of equation (1.8) with Dirichlet boundary conditions: if 83 is the two-dimensional 
disk, there are regular initial data for which equation (1.8) has more than one weak solution 
which is not smooth at the origin of the disk for all times. In addition, always in the case of a 
disk, preliminary results of Dal Passo and Vilucchi [12] for the equation 

(1.9) a m - v ( A m - ( m . A m )  m) =Am + IVml2m, Iml = 1, 

would seem to indicate that different approximation methods lead to different solutions of 
(1.8). Since the precession term m • m is powerless, we expect equation (1.1) to embody es- 
sentially the same mathematical phenomenology as (1.8). Our present, mosdy conjectural 
description of this phenomenology is based on ideas exploited in [4] and [12]. 

Chang, Ding, and Ye [9] have shown that a finite amount of energy can concentrate on a 
line segment at a finite time, say, to > 0. (3) Suppose now that one asks how, if ever, such a 

(3) Actually, their construction--just as those in [4] and [12]--concerns a point singularity at the 
origin of a disk, a situation that cylindrical symmetry transforms into a line singularity at the axis of a 
cylinder in R 3. 
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solution can be continued past to. We can think of two possibilities. Either the energy con- 
centrated as t--* to on the line segment is permanently trapped there, and for the continued 

solution the function t ~ e(t) = -~lVm(x,  t) is nonincreasing (curve (a) in Figure 1); (4) 

or the trapped energy is released at a later time tl > to, and the Dirichlet integral associated 
to the continued solution is nonmonotonic (curve (b) in Figure 1). 

e 

: ~ b )  

t .  t~ t 

Figure 1 

In the first instance the formation of singularities might somehow be regarded as a mech- 
anism of instantaneous dissipation; in the second instance it would seem reasonable to incor- 
porate a form of line energy into the model. Various questions come to mind, most of which 
we are unable to answer at the moment of this writing, some of which we list. 

1) Should a model for the dynamics of ferromagnets allow for concentration of finite 
amounts of energy on sets of measure zero? 

While our present model does not explicitly accomodate such a possibility, it does not 
exclude it as well. However, we believe that only experimental evidence could provide a def- 
inite answer. In this connection we observe that the counterexample to uniqueness con- 
structed in [4] was strongly motivated by a different application (a flow problem for nematic 
liquid crystals, showing up in the process of fiber spinning [27]), an application in which 
one indeed expects energy concentration. 

2) If we choose to allow for energies trapped on curves to be released, (i) can we formu- 
late a uniqueness criterion? (ii) can we actually construct solutions along which energy is 
first trapped and then released? 

When faced with lack of uniqueness one is driven to ask whether there is a criterion that 
selects the physically relevant solution(s) and whether the latter can be actually constructed. 
A precise mathematical formulation for such a criterion (something like, say, ((trapped en- 
ergies are to be released as soon as possible~) is not obvious, not to speak about proving that 
it selects a solution uniquely. However, it would be useful to obtain at least good candidates 

(4) Freire [16] has shown that, in the 2-D framework, this monotonicity criterion selects a unique 
solution. 
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for such solutions: our present paper offers a new existence proof for solutions of Problem 
(1.1)-(1.2) which are such candidates. 

To state some of our conjectures more clearly, let us return to equation (1.5) with the 
help of Figure 2, where the path relevant to our existence proof is the generic path (c). 

(0,0) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (~,r 

(c) 

Figure 2 

For the penalized equation 

(1.10) Of. I n - - m  X m = A m  - E - l (  Iml 2 -  1)m 

we expect, for vanishing e, solutions with monotonic Dirichlet integral (path (a) in Figure 2 
and curve (a) in Figure 1). On the other hand, the results for equation (1.9) in [12] make us 
believe that solutions of the equation 

(1.11) 

yield, in the limit of vanishing r corresponding with path (b) in Figure 2, solutions associat- 
ed with the nonmonotonic curve (b) in Figure 1. This latter case has special interest because, 
as already mentioned, our model allows for a physical interpretation of the dissipative term 
ram. 

2. - The dynamics of deformable ferromagnets in short. 

This section serves the purpose of presenting a short, self-contained description of the 
mathematical model we study; we refer the reader to [13, 14, 15] for a complete discussion 
of the continuum mechanical development of the model, as well as for references to the tech- 
nical literature on continuum theories of deformable ferromagnets. 

Within the framework of a theory of continua with microstructure, a ferromagnet is pic- 
tured as the composition of two interacting continua, the one with a mechanical structure, 
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the other with a magnetic structure. The model's construction consists of the following 
steps: 

(i) The kinematics of the composite continuum is described by its motion with re- 
spect to a reference configuration and by the magnetization, a unit vector field over the cur- 
rent configuration. 

(ii) The system of forces which are work-conjugate to such kinematics is split into 
forces peculiar to each constituent continuum and forces that define the interaction between 
the two. A distinctive feature of the magnetic continuum is the occurrence of interior forces 
of magnetic origin, that is, of mutual forces between body parts and of self-forces, the latter 
being the forces that a body part exerts on itself. Interaction forces and interior forces are as- 
sociated with magnetostriction, the phenomenon that makes certain ferromagnets suitable 
for application as sensors and actuators. 

(iii) Both for the composite continuum and for the constituents, balance laws for 
forces are posited. 

(iv) The force response to histories of deformation and magnetization is prescribed in 
a manner consistent with a dissipation principle postulated for the composite continu- 
um. 

(v) Combination of balance laws and constitutive prescriptions yields a system of 
PDEs for the evolution of the (motion, magnetization) pair. 

2.1. (Motion, Magnetization) Pairs. 

Let the ambient space be a three-dimensional Euclidean space 8, with typical point x. 
We think of 8 as the image at time t e R of a reference ambient space 8, under a smooth dif- 
feomorphism f ( . ,  t). Let B denote the referential shape of the material body under study, 
i.e., the region the body occupies when placed in the space 8r. The deformation f(.,  t) of B at 
time t is the restriction to B o f f ( . ,  t); it is assumed that f( . ,  t) preserves the local orientation, 
in the sense that det(Sxf(X, t)) > 0 for all (X, t) ~B x R.  A typical point X of B occupies 
at time t the place x = f iX ,  t); 83 =fiB,  t) is the current shape of B. 

A motion is a family of deformations f( . ,  t) of B. Given a motion and a referential mass- 
density field 0r(X) > 0 for X e B ,  we assume conservation of mass, in the form 

(2.1) (det F) Q = ~, ,  

where Q(x, t) is the current mass density and F(X, t) stands for axf(X, t). (5) 

(5) More precisely, relation (2.1) should be written as 

(detF(X, t)) O(x, t) = o,(X), x =f(X, t). 

In the thermomechanics of continua undergoing finite deformations, where it is crucial to distinguish 
the reference configuration from the current configuration, one often finds formulae which combine 
fields over the current configuration with fields whose typical descriptions are instead over the refe- 
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For each given motion it makes sense to consider families of magnetization fields m(-, t) 
over the current shape of the body: for each time t fixed, the vector re(x, t) has unit modulus 
for all x ~ 83 (the saturation condition) and accounts for the current spatial distribution of 
magnetic dipoles per unit mass; it is convenient to introduce also the magnetization per unit 
current volume, the vector field defined by 

(2.2) m = Om�9 

2.2. The magnetic field. 

Given a (motion, magnetization) pair for the body B, we define the magnetic field h83 
over 8 to be the unique square-integrable solution of Maxwell equations in the <<quasistatic 
approximation>>: 

(2.3) c u r l h ~ = 0 ,  d i v h 8 3 = - d i v ( x ~ m )  in 8, 

where Z 83 is the characteristic function of 83, Z 83 m is the extension of m to 8, and the equa- 
tions are assumed to hold in the sense of distributions. 

If m is smooth, the following representation formula for the solution of (2.3) holds at 
each point x~ 8\883: 

h ~  = - Vr 83, 

(2.4) qo83(x) = f [ x - y l - ' ( - d i v m ( y ) )  dr(y) + f [ x - y l - lm(y ) .n ( y )  ds(y) 
83 083 

(recall from the preceding footnote that V denotes the gradient operator with respect to cur- 
rent place, and note that here n(y) is the outer unit normal at a point y e 883, while time de- 
pendence is not displayed); moreover, at each point of 883, 

(2.5) [h83~ = (m.n) n ,  

where [h83 D = h+ - h ~  denotes the jump of h83. 

rence configuration, just like 0(', t) and F(., t) in (2.1). Customarily, the independent variables are not 
displayed and the implicit adjustments are left to the reader. However, the gradient operators with re- 
spect to referential and current places are usually given different symbols; the same is done for those 
differential operators, like divergence and curl, that are defined starting from the one or the other gra- 
dient operator. In this paper we use 8x and V, respectively, and associate Div and Curl to the former, 
div, curl, and A = div V to the latter. We also denote by a superscript dot the material time derivative, 
that is, the time derivative of a field @(x, t) over 83:x 

= 8t~ + (Vr v,  

where v = 8tfo ( f ( ' ,  t)) -1 is the velocity field over 8~ in the given motion. 
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It also follows from (2.3) that 

(2.6) f(h  + X zm)'V~p = 0 
8 

for all test fields ~0 that vanish sufficiently fast at infinity; in particular, 

Ih 12 = - 

By definition, 

1 
f 12 (2.7) M(83) = 

/ 

is the magnetostatic energy of the body in its shape 8~, i.e., the energy of the magnetic field ha 
associated to the magnetization m; a change in shape and/or in magnetization induces a 
change in magnetostatic energy. 

At a typical point x ~ 83 the total magnetic field h consists of ha and the external magnet- 
ic field he: 

(2.8) h = ha + h e, 

with h e a field that we assume we can control, if needed. 

2.3. Balance equations. 

Since we regard a ferromagnet as a composite continuum with two constituents, balance 
laws are needed for the compound and one of the constituents; interior forces appear in 
both the compound's balance and the constituent's balance, interaction forces only in the 
latter. We base our theory on a balance law of forces for the composite continuum: 

(2.9) b + div T = 0 ,  

and on a balance law of torques for the magnetic continuum: 

(2.10) m • (b + k + div C) = 0.  

Here T is the stress in the composite continuum, C is the couple stress in the magnetic con- 
tinuum, and m • k is the interaction couple; T, C, and k must each be constitutively speci- 
fied (see the next subsection). 

Two other balance laws should be posited in general, namely, balance of torques for the 
composite continuum and balance of forces for the magnetic continuum [14]. While certain 
customarily accepted constitutive choices allow one to dispense with the latter balance [13, 
14], the restrictions posed by the former can be cast as an algebraic consistency condition for 
the constitutive choices of T, C, and k, namely, ~ 

(2.11) skw [T + C ( V m )  T - k | m] = 0 
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(here skw [-] evaluates the skew part of a tensor, and | denotes the usual dyadic product of 
vectors). 

The tensor fields T and C are related to, respectively, the contact force in the composite 
continuum and the contact couple in the magnetic continuum. (6) The vector field b, the dis- 
tance force in the composite continuum, is thought of as split into three parts: 

(2.12) b = b e + b' + b s, 

with the superscripts standing, respectively, for external, inertial, and self. A completely 
similar splitting, following from 

(2.13) b = b e + b i + b ~, 

is postulated for m • b, the distance couple in the magnetic continuum. (7) 
To specify b i and b i, a s  well as b s and b s, is a constitutive task, deferred to the next sub- 

section. Instead, b e and b e are control fields that we can choose in order to generate one or 
another (motion, magnetization) process. Both b e and b e are split into mechanical and mag- 
netical parts: 

e e e _ _  (2.14) b e = brae + bma, bma - (Vh e) m ,  

( 2 . 1 5 )  b e  = e e e bme + bma, bma = Qh e, 

and we regard at our disposal each of the parts bee, bea, and bee . 

2.4. Constitutive prescriptions. 

We begin by specifying our choice of the inertial forces b' and b i. T w o  r u l e s  guide this 
choice [25, 14]: that the time rate of kinetic energy be balanced by the inertial power; and 

(6) Formally, the contact force at (x, t) relative to the oriented plane of unit normal n is the 
v e c t o r  

(o) t(x, t; n) = T(x, t ) n -  l ( p m ( x ,  t)'n)2n ; 

the contact couple is 

(�9 c(x, t; n) = re(x, t) • (C(x, t)n). 

Both in t and in c one sees a manifestation of the interior forces of magnetic origin alluded to in the In- 
troduction; these constructs account for the dipolar microstructure of a ferromagnet, at the macrosca- 
le typical of continuum mechanics and under the form of contact interactions. When it comes to speci- 
fying boundary conditions of the natural type, it is t and/or c that one assigns at a point of the current 
boundary of a ferromagnetic body (Subsection 2.5). 

(7) The distance self-force b s is another macroscopic manifestation of the interior forces of magne- 
tic origin, and accompanies the contact self-force contributing to the macrostress, which appears in 
the right side of formula (~) in the preceding footnote; similarly for the distance self-couple m x b s 
(see [13], [14], and especially [15]). 
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that the power expended by each inertial force be linear in the conjugate velocity. As is stan- 
dard in continuum theories for ferromagnetic solids, we choose: 

(2.16) b i =  - t ) ( ' ,  b i = y  - I m x ; n  , Y > 0  , 

where v is the velocity field over the current shape 83 and rk is the material time derivative of 
the magnetization (cf footnote 5). Thus, in the magnetic continuum the inertial power is 
everywhere null at each instant: 

(2.17) bi'~n = (m • hi) �9 (m x fn) = 0 ; 

moreover, 

1 
(2.18) b i . v  = - k ,  K=  -0lvl 2, 

where K denotes the kinetic energy per unit current volume in the composite continu- 
um. 

Next, we stipulate that the distance self-forces b s and b s combine with, respectively, bern, 
and bema as follows: 

(2.19) b ~ + b era, = (Vh) m ,  b s q- bema = Qh 

(cf (2.8), (2.14)2, and (2.15)2). With the use of (2.12)-(2.19) we find 

(2.20) b + O~' = berne + (Vh) m ,  

(2.2 1) b - -  y -1/A X m = bee -k Qh, 

where each of the terms on the right sides is controllable at each point of 83. 
In the classical manner introduced by Coleman and Noll we regard the constitutive 

choices of the contact actions T and C, the interaction distance-force k, and the free energy 
~p per unit mass, as collectively restricted by a dissipation inequality to be satisfied identically 
in all smooth (motion, magnetization) processes. This inequality we stipulate to have the 
form: 

(2.22) T ' V v +  C ' V m - k - m - p ~  i> 0.  

The left side of this inequality is interpreted as the energy dissipated in the composite contin- 
uum per unit current volume. (8) 

We postulate such constitutive dependences of T, C, k, and ~p on the process variables 

(s) Given its physical interpretation, this quantity should be an objective scalar, i.e., it should not 
change value trader a change in observer; it is not difficult to check that this is indeed a consequence of 
the torque balance (2.11) for the composite continuum. A deduction of an equivalent form of (2.22) is 
found in Section 5 of [14]. 
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in the list (F, G, m; F, G, ru) (where we have denoted Vm by G) as to accomodate for both 
magnetoelastic equilibrium response and nonlinear viscosity out of equilibrium. Precisely, we 
put 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

T = T(F, G, m; F, G, rn), 

C = C(F, G, m; F, t~, r~), 

k = k(F, G, m; F, G, r~), 

~p = ~(W, G, m) 

(consistency with (2.22) rules out any dependence of ~p on F, m, or G; streching the standard 
terminology a bit, V~(F,., m) can be called the exchange energy at (F, m), and ~(F,  G, .) 
the anisotropy energy at (F, G) ). Since 

Vv = FF -1, Vm = G +G(Vv), 

with the use of (2.26) the dissipation inequality can be given the form 

At this point, an application of the algebraic lemma proved in Appendix B yieldsthAat the 
flee-energy mapping ~ determines the eequilibrium>~ part of each of the mappings T, C, and 

(2.27) T eq = Teq(F, G, m) = 0 O~p (F, G m) F T O~p (F, G, m) ~F ' - pGT ~G ' 

(2.28) C eq = ceq(F, G, m) = 0  c~p (W, G, m), 
~G 

A 

(2.29) k e q =  keq(F, G, m) = -O ~P (F, G, m), 
c~m 

where we have set 

(2.30) " r e q ( w ,  G, m) = T(F, G, m; 0, 0,.0) 

(and similarly for c~q and ~eq). Moreover, the <<viscous>> parts T vs, C vs, and k vs of, respect- 
ively, T,  C, and k are given by the constitutive mappings defined by 

(2.31) TVS(F, G, m; F, G, ra) = T(F, G, m; F, (;, m) - T(F, G, m; 0, 0, 0) 
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etc., and satisfy the residual dissipation inequality 

(2.32) Tvs.Vv + CW'Vm -kVS'm >I 0 .  (9) 

More information is extracted from (2.32) if the prescriptions (2.23)-(2.25), which are 
not invariant under change in observer, are replaced by properly invariant prescriptions 
such as 

(2.33) T(F, G, m; D, G ~ m ~ = T(F, G, m; F, G, r~), 

where the invariant rates D, G ~ and m ~ appear, defined by 

D = sym [Vv], 

(2.34) G ~ = G - W G  + G W ,  

m ~ = f n  - W m  ; 

here D is the stretching and W = skw [Vv] the spin in the composite continuum, while G ~ 
and m ~ are time rates relative to a local frame spinning together with the composite continu- 
um. With (2.33) and (2.34), inequality (2.32) is easily shown to be equivalent to both 

(T ~ + GTc w) .D + CVS.G ~ - kVS'm ~ 0 (2.35) 

and 

(2.36) skw [T ~s + C vs G T - k vs @ m] = 0 . 

The latter relation, together with (2.11) and (2.27)-(2.31), imply that the assignment of the 
free-energy mapping satisfy 

[ a T  A aT aT (W, G, m ) @ m ]  =0 (2.37) skw - - ~ ( F , G , m ) F T - G T ~ G ( F , G , m ) +  - f f -~(F,G,m)  GT+ am 

for each admissible (F, G, m). (I0) 

REMA . - If we assume, as is done in Section 5 of [14], that none of T '~, C vs, and k vs de- 

(9) Needless to say, this inequality is invariant under observer changes, just as (2.22). 
(10) Note that, with no use of the dissipation inequality but simply as a consequence of constituti- 

ve splittings of type (2.30)-(2.31): 

T = T  eq+T vs, T v s = T - T  eq, etc . ,  

(2.11) is equivalent to both (2.36) and 

skw [T eq + C eq G r - k eq ~ m] = 0 . 
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pend on D and G ~ then (2.35) and (2.36) reduce to, respectively, 

sym [T ~s ] = 0 ,  C vs = 0 ,  kVS.m ~ <~ 0 ,  

and 

skw[T vs - kVS@m] = 0 

(cf (5.30), (5.35), and (5.37) of [14]). If, in addition, as in [13], the free-energy mapping is 
assumed to have the simple form 

~(e ,  G, m) = ! K  m [GI2 - -~ (F ,  m), 
2 

then (2.37) reduces to 

(cf (29) of [13]). 

[ 8 ~  8 ~  (F, m ) Q m ]  = 0 skw ~ ( F , m )  F r +  8m 

2.5. The General Evolution Problem. 

We are now in a position to state formally a fairly general problem in the dynamics of 
ferromagnets. 

Given a referential shape B and a referential mass-density 0 ,(X) > 0 over B, find a (mo- 
tion, magnetization) pair, i.e., a pair of suitably smooth mappings f ( X ,  t) and re(x, t), with 
(X, t) ~B x [0, T), T >  O, x = f ( X ,  t), and Ira(x, t) [ = 1, consistent with the following 
system of evolution equations, initial conditions, and boundary conditions: 

- the quasi-static Maxwell equations, 

(2.38) c u r l h a = 0 ,  d i v h ~ = - d i v ( Q z a m )  in 8, 

with 

(2.39) 83 = f i B ,  t), 0 = ( d e t V f ) - l o r  

(so that mass is conserved, cf. (2.1)); 

- the balance equations (2.9) and (2.10), combined with (2.20) and (2.21), 

(2.40) O+ = div T + bee + o(Vh) m ,  

(2.41) ~/-lm = m X (div C + k q- (bee-'[- oh)), (11) 

(11) Here we have used the fact that, due to the saturation condition, - m  • (m • m) = m. 
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with 

(2.42) v = 8tfo (f(., t)) -1, h = h~ + he; 

- constitutive relations for the free energy of the form 

(2.26) ~p = ~(F, G, m), 

and for the stress, the couple stress, and the interaction distance-force of forms resulting by 
combining (2.27) with (2.33) etc., namely, 

(2.43) T = 0 - ~  (F, G, m) F ~r- QG T 8 ~  (F, G, m) + MS(F, G, m" D, G ~ m ~ 
8G ' ' 

A 

(2.44) C=oS~P (F ,G m ) + C V S ( F , G , m ; D , G ~ 1 7 6  
8G 

(2.45) k= - ~  a~P (F, a ,  m) + kVS(F, G, m; D, a~ m~ , 
c~m 

provided these constitutive relations be compatible with the dissipation inequality 

(2.35) (T ~s + GTc vs) .O + CVS.G ~ - kVS-m ~ I> 0 

and, in addition, with the consistency conditions 

skw[T vs + CVSG T -  kVS@m] = 0 (2.36) 

and 

(2.37) s k w [ 8 ~ ( F , G , m ) F T - G T f f ~ ( F , G , m ) +  8~ (F,G,m) GT+ 85 (F,G,m)Qm]=O" 
[ 8F 3G c~G c~m ' 

- the compatibility conditions 

(2.46) 

(2.47) 

(2.48) 

- the initial conditions 

(2.49) f iX ,  O) =fo(X), 

(2.50) re(X, O) = too(X), 

F = S x f  , G= Vm,  

D = sym [Vv], W = skw [Vv], 

G ~  G - W G + G W ,  m ~  

3tAX,  0) =vo(X) in B,  

Imo(X) l = 1  i n  B ;  
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- the boundary conditions 

(2.51)1 f ( X ,  t) = X in 81B • (0, T], 

T(x, t) n(x) - l (Q(x ,  t )m(x,  t).n(x))2n(x) = to(X, t) 
2 

(2.51)2 

where 

(2.52) 

and 

(2.53) 

8183 =f(81B,  t) ,  81B U 82B = 813, 

in 828~ x (0, T], 

81B N cO2B = 0 ,  

r t) m(x, t) x (r t) n(x)) =Co(X, t) in 88~ x(0 ,  T] .(12) 

We have already remarked that, in this system, the body fields b~,e, bee, and h e can be regard- 
ed as distance controls; the contact controls are the surface fields to and Co. 

3. - Soft  f erromagnet s  at rest. 

A ferromagnetic material is termed soft whenever its free-energy mapping does not de- 
pend on magnetization. If this is the case, it follows from (2.45) that the interaction distance- 
force k is null at equilibrium, a situation of weak mechanical/magnetical coupling, whence 
the terminology. 

A ferromagnetic body B is mechanically at rest whenever it undergoes a magnetic process 
with no motion, i.e., whenever for vo(X) = 0 in B 

(3.1) f (X,  t) =fo(X) in B x (0, T] 

(cf. (2.49)), and yet the magnetization field evolves in time. 
In view of the complexity of the general evolution problem formulated in Subsection 

2.5, one may ask whether there is a set of reasonable assumptions under which purely mag- 
netic processes would be possible, and composing a collection sufficiently rich to attract at- 
tention on theories of soft ferromagnets at rest; we introduce such a list of assumptions in the 
next subsection. 

(12) Thus, while the part 8 1 B  of the boundary is clamped, tractions to are applied on the current 
shape of the complementary and disjoint part 82 B, and torques c o are applied on the whole current 
boundary (cf relations (~) and ( ~ )  in footnote 6). It would be easy to replace conditions (2.51)-(2.52) 
by more general ones. Instead, it does not seem physically sound to posit boundary conditions directly 
on the magnetization vector, at sharp variance with the case of nematic liquid crystals, where anchoring 
conditions on the director are believed realizable, and hence imposed mathematically; consequently, singula- 
rities in the magnetization field cannot be enforced by adjusting the boundary data [13, Section 6]. 
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3.1. Soft ferromagnets with linear magnetic response. 

We confine attention to soft ferromagnets with linear magnetic response, both equilibri- 
um and viscous, by which we mean those ferromagnetic materials of type (2.43)-(2.45) such 
that 

A 1 
(3.2) Q~p(F, G) = Q~(F) + - - K G . G ,  K > 0 ,  

2 

(3.3) 

(3.4) 

Note that, with (3.2), condition (2.37) reduces to 

(3.5) skw [ 8 ~  (F) F r] 

CVS(F, G, m; D, G ~ m ~ =I~cG ~ , /~c>>-O , 

kV~(F, G,  m;  D ,  G ~ m ~ = - / ~ k m  ~ , /~k >~ 0 .  

= 0 ;  

we assume that the mapping ~ be such as to satisfy (3.5) identically. Note, in addition, that 
relations (2.43)-(2.45) become, respectively, 

(3.6) T = ~)8~P ( F ) F  r -  KGTG + TV~(F, G, m; D, G ~ m ~ 
8F 

(3.7) C =icG +/~c G~ , 

(3.8) k = - / *  k m~ ; 

we assume that the mapping ~s  be compatible with the disssipation inequality to which 
(2.35) reduces: 

(3.9) (T ~s + t~cGT G~ +/~cG~ ~ + l~ km~ ~ >t 0 ,  

and with (2.36) in its present form, namely, 

(3.10) skw IT vs + I~ c G~ +/2 k m~ ~) m] = 0 . (13) 

With (3.7), the boundary conditions (2.53) becomes 

(3.11) Om• ( K G + / ~ c G ~  in ~83•  T].  

We now stipulate the body to be initially at rest in its referential shape: 

(3.12) fo(X) = X ,  vo(X) = 0 in B,  

(13) While inequality (3.9) restricts only the symmetric part of T vs, relation (3.10) determines the 
skew part completely. 
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with constant mass density 

(3.13) 0o(X) = 0o in B .  

Moreover, as to boundary conditions, we take the applied surface torque Co to be identically 
null, and we take O~B to be either empty or all of 8B (of. (2.51); in the latter case, the bound- 
ary traction to has reactive nature, and hence drops off the list of available controls). 

We choose to study only purely magnetic processes, for which, consistently with (3.12), 
the body remains at rest throughout the time interval of interest, i.e., 

(3.14) f ( X , t ) = X  in B•  (O, T] 

(cf. (3.1)). As a first consequence of this choice, we have that, during such processes, 

(3.15) F = 1 , G = 8xm , D = W = 0,  

(3.16) G ~ = G = 8 t ( O x m )  = 8 x ( O t m ) ,  m ~ = ~n = 8 t m  ;(14) 

hence, in particular, (2.39) and (2.2) yield, respectively, 

(3.17) 0 ( X , t ) = 0 o  and m ( X , t ) = 0 o m ( X , t )  in B•  (0, T], 

while (3.9) is identically satisfied. Another consequence is that the Maxwell equations take 
the form 

(3.18) CurlhB = 0, DivhB = - Div(0oZBm) in 8r;(15) 

we here for short write the functional dependence of the magnetic field on the magnetiza- 
tion field, whose form has been given in Subsection 2.2, as 

(3.19) hB = ~ ( m ) .  

Finally, the evolution equation (2.41) takes the form 

(3.20) y - ~ m = m X  (KAm+l~cAm-l t jn+b~me+Qo(he+~(m)))  in B x  (0, T].  

We supplement these equations with the initial condition 

(2.50) m ( X ,  O) = m o ( X )  , Imo(X) l = 1 in B ,  

and with the boundary condition to which (3.11) reduces under the current hypotheses, 
namely, 

(3.21) m• (KSnm+/XCSnfn) = 0  in 8 B x  (0, T]. 

Once a solution m(X, t) to (3.20), (2.50), and (3.21) is found, we are left with the task of 

(14) Since, when there is no motion, material and partial differentiations with respect to time are 
the same operation, henceforth we choose to denote time differentiation by a superposed dot. 

(15) Cf equations (2.38), on recalling the notation introduced in footnote 5. 
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showing that, when combined with the constitutive relation (3.6) composed with re(X, t), 
the evolution equation (2.40) has the solution (3.14) up to boundary of B for some T > 0. At 
the present level of generality in the choice of ~ and ~vs we cannot do any better than claim- 
ing that this is indeed the case. Our reason to do so is that we still have sufficient freedom in 
the selection of the available mechanical and magnetical controls. (16) 

3.2. Two interesting cases. 

A first case of interest to study is the homogeneous version of equation (3.20): 

(3.22) y - l m  = m x (teAm + / ~ c A m - ~ k m )  in B x (0, T], 

again supplemented by the initial and boundary conditions (2.50) and (3.21). Once a sol- 
ution to this problem is found, the Maxwell equations can be solved for the corresponding 
hB, and the body controls partly disposed of by assuming that 

(3.23) b~e + Q o(h e + hB) = 0,  

just as needed to justify a posteriori the study of (3.22). 
A second interesting case is when, instead, the body control vanishes: 

(3.24) b~me + Q o he = 0 ,  

so that the equation to solve is 

(3.25) y - l m = m x ( K A m + / ~ c A f n _ / , k f n + l ~ ( m ) )  in B x  (O, T]. 

This problem has been considered by Vilucchi [28] under the additional hypotheses that the 
viscosity is solely that provided by the interaction force k, and hence 

(3.26) /~k > 0 ,  /~c=0  

(see the remark dosing the next section). 

3.3. The case studied here. 

In the next section we establish global existence of weak solutions to problem (3.22)- 
(2.50)-(3.21) under assumption (3.26). With this assumption, the evolution equation (3.22) 
for the magnetization vector becomes 

(3.27) y - i r a  = m x ( r A m  -/~krk) in B x (0, T]. 

In (3.27), x , / ,  k, and y are given material constants, with K the material's stiffness with re- 
spect to spatial changes of magnetization,/* k measuring dissipation, and y measuring the 

(16) Precisely, both the body control (bee + 0 o(vhe) m) and the surface control to when the whole 
boundary is free (c91B = 0), the body control only when the whole boundary is clamped ( r  = 

= 8B). 
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nondissipative inertial force associated with time changes of magnetization. We find it con- 
venient to scale the space variable with a factor (yK) 1/2 and, with slight abuse of notation, we 
continue to denote by 83 the scaled region occupied by the body and by x the typical point of 
83. Moreover, we set a = Y/~k, so that equation (3.27) takes the form displayed in the Intro- 
duction, namely, 

(1.1)1 rn = - a m  X in + m  x A m  . 

While the initial condition (2.50) needs no changes, as a consequence of (3.26) the boundary 
condition (3.21) does: to the evolution equation (1.1) we append 

(1.2)1 m(x,O)=mo(X) in 83, Imo[--1; 

(1.2)2 8, m ( x , t ) = O  in 883• T], 

where mo is the initial magnetization field over 83, and where 8.m = (Vm)n. (17) 
We call Problem 8' the initial-boundary value problem of finding, for each datum mo of 

1 [Vmo [2 and for each fixed positive time T, a field m(x, t) over ~ • [0, T] finite energy f ~- 

that satisfies ~(1.1)-(1.2). 

4. - Global existence of weak solutions. 

As a premise to our proof of the title result for Problem 8', we observe that solutions of 
(1.1)-(1.2) satisfy formally the energy estimates 

(4.1) f IVml 2dx+a ml2dx=0; 

T 

(4.2) af fl; ,2dxdt<-f�89 f, ml2dx<, fa mol2dx 
0 ~ g3 g~ 

Relation (4.1) obtains by taking the inner product of (1.1) and (Am - agn) and making use 
of the boundary condition (1.2)2; (4.2) follow from (4.1) and the initial condition (1.2) 1 . The 

physical interpretation is that, along orbits, the time rate of the exchange energy f 1 [ Vm [2 

compensates for the dissipation, while the initial exchange energy separately bounds both 
energy and dissipation at any later time. 

We also note that, for smooth functions m, equation (1.1) can be given various altema- 

(17) The equivalence of (1.2)2 and 

m •  in 8~x(O, T] 

is an easy consequence of the saturation condition. 
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tive forms, derived in Appendix A; one of these forms, 

(1.1)' a m - ,  x rn = A m +  IVml2m, Iml = 1 ,  

has been used in the Introduction to make evident the kinship of (1.1) with the harmonic- 
map equation (1,7) and its <<heat flow>> (1.8). Equation (1.1)' can be interpreted as the re- 
quirement that, in the intrinsic orthonormal triad {m, tn, m • m}, the laplacian of the mag- 
netization has components ( - lYre  [ 2, a, - 1  ); in particular, the stationary solutions of our 
evolution problem are characterized by the condition that the magnetization vector and its 
laplacian are antiparalld, with [Am] proportional to the exchange energy. 

4.1. Existence of global-strong solutions to problem ~'~. 

For each fixed positive value of the parameter e and r,  consider the following 

PROBLEM ,_~t, r. _ For each initial datum mo of finite energy, and for each fixed positive 
time T, find a field m~'~(x, t) over 83 x [0, T] that satisfies the evolution equation 

(1.5) c t , h - m  • m - r A m  = A m -  e-l(Jml2 _ 1) m ,  

subject to the initial and boundary conditions 

(4.3)1 re(x, O) = m~o(X) in 83, 

(4.3)2 8am = 0 in 883 • (0, T],  

where m~o(x) EC~~ mto(x)---->mo(X) in L2(83), 8nm~=0  in 883, meo(X) is uniformly 

bounded in Hl(~3), and (c-af(Im~ol2-1)2dx)--->O as e--+0. 
\ - ] ,~ 

With a view to proving global existence and uniqueness of a strong solution m e' 3 to 
Problem 8 ~' 3, we now establish some a priori estimates. Multiplying (1.5) by r~" 3, integrat- 
ing by parts, and considering the boundary condition (4.3)2, we obtain the energy 
identity 

(4.4) 2 ~t f Ivm '312dx+ --4c --dt 1)2dx=0'  
g3 88 83 ~B 

from which we deduce the following integral estimates: 

(4.5) 

T 

a im,,312dxdt< ~ _1 iV.~ol2dx+ - -  (I-~ 1) 2dx, 
2 4e 

0 8~ ~8 8~ 

(4.6) 

T 

�9 f 2 4e 
0 83 83 

- 1)2dx, 
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(4.7) 

(4.8) 

f f i f  IVm~,~12dx<. IVm ol dx+-- -l)2dx, 
2e 

83 83 83 

f f if 12 1 (ime,rl2 1)2dx<~2 iVm~ol2dx+ - (]m~ 1)2dx. 
C 

83 68 8~ 

Moreover, from (4.7) and (4.6), respectively, and from Sobolev embedding theorem, we have 
that, for p ~< 6, there is a constant K, independent of e, r,  t, and T, such that, for all fixed e, 
"t" > O ,  

(4 .9 )  [[m',~lPdx<~K, 0 < t < ~ T ,  

83 

and 

(4.10) fT f lm~,~lPdxdt<<Kr-1 
0 

THEOREM. -- For each e and r > 0 fixed, there is a unique global-strong solution of Prob- 
lem 8 ~'~, i.e., a vector field m ~'~ such that, for some 2 E ( 0 , 1 ) ,  both 
m~'~(x, t)~C2'~(~; R 3) for all t e  [0, T] and Hm~'~(x, t)IIC2,~(~;R3)eW 1' ~((0, T)). 

PROOF. - We introduce the space 

V =  {vlv~C2 '~(~;  R3), 8 , v = 0  in 883}, 

equipped with the norm of C 2' 2(~; R3). We write Problem 8 '~' ~ as an ODE in V: 

(4.11) fn ~'~ F~,~:(m ) f o r t > 0 ,  ( 0 ) = m o .  

The definition of the operator F~, ~ requires some care. 
For w e C x (~; R 3) fixed, we consider the linear elliptic operator 

defined by 

(4.12) 

GT: V--*CZ(-~; R 3) 

G T ( u )  = a u  - rAu - w • u .  

It follows from classical Schauder estimates for the elliptic system 

G ~ ( u ) = y  in 83, 8 . u = 0  in 883, 

where y e  C~(~; R3), that 

(4.13) IlUllc2,~(~; R3) ~ Klly][c~(~; R3), 

for some constant K which depends on r and {IW]lc~(~; R3), but not on y. Hence, G~ is invert- 
ible and, since it is linear, (G~) -1 is Lipschitz continuous for any w e  C~(~; R3). Defining 
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the operator Fe,~: V - - ~ V  by 

Fe, ~(m) = (Gg) -1 (Am - e - s (  I m 12 - 1) m) ,  

we find that (4.11) and (1.5) are equivalent. 
For the existence and uniqueness of a local solution of the ODE (4.11), it is enough to 

show that Fe,~ is locally Lipschitz continuous in V. Let ms, m2 ~ V, and let 

U 1 = Fe,~(ml) and u2 = Fe,~(m2). 

Then, 

(4.14) 

and hence 

(4.i5) 

G ~ n i ( u i )  = A m  i - -  e-S( Imi 12 - 1) mi, i =  1 , 2  , 

G ~ ( u l  - u2) = G~l(us) - G~m2 (u2) - G~": (u2) + G~2(u2) = 

= , J ( m l  - m2)  - e - ' (  I m ,  12 - 1)  - ,1  + E - l (  Ira212 - 1)  ,,,2 + ( ( - , 1  - , , ,2) x u 2 ) .  

Since, by (4.13) and (4.14), 

(4.16) Ilu2llc2,~(~; R~) ~< Kllm2 Ilc2, ~(~; R') 

for some constant K depending on ]]m2 [[cx(~; s~), it follows from (4.15) and (4.16) that 

life, ~(m,) - Fe,~(m2)llv ~ Cllml - m2 IIv 

for some constant C depending on IIm, llc~(~; R~) and lira2 IIc~ ~(~; ~,). In particular Fe, ~ is locally 
Lipschitz continuous in V, and equation (4.11) possesses a uniquely determined local sol- 
ution me' ~ 

To complete the proof we have to show that me' r can be extended for all r Since 

G~(,n  ~,~) = A m  e ' ~ -  s -S( lme '~  12 - 1) me'L 

it follows from (4.12) that, as long as the solution exists, 

II,~e,r Cllme,'llv 

for some constant C which depends on I[me' ~llc~(~; ~). Hence the existence of a global sol- 
ution is garanteed if we find an a priori bound in C~(~; R 3 ) for m e'~, for all time and for 
some )t e (0, 1 ). Since W 2' 2 (83) c C 1/2 (-~) if 83 c R 3, global existence is a consequence of the 
following estimate. We multiply equation (1.5) by Am e' 3, and integrate by parts with the use 



354 M. BERTSCH - P. PODIO GUIDUGLI - V. VALENTE: On the dynamics, etc. 

of the boundary condition (4.3)2. Omitting superscripts, we obtain 

1 d f (a lVm]2 + ~[Aml2 ) dx = - f (m x f n ) A m d x -  
2 d r  

f _f _if 2 
_ iAml2dx_ 1 l lV(lml2_l)12dx_E (iml _l)lVml2dx ' 

whence 

l d f(alV. 12 + ~lAmlb dx+ f lA.I 2dx- ~-' f IX7.12 dx~ 
2 d r  

f if Imx,;,l d +-I,aml2dx. 
4 

~8 ~8 

In view of (4.9) and (4.10), it follows from Gronwall Lemma that, for all T > 0, [Am ~'~ [ and 
IVm~'~l are bounded in L2(83) for all tE [0, T]. �9 

4.2. Existence of global-weak solutions to problem 8'. 

We are now in a position to prove our theorem of global existence of weak solutions to 
Problem O'; for the reader's convenience, we begin by reproducing the statement given in 
the Introduction. 

GLOBAL-WEAK EXISTENCE THEOREM. -- Choose 83, an open, bounded region with smooth 
boundary, and choose a vector field mo ~ H1(83; R 3 ), with ]too [ = 1 a.e. in 83, and with fi- 
nite energy. For each T > 0, there is a global-weak solution of Problem 8', i.e., a vector field 
m~Hl(83 x(0 ,  T]; R 3) such that 

(i) for each z ~ C ~ (83 x [ 0, T]) vanishing at t -- 0 and t = T, 

T T T 

(4.17) -f f;,,.z=af f fMVm.Vz 
0 �9 0 83 0 

(here M is the skew matrix uniquely associated with the vector m); 

(ii) JmJ =1  a.e. in 83• T]; 

(iii) m(', t)--*mo(.) in L2(83; R 3) as t-->0. 

P R O O F .  - For each e, r > 0 we have a unique global-strong solution me' ~ of Problem 8 '~' 3, 
satisfying the estimates (4.5)-(4.8). Then, for ek, rk--~0 as k - ~  o0, there is a subsequence 
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m ek'rk, denoted for short by m k, such that 

m k - - > m  in L2(83 • [0, T]; R3), 

m k - - * m  in H l ( 8 3 x [ 0 ,  T] ;R3) ,  

and 

l i m  J(Imkl2-1)2dx=O (or rather, Iml = 1  a.e.). 
k--o oo 

~8 

The typical element of this subsequence satisfies the evolution equation 

(4.18) a m  k - m k x fn k - r k A f n  k = A m  k - e~-x( imk 12 _ 1) m k 

( c f  (1.5)). Let M k be the skew matrix uniquely associated to the vector m k by relation (A.1) 
in Appendix A, and let z e C oo (83 • [0, T]; R 3 ) be a test function. In order to show that the 
limit element m of the subsequence satisfies equation (1.1), we take the scalar product of 
(4.18) by Mkz and obtain 

(4.19) --aMkmk-z - Imk 12mk'z + (mk'm k) mk'z + rkMkArhk'z = - M k A m k ' z .  

Note now the following differential identities: 

MkA mk'z = div ((MkVmk)Tz) -- MkVmk'Vz + 1 Z V m k ' V m ,  
2 

M k A mk" z = div ((M k Vm k)T z) - M k Vm k" Vz , 

where Z is the skew matrix associated to the vector z. With these identities, since the bound- 
ary conditions (4.3)2 implies that both 8, m k and 8,m k vanish over the boundary, integration 
of (4.19) yields, after some rearrangement of terms, 

T T T 

- I  I lmkl ;"k'zdxdt= I S Mkmk'zdxdt§ I I MkVmk'Vzdxdt 
0 83 0 83 0 

T T --f f(ink'mk) mk'z+~kf f(MkV~nk'V,-- 1ZVmk'Vm) dxdt. 
0 ~ 0 

With the use of the estimates (4.5)-(4.8), we see that, in the limit as k---> oo, 

Imk 12mk--->m, Mkrhk-*Mm, MkVmk--->MVm weaHy in L2(83 • [0, T]). 

This takes care of the first three integrals in the last relation; since the remaining terms all 
vanish as k--> 0o, we obtain the weak form (4.17) of (1.1). �9 
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REMARK. -- As mentioned in Subsection 3.2, Vilucchi [28] has studied the equation 

y - l / n = m X ( K A m - - ~ k m + ~ ( m ) )  in B x  (0, T] ,  

that is, the generalization of equation (3.27) that obtains when the magnetic field lj(m) is in- 
cluded. Vilucchi's existence proof has the same structure as ours. The starting point is to 
consider the following approximate problem: 

a m  . . . .  6 _ m e , r 6  X m . . . .  6 _ Z.A fnC,~,6 = 

Am .... 6_e - l ( lme ,  r, 6 [ 2 _ l ) m , , r , 6 + a l h e ,  r,6 i n  B •  (0, T], 

me'r'6(x,O)=meo(X) in ~ ,  8. me '~ '6=0  in 8~8•  T] ,  

with the material moduli a ,  a i positive and the approximation parameters e, r > 0, 
0 < d ~ < l .  Here h~'~ '6=li(G e'r'6) is the solution of the approximate Maxwell equa- 
tions: 

Curlh ~'~'6 = 0 ,  Divh e'~'6 = - Div(g6G e'~'6) in R ~, 

where the function g6 ~ C~ ~ (R 3) mollifies the characteristic function of the set 836 = {x + 

lyl <6}: 
g6(x) = 1 for x e - ~ ,  0 <--g6(x) < 1 for xe836/-~,  g6(x) =0 for xeR3/ -~6 ,  

and where ~ '  ~' ~ is the C i, ~ extension of m e' ~' 6 to N6. The global existence of a classical sol- 
ution for this approximate problem is established along lines completely analogous to the 
ones we have used just above. The limit process as e, r ,  and 6 --~ 0 makes use also of some 
convergence results to be found in [3] and [22]. 

A p p e n d i x  A. 

Let M denote the skew-symmetric matrix uniquely associated to the unit vector m by the 
relation 

(A.1) Mv = m x v ,  Vv e 19. 

As is well known, for 1 the unit matrix, 

(A.2) - M 2 = 1 - m | m , 

and hence - M  2 can be viewed as the orthogonal projector onto the plane perpendicular to 
m ;  m o r e o v e r ,  

(A.3) M2m = - r~, - M  3 = M .  

With this notation, equation 

( 1 . 1 ) 1  m = - a m  x m + m  x A m  , 
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the Gilbert form of the Landau-Lifshitz equation (A.8), can be written as 

( A . 4 )  & = - a M &  + M A m .  

Since the matrix (1 + aM) is invertible, (is) with inverse 

(A.5) (1 + aM) -1 - - -  

another form of (A.4) is 

(A.6) 

with 

( A . 7 )  A ( a ,  m )  = (1  + a M ) - I M -  - -  

l + a  2 
(1 - a i + a 2 m @ m ) ,  

m = A(a ,  m) A m  , 

l + a  2 
(M - aM2). (19) 

For (A.6) to take the form of the Landau-Lifshitz equation 

(1.3) r~ = m Z A m  - a m  X (m  • A m ) ,  

it is enough to rescale the time variable by the factor (1 + a2), and use of the last of (A.7) 
and (A.2). 

A third equivalent form of equation (A.4) is 

(A.8) (1 + a 2) rn = M A m  + a ( A m  + IVml2m), 

(this follows from (A.6), (A.2), and the following identity over the sphere of unit 
vectors: 

(A.9) v 'Av = - I Vvl 2, 

where I Vvl 2 = t r [ V v ( V v ) T ] ) .  Modu lo  the same time rescaling as above, equation (A.8) takes 

(is) One finds that 

det(1 + aM) = 1 + a 2. 

(19) The nonnull orthogonal invariants of A are 

t I t r A  2 a  1 a 2 = - t 2 = - [ ( t r A )  2 - t r A  2] = �9 
l + a  2 ' 2 l + a  2 ' 

the nonnull proper values of A are the complex conjugate numbers 

Ct 
1 + a 2" ( a  -+ i ) .  
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the form given in the Introduction, namely, 

(1.4) ha = m X A m  + a ( A m  + ] V m ] 2 m ) .  

An interesting consequence of (A.4) and (A.8) is that 

(A.10) A m  = --  ] S g m l 2  m + a m  -Mha ;  

this relation shows how the vector A m  decomposes in the orthogonal basis consisting of m, 
ha, and Mha. With the use of (A.3), equation (A.10) can given the form (A.4). In addition, 
(A.10) implies that 

(A.11) a] ha [2 = h a . a m  = div((Vm)rha) - Vm.Vha = div((Vm)rha) - 1 d g IV,,,I �9 

Appendix B. 

LEM~. -- Let V be a finite-dimensional vector space, let fo ~ V, and let f b e  a mapping of 
class C 1 from an open neighborhood 0 of the origin in V into V, such that 

(B.1) v ' ( f ( v ) - ) c o )  >10, V v ~ O .  

Then, f (v )  has the representation 

(B.2h f (v )  =)co + F(v) v ,  

with 

1 

(B.2)2 f(0) =)co, F(v) = I Df(ev) de,  v.F(v) v>-O V v e O  
o 

(here D denotes differentiation). 

PRoov (Cf [19], [18, Theorems 6A and 16B], and [2, Section XII.14]). - Choose e > 0, 
and write (B.1) for w = ev. Then, 

v ' ( f ( e v ) - f o )  >10 VvEO, 

and hence, passing to the limit for e--+0, 

f (o)-L=o,  

which is the first of relations (B. 2 )2. With this, the remain of (B. 2 )2 follows by calling up- 
on the fundamental theorem of integral calculus. �9 
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