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Dedicated to Professor Tongren Ding on the occasion of  his 70th birthday 

Abstract .  - In this paper we are concerned with the existence and multiplicity of  radial solutions to the 
BVP 

V.(a( IVul )Vu)+f ( Ix l ,u )=o in ~3 

u=O on 883, 

where 83 is an open ball in R K and u ~ V. (a( [ Vu ] ) Vu) is a nonlinear differential operator (e.g. the p- 
laplacian or the mean curvature operator). The function f is defined in a neighborhood of u = 0 and 
satisfies a r growth condition for u --> O. We use a degree approach combined with a ti- 
me-map technique. Multiplicity results are obtained also for nonlinearities of  concave-convex type. 

1. - I n t r o d u c t i o n .  

In this paper we study the existence and multiplicity of radial solutions, with prescribed 
nodal properties, to the boundary value problem 

f V . ( a ( l V u l ) V u ) + f ( l x l , u ) = 0  in 83 
(1.1) t u = 0  on 383, 
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where 83 = {x e R K, Ixl < R}, K > 1 and a: [0, Eli ---> [0, Jr- 00 ), (~?1 > 0), and f:  [0, R] x 
x [ - e z ,  e2] -->R, (ez > 0), are continuous functions. 

The existence of radial solutions satisfying various boundary conditions has been investi- 
gated by many authors, starting from the classical situation where a--- 1: we quote, among 
others, the works of M. J. Esteban [16], E. W. C. Van Groesen [35], A. Castro-A. Kurepa 
[9], C. K. R. T. Jones [26], M. Grillakis [23], Z. Guo [24], A. E1 Hachimi-F. De Thelin [15], 
Y. Cheng [10], A. Ambrosetti-J. Garcia Azorero-I. Peral [3], F. I. Njoku-P. Omari-F. Zano- 
lin [30]. 

s 

In what follows, for ~(s) := sa(Isl) and F(r, s) := f f ( r ,  u) du, we shall assume: 
0 

( H , )  ~ : [ - E 1, E 1 ] "-> [ --  ~ ( E  1 ), ~ ( • 1 ) ] is a n  o d d  increasing homeomorphism s u c h  t h a t  

lim inf q)(as) > 1, Va > 1 
s~O r 

(1.2) 

and 

(1.3) 
r 

lira s u p , ~  < + 00, V o >  1 ; 
~--,o r  

these assumptions are clearly satisfied by the p-Iaplacian operator. 

Moreover, we assume 

(H f) The function f is such that f ir ,  O) - 0 and 

fir, s) 
(1.4) lira " - -  - + 00, uniformly in r e  [0, R] ; 

,-,,o q~(s) 

(HF) F(r, s) is differentiable with respect to r ~ [ 0, R] and there exists a continuous 
function a:  [0, R] -->R + such that 

(1.5) ~Tr(r,s) <~a(r)F(r,s), V r e [ 0 ,  R], V s E [ - e 2 ,  e2]. 

The so-caUed <dower/upper>> a-conditions stated in (1.2)-(1.3) are typical for such kind of 
operators (see [18], [19], [20], [21]); they can also be found in [22], where it is assumed that 
the limits in (1.2)-(1.3) exist. Apart from the (classical) case of the p-laplacian, where 
a(isl) = is[p-2, p > 1, these conditions are satisfied e.g. by the <<mean curvature>> operator, 
where a(Isl)  = (1 + s2) -1/2, and by even more general ones like a(Is[) = ( 1 + S2)-a/2s m-2, 
a I> 0, m > 1, m I> a + 1 (see [17]). We point out that a special feature of our approach is 
that we do not need, as it is frequently found in the literature, any homogeneity assumption 
on the nonlinear differential operator. In particular, we can achieve our results without pas- 
sing through the study of associated eigenvalue problems. 

An important consequence of assumption (H<0) is stated in Proposition 2.2 and is ap- 
plied in the proof of Proposition 3.7. 
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When dealing with radial solutions to (1.1) on a ball, one is led to study (setting Ix] = r) 
the BVP 

(1.6) 
(r(K- I) q)(U ' ) )' + r(K-1) f ( r ,  u) = 0 

u ' (O)  = 0 = u(R)  

and a singularity appears for r = 0. Beside this (intrinsic) aspect of (1.1), assumption (H/) re- 
presents a singularity in the variable u which, for a = 1, means that f has a sublinear growth 
at u = 0. Hence, in particular, when one tries to develop some shooting argument, global 
existence and uniqueness to initial value problems associated to the equation in (1.6) are not 
guaranteed. This is one of the reasons why a (relatively) small number of results for <<subli- 
near~ problems is available in the literature: we refer to the earlier works of G. J. Butler [6], 
H. Jacobowitz [25] (for the periodic case), M. A. Krasnosel'sldi-A. I. Perov-A. I. Povolot- 
skii-P. P. Zabreiko [27, Section 15], B. L. Shekhter [34, Section 15] for a more classical ap- 
proach in the ODE's case. For other results, in the PDE's setting, we also refer to V. Moroz 
[29], P. Omari-F. Zanolin [31], E. W. C. Van Groesen [35], M. Willem [36], mainly for the 
case a -  1. 

We stress the fact that the <<direct>> methods of shooting type used by some of the au- 
thors quoted above require stronger regularity assumptions than (Hf)-(HF), which turn out 
to be sufficient to treat (1.1) by means of an abstract continuation theorem. Assumption 
(H~), indeed, is a well-known condition for the uniqueness of solutions to 
some Cauchy problems related to (1.6) (cf. the papers of Y. Cheng [10, p. 289], W. Rei- 
chel-W. Walter [33, Th. 4-(&ii)]). For more comments on (H E) we refer to Remark 3.1 in 
Section 3. 

Our main result (Th. 3.2) guarantees that under (H,)-(Hf)-(HF) there exists a positive 
integer no such that for all n > no there are Un and v,, radial solutions to (1.1), with u, (0) > 0 
and v , ( O ) <  0, both having exactly n zeros; moreover, we prove that lim ]u,(r)] + 

~----> + oo 

+ ]u,' (r) ] = 0 = l im |  ]vn (r) ] + ]v/(r) ], uniformly in r ~ [0, R]. We point out that no as- 

sumption on the behaviour of f at infinity is required; f can even be defined only in a nei- 
ghborhood of u = 0. 

The proof is developed through a (new) variant of the continuation theorem in [7,8] 
(Th. 2.1), suitable for the application to nonlinearities satisfying only the local conditions 
(Hf)-(HF). The needed estimates (2.2)-(2.3) in Theorem 2.1 are obtained via a time-map te- 
chnique; some of the arguments are similar to those in [7] and to the ones developed in 
[9, 21 ] for the situation when f <<grows faster than $>> at infinity. More precisely, Proposition 
3.6 and Proposition 3.7 are upper and lower estimates (reminiscent of Sturmian theory) on 
the number of zeros of the solutions of a parameter-dependent problem associated to (1.6) 
(cf. the paper of E. Yanagida [37]). One might say that, on the lines of Remark 5.3, we show 
that the presence of the strongly nonlinear operator ~b does not affect the properties of the 
number of zeros of solutions to nonautonomous problems when this number is considered as 
a function of the initial data. 

Our continuation theorem needs also the degree condition (2.4), which is shown to be 
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(1.7) 

where 

satisfied through the study of a suitable autonomous problem of the form 

{ ( ~ ( u ' ) ) '  + g(u) = o 

u ' ( 0 )  = 0  = u(R), 

g(s) 
lim - + co. 
s-.0 ~(s)  

More precisely, the multiplicity result developed in [7] for the two-point BVP can be 
adapted with no difficulty to the boundary condition in (1.7); it is based on the notion of 
~generalized Fu~ik spectrum>> introduced in [8] (cf. Proposition 5.1) and on the asymptotic 
behaviour near zero of the <<time-maps>> (cf. Proposition 5.2). 

A combination of our main theorem with the results due to M. Garcia-Huidobro-R. Ma- 
n~sevich-F. Zanolin in [21] enables us to consider a differential operator defined on the 
whole real line and satisfying conditions of the form (1.2)-(1.3) at infinity too and functions 
satisfying at the same time (Hf) and 

f ( r ,  s) 
(1.8) lim - -  - + oo, uniformly in r e  [0, R].  

Isl--++ ~ ~(s) 

In the above situation, we can prove (Th. 4.1) (under suitable conditions of subcritical gro- 
wth at infinity for f )  the existence of four sequences of radial solutions un, vn, wn and z. with 
u,,(O) > O, v,,(O) < O, Wn(O) > 0 and z~(0) < 0, all having exactly n zeros in [0, R). Moreo- 
ver, we have 

lim [un ( r ) I+ lu . ' ( r ) I=0  = lim [v , ( r ) I+ lvX(r ) l ,  uniformly in r e  [0, R] 
n---> + o0 n - - +  + o0 

(1.9) 

and 

(1.10) lim ]Wn(r) ] + [w'(r)] = + oo = lim Iz.(r)] + [z'(r) l, uniformly in re[O,R]. 
n---> q- ota n - - -+  q- oo 

Combinations of conditions at zero and at infinity have been considered, among others, by 
H. Dang-R. Manfisevich-K. Schmitt [13], H. Dang-K. Schmitt-R. Shivaji [14] when dealing 
with the existence of positive solutions. 

In particular, as a consequence of Theorem 4.1, we can prove that the Dirichlet problem 
on the ball associated to 

(1.11) A p u  + a, {u["*-2 u + a2 {u]"-2u = 0 

has, for each n sufficiently large, at least four radially symmetric solutions with n zeros in 
[0, R) for any al, a2 positive constants (cf. Remark 4.2), whenever 

1 < l ~ < p < v < p *  

If p = 2, these are nonlinearities of <<concave-convex>> type; starting from the seminal paper 
by A. Ambrosetti-H. Brdzis-G. Cerami [1], they have been widely studied (see also A. Am- 
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uniqueness and 
the equation in 

In Section 
(Hc,)-(Hf)-(HF). 

In Section 4 

brosetti-J. Garcia Azorero-I. Peral [2] for a general p > 1 and T. Bartsch-M. Willem [4]). In 
particular, as far as radial solutions which are positive in zero are concerned, for fixed al we 
can obtain a diagram similar to Figure 4 in [1]. We also notice that, for the particular case of 
equation (1.11), the existence of infinitely many pairs of radial solutions with prescribed no- 
dal properties follows also from the bifurcation result in [3, Th. 3.1]. 

The plan of the paper is the following. 
In Section 2 we give an abstract continuation theorem and some preliminary results on 

continuous dependence of the solutions to Cauchy problems associated to 
(1.6). 
3 we give our main result (Th. 3.2) under the (local) assumptions 

we treat the case of <<superlinear>> nonlinearities, and give a multiplicity re- 
sult under (/t/) and (1.8). 

Section 5 (Appendix) is devoted to the study of the autonomous problem (1.7). We 
point out that q~ need not be surjective on R. 

In the sequel, we will use the following notation: R + = {xe  R: x > 0}, C~([0, R]) -- 

= { u e C l ( [ O , R ] ) : u ' ( O ) = O = u ( R ) }  and ]lu][l= max ~v/u(r)2+u'(r) 2 for every 
r ~  [ 0 ,  R ]  

u ~ C1([0, R]). Moreover, deg/3 and deg will denote the Brouwer and the Leray-Schauder 
degree, respectively. 

2. - Pre l iminary  results .  

In this section we first study an abstract equation of the form 

(2.1) u = de(u, 2) 

where X is a Banach space and 0g : dom Jq c X • [ 0, 1 ] --> X is a completely continuous 
operator. Moreover, we shall consider two open sets A and B such that A c A c B c B and 
(-B\A) c dom N. 

Let X be the set of the solutions of (2.1), i.e. 

z = { ( u ,  2): u = JC(u, 2 ) }  

and, for any subset D c X •  [0, 1], let us denote the section of D at 2 e  [0, 1] by D~-- 
= { x e X : ( x ,  2 ) e D } ;  we also set Na---Jr 2). We have the following abstract theorem: 

THEOREM 2.1. -- Let k: X 0 (B \A)  --+ N be a continuous function; suppose that there exists 
a positive integer n satisfying the following conditions: 

(2.2) n ~ k(8((B\A) N Z)) 

and 

(2.3) k - l (n)  is bounded. 
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Then, for an open bounded set U~ such that (k-t(n))o r U~r U~ c ( B \ A )  o and Xo n U~ = 
= (k- l (n))o ,  the Leray-Schauder degree d e g ( I - ~ o ,  U~) is defined. I f  

(2.4) d e g ( I -  ~o, Uo") ~ O, 

then there is a continuum C, c X with 

{ 2 e [ 0 ,  1]: 3 u e X : ( u , A )  EC, , }= [0, 1] 

and such that 

( u , 2 ) ~ C , ~  (u,2)  e ( B \ X )  and k(u, 2 ) = n .  

In particular there is at least one solution ~ E (B\-A)I of the operator equation 

u = JC(u,  I) 

with 

k(h, 1) = n .  

Theorem 2.1 is a variant of the continuation theorem in [7] (see also [21]). A version for 
a coincidence equation Lu = M(u,  2), where L is a linear Fredholm operator of index zero 
and M is L-completely continuous [28], is valid as well. 

Now, we introduce some notation and properties which will be useful in the sequel. Mo- 
re precisely, assume 

(Hr For some e 1 > 0 ,  ~ : [ - - E I ~  E1]-"~ [ - - (~(E1)  , @(E1)] is an odd increasing ho- 
meomorphism such that 

(2.5) 

and 

(2.6) 

Then, let 

(2.7) 

(2.8) 

and 

(2.9) 

q)( os ) 
lim inf > 1, Vo > 1 
~-~o #,(s) 

ea( os) 
l i m s u p - - <  + ~ ,  V o > l .  

, ~ o  q~(s) 

x 

r = lq~(s) ,Is, Vlxt ~< El, 
0 

3r 

,*, . ( x )  = f e;-~(s) ds,  Vlx[<-El, 
0 

~e(x)  = x r  - r = r  ( r  V lx  I ~< e~. 
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As far as (2.9) is concerned, we observe that the functions @, @,  and or are even and, when 
restricted to R + , strictly increasing. Hence, the right inverse of s is defined and (without 
ambiguity) it will be denoted in what follows by or 1 ; the same meaning will be given to @, 1. 

Now, we state some consequences of the lower/upper or-conditions given in (H~); these 
are variants of similar results obtained in [20,21] where, in the upper/lower o-conditions 
(3.2)-(3.3), the limits are taken for s--* oo instead of s---~0. 

PROPOSITION 2.2. -- (i) There exist C > 1 and-~ > O, -d <~ el, such that 

(2.10) ~(~)  Vlr 

(ii) Vd1> 1 3d2> I: Vd>d2 Bed>O, ed~<el, such that 

(2.11) Yielded. 

(iii) Vq > 1 3c2 > 1: Vc> c2 3ec > 0, ec ~< el ,  such that 

(2.12) ~ r  ~ r  Vlr ~ c .  

Now, for some ~ 2 > 0  and for ~ r y  2 e [ O ,  12, let fz:E0, R] • I - e 2 ,  e2]---~R be a 
3 

continuous function; we denote Fx(r, s)= ~f~(r, u)du for every r e  [0, R], for e v e r y  

0 

se  I - E 2 ,  e2] and for every 2 e  [0, 1]. We assume: 

(HFz) Fz(r, s) is differentiable with respect to r e  [0, R] and there exists a conti- 
nuous function a : [ 0, R] ~ R + such that 

(2.13) --~r (r,s) <~a(r) F~(r,s), Vre[O,R] ,  V s e [ - e 2 ,  e2]. 

We refer to the Introduction and to Remark 3.1 for comments on the verification of the abo- 
ve hypothesis. We only observe that, by (2.13), we deduce that 

(2.14) F~(r ,s)~O,  V(r,s) e [ O , R ] x [ - e 2 ,  e2], V2e [0, 1]: 

Next, let K e N ,  K >  1, and let e0 = min(el ,  e2) (so that (H~), (Hp~) and (2.14) hold with 
e0 instead of el and e2); consider the equation 

(2.15) (r(K-1)$(u '))  ' + r~Z(- 1)f~(r, u) = 0 ,  r e  (0, R). 

We prove some continuous dependence and uniqueness results for certain initial value pro- 
blems associated to (2.15), under assumptions (H,) and (HE). They will enable us to define an 
operator k suitable for the validity of conditions (2.2), (2.3) and (2.4) in Theorem 2.1. 
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LEMMA 2.3. - For every e<~eo there exists d,e(O, e] such that if  u is a (local) solution of  

{ (rZ(K-1)~(u')) '  + rZ(K-1)fz(r, u) = 0 
(2.16) u(0) = d, u ' (O) = 0 

with [d[ <~d~, then u can be defined on [0, R] and [[u[ll ~<e. 

REMAKK 2.4. -- We observe that for every de [ -  d,, d, ] there exists at least one (local) solu- 
tion of  (2.16). For a proof of this result, see e.g. [17,33] and references therein. 

P R O O F .  - Let u be a solution of (2.16), and assume that, for some e > 0, 

(2.17) lu(r) I ~<e, ]u ' ( r )  l ~ e ,  Vr~ [0, 0] ,  

with 0 < O <~ R. We introduce the functions 

Ex(r,x,y;d)=,i~(y)+Fz(r,x) Vr~[0, O], Vx, y ~ [ - e , e ]  2, V,~[0,1]  (2.18) 

and 

(2.19) vx(r) = E~ (r, u(r), u'(r) ;  d) ,  

From (2.14) we deduce that 

(2.20) s <- Ea(r, x, y; d), 

Moreover, from (2.15) we infer: 

( va(r) = q)(u'(r))' u'(r)  + --~r (r, u(r)) + fa(r, u(r))u ' (r)  = 

) _ ~.(K__- 11 r  u ' ( r )  + T (r, u(r)) . 
r 

VrE [0, 0] .  

V r e [ 0 ,  O] Vx, y e E - e , ~ ] 2 ,  V 2 e [ 0 ,  1]. 

From (2.13) we obtain 

v/(r) <~ a(r) F~ (r, u(r)) <<. a(r) va (r), Vr ~ [0, O] 

and, integrating on (0, r), we get . . . . . . . . . . .  

(2.21) va(r) ~< v~(0) e ~(s)ds ~< HF~(O, d), 

where H = e I~ 
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Now, let us consider (al, a2)E (0, 1) 2 such that 

(2.22) 

{ al + Ra2 < ~ 1 
2 

1 
a2<~ 2 

(observe that, for every R > O, a similar choice of al and a2 is always possible). Then, for 
every e ~< e0, let dr > 0 be such that 

de ~ al c 

and 

s V 0 <  Idl<.d,, V 2 E [ 0 , 1 ]  

(this is possible since limX -1 (HFa(O, d ) ) =  0 uniformly in 2 ~  [0, 1]). 
d--~0 

Now, for I dl ~< d,, from (2.20) and (2.21), we deduce: 

~(u ' (r) ) <~ va(r) <<. HFa(O, d) 

and 

1 
(2.23) lu'(r) l < ~ - l ( H F 2 ( O , d ) ) < . a 2 e < ~ e ,  Vr~ [0, ~)]. 

Hence, from (2.23), we have: 

r 

(2.24) lu(r) l<.d+ f lu '(s)lds<~d+R~-l(HF~(O,d))<~ 
o 

1 
<. al e + Ra2e = (al + Ra2)e <~ ~-e, 

2 
Vr~ [0, Q]. 

Since (2.23) and (2.24) hold independently on Q, we can extend u on [0, R] as a 
CLfunction. 

Finally, (2.23) and (2.24) imply that: 

VI i Ilulll= m a x  u(r ) ]2+  lu'(r)  < �9 
,E [0, R] 2 

LEMMA 2.5. -- Let u be a solution of 

{ (r~(K-1)~(u')) '  + ra(K-1)fa(r, u) = 0  

(2.25) u(ro) = 0  = u ' ( r0) ,  r0e (0, R] .  

Then u =- O in [0, R]. 
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PROOF. -- Let C > 1 and ~ > 0 be as in Proposition 2.2; let u be a solution of (2.25) such 
that 

(2.26) lu(r)] ~ ,  lu ' ( r ) ]  ~<~, V r e ( O , R ] A [ r o - t l ,  ro+tl]:=In,  

for some t />  0, with r0 - t />  0. Let us consider the function v~ defined in (2.19). We have 
already proved that 

I 8F~ I 2 ( K - 1 )  
Ivd(r) l<~ T + r Iq~(u'(r)) l  l u ' ( r )  I ; 

using (2.13) and (2.10), we obtain: 

K - 1  
(2.27) Ivy' (r) I ~< a(r) F~ (r, u(r) ) + C s (u' (r)) <<. ~(r) va (r), 

where ~(r )=max{a(r ) ,  cK- l r  }" We observe that ~eLlloc((0, R]). 

Now, integrating (2.27) on (ro, r), for r e i  n, we obtain 

r 

va(r) <~ v~(ro) + I ~(s) v~(s) ds 
ro 

and, as a consequence, 

va (r) <. v~ (ro) e [~r ds , V r e I  n, 

i.e., since v~(ro)= O, 

We deduce that u -  0 in I~. 

va(r) <~ O, V r e I  n. 

Vr e I., 

3. - T h e  m a i n  result .  

Let us consider the following boundary value problem: 

j V-(a(lVu[) Vu) +f ( lx [ ,  u) =0  in ~3 
(3.1) [ u = 0  on 883 

where 83 is the open ball of center 0 and radius R > 0  in R K ( K >  1) and a : [0 ,  el]--> 
---> [0, + oo) for some el >0 ;  we also set @(s) =sa(Isl), for 8e I -e l ,  e,], and F(r, s) = 

S 

= If (r ,  u) du. 
0 

Let us assume the following hypotheses: 
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(H~) ~0 : [ - e t, e 1 ] ~ [ - q~(e 1 ), q~(e t ) ] is an odd increasing homeomorphism such that 

ep(os) 
(3.2) lira inf > 1 ,  Vo > 1 

, - .0  r 

and 

q)(as) 
(3.3) lim sup ~ < + oo, Va  > 1 . 

s-~0 ~(s )  

(H/) For  some e2 > 0, f :  [0 ,  R] x [ - e 2 ,  e2] ---~R is a continuous function such 
that f ( r ,  0) - 0 and 

i t ( r ,  $ )  
(3.4) lirn ~ - -  - + ao, 

, ~ o  ~(s )  
uniformly in r e [0 ,  R ] .  

(H F) F(r, s) is differentiable with respect to r �9 [0 ,  R] and there exists a continuous 
function a :  [0 ,  R] - - * R  + such that 

] j (3.5) ~ - r ( r , s )  <.a(r )F(r , s ) ,  V r e [ 0 ,  R],  V s e [ - e 2 ,  e2], 

PosMAa~: 3.1. - As it was already mentioned in the Introduction, condition (HF) can be 
found also in [10,33]. We observe that it is satisfied by functions F of the form F(r, u) = 

u 

= p(r) Ig( t )  dt, being p(.) positive and continuously differentiable and continuous function g a 

0 

satisfying the sign condition g(u) u > 0 for every u in a neighbourhood of the origin, u ~ O. 
We point out that some regularity for p is crucial in order to avoid the difficulties which may 
arise (as it is shown, even for the case a - 1, in [5, 11]) when continuability of  solutions to the 
ODE in (1.6) is studied. 

W e  set e0 = rain ( e l ,  e2); moreover,  eo will be  now taken such that, according to (Hf), 
f ( r ,  s) s > 0 ,  for every 0 < l s l < ~ e 0  and for every r e  [0 ,  R]. Finally, let us define the func- 
tion 7 : [  - e 0 ,  e0] ---~R by: 

(3.6) {sup{f(r,u):re[O,R] u e [ O , s ] }  if 0 < s < ~ e 0  

JT(s)= i n f { f ( r , u ) : r e [ O , R ] , u e [ s , O ] }  i f - e 0 ~ < s < 0 .  

We  are now in position to state our main result: 

THEOREM 3.2. -- Assume (He,), (Hf) and (HF). Then, there exists n o e N such that for every 
n > no problem (3.45) has at least two radial solutions u, and v, with u , ( O ) >  0 and 
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v,(O) < O, both having exactly n zeros in [0, R). Moreover, we have: 

(3.7) lim ]u,(r)] + ]u'(r)] --0-- lim ]v~(r)] + ]v'(r)], uniformly in rE[0,R]. 
n---~ + o o  n---) + oo 

We will study problem (3.1) by means of a degree approach; to this end, we first introdu- 
ce a continuous nondecreasing function g: [ -  e0, e0] - -~R such that 

(Hg) Fire g(s) + oo 
, - .o  q)(s) 

we shall also assume (without loss of generality) that g(s)s> O, for every s e  [ - e 0 ,  ~0], 
5 

s ~ 0. We also denote G(s) = fg(u) du; a possible choice for g is the function )7 given 
in (3.6). 0 

Moreover, for 2 E [ 0 ,  1], we define the functions fa : [0 ,  R] • I - E 0 ,  ~0]--~R by 
s 

)Ca(r, s) =2f(r,  s) + (1 -2)g(s )  and Fx(r, s) = [fa(r, u) du. It is straightforward to check 
that, by (H/) and (Hg), we have: 0 

d 

fa(r, s) 
(3.8) lim - -  - + oo, uniformly in r e  [0, R] and ;rE [0, 1].  

,--.0 q~(s) 

Moreover, we observe that, by (HF) and the choice of g, for every ;t E [0, 1 ], F~ (r, s) is dif- 
ferentiable with respect to r e  [0, R] and for a:  [0, R] --~R + in (Hv) one has: 

(3.9) I 8F~' s)]  ~a(r)F~(r,s) ,  V r E [ 0 ,  R], V s E [ - e o ,  e0], V ) . E [ 0 , 1 ] .  

we also observe that (3.9) guarantees that 

(3.10) F~(r , s )>O,  VrE [0, R] ,  Vse [ - ~ 0 ,  e0] , s # 0 ,  V;t E [0, 1].  

We then consider the parameter dependent boundary value problem: 

{ (r'~(K- 1)@(u')) ' + ra(I(-1)fz(r, u) = 0 
(3.11) u ' ( 0 )  = 0- -  u(R) = O. 

We already observed that, by our hypotheses, we are in the setting of Section 2. Hence we 
are allowed to use Lemma 2.3 and Lemma 2.5, together with the results of this Section, in or- 

, der to show that the assumptions of the abstract continuation theorem 2.1 are sati- 
sfied. 

Now, we prove two results which give some estimates on the <<energy~ function introdu- 
ced in (2.18). To this aim, let us consider the number d,0 given in Lemma 2.3 and let us set 
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do = d~0; for every d e R ,  0 < [d[ ~<do, let u(-; d) be a solution of (2.16). Integrating, we 
obtain 

r 

(3.12) -q)(u')  =r-~Is~fz (s ,  u(s))ds>O, a = 2 ( K -  1), 
0 

for every r in a (sufficiently small) neighbourhood of zero; hence, being u decreasing, ar- 
guing like in [9], for every 0 e ( 0 ,  1) we can consider the first point r0(d; O) such 
that 

(3.13) u(ro(d; 0); d) = Od. 

Moreover, we denote by ro(d) the first zero of u(-; d). 
The following lemma gives an estimate on r0(d; O) as a function of d: 

LEMMA 3.3. -- For every de(O, d o] and for every 0e (0 ,  1) there exists A > 0  such that 

(3.14) r0(d; 0) >~A^ (1 - 8 )  q ) , l ( d ( f ( d  ) +g(d))) ; 
f ( d) + g( d) 

an analogous result holds for d e [ -do, 0). 

PROOF. - For d e  (0, do] and by the definition of ro(d), inequality (3.12) is valid for every 
r e  (0, r0(d)); on the interval (0, ro(d)) we have (being u decreasing) 

fa (s, u(s) ) <<. 2f(d) + ( 1 - 2) g(d) <<. f(d)  + g(d) ; 

then, we obtain 

( ; )  ( ) u, ( r )~>_q~- i  r-~(7(d)+g(d))  s~ds q~-x ( f (d)+g(d))  = -  r , Vre(O, ro(d))" 
o l + a  ' 

integrating this relation on (0, r0(d; 8 ) )  we get 

,o(a;o). q) ( ( f ( d ) + g ( d ) ) ) r  
u(ro(d; 8 ) ) -  u(O) >I - ~ -1 dr 

l + a  
0 

and. using the definitions of q~. and ro(d; 0). 

a + l  ( (f(d) + g(d) )ro(d; O) ) 
( 1 - 8 )  d<~ ( f (d)+g(d) )  ~ *  l + a  
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i .e.  

~(d; e) 
a + l  

( f ( d ) + g ( d ) )  

q~ .1(  ( 1 - O )  d ( f (d )  + g(d)) ).  

l + a  

now, we observe that ~ 1  is concave: we thus deduce that 

to(d; O) t> 

and the result is proved. �9 

(1  - o )  

(f(d)+g(d)) q~ ,~ (d( f (d)  + g(d) )) 

We now give an estimate on the function Ex previously defined: 

LEMMA 3.4. -- There exist ~ <~ do and 60 > 0 such that for any solution u of (3.11) with 
[u(0) I = ~ we have Ex (r, u(r), u ' ( r ) ;  ~)I> b 0 for every re  [0, R]. 

PROOF. -- As above, let us denote a = 2 ( K -  1 ); consider the numbers C and ~ given in 
Proposition 2.2 and d~ :-- ~ given in Lemma 2.3. If u is a solution of (3.11) with l u(0) I = 2, 
then, by Lemma 2.3 ]lull1 ~< ec and, by (2.10), 

(3.15) u'(r)  q)(u'(r)) <~ Cor Vre  [0, R] .  

From (3.5) we can find a constant 7 I> C(K - 1) such that 

(3.16) F,O_^(r,s)+ 7--F~(r,s) >>-O, V r e ( 0 ,  R], V s ~ [ - s 0 ,  e0], V ~ . ~ [ 0 , 1 ] .  
c~ r 

Then we deduce that: 

d a 
--~rE~(r, u(r), u'(r);~l) + ~E~(r ,  u(r), u ' (r) ;Tl)= - - - u ' ( r ) ~ ) ( u ' ( r ) ) +  

r r 

+ 8F~ K -  1 7 
+ 7--s + Y--Fa(r, u(r)) >>- - - - C ~ ( u ' ( r ) )  + - - s  >>-0; 

~r  r r r r 

by multiplying the last relation by r r and integrating from r0(d; 0) (which has been defined 
in (3.13)) to r, we obtain: 

Ez (r, u(r), u'  (r); ~ ) r ~ - E~ (ro, u(ro), u ' (ro); ~ ) ro(d; 0)7~>0 

and 

Eg (r, u(r), u'(r) ;  2)>>-E~(ro, u(ro), u'  (ro); ~l ) r~ R -7 = 

= R - 7 ( ~ ( u ' ( r o )  ) + F~(ro, u(ro) ))r~ >~ g - r F ~  r~, 

where (recall (3.10)) F~ = min{Fz(r,  8d): r e  [0, R], 2 ~  [0, 1]} >0 .  Finally, using 
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(3.14), we find 

E~(r, u(r), u ' ( r ) ; 2 )  ~> K0{~(2) 
1 )Y - 1 
+ g(Tl) (q) , (Tt(f(Tt) + g(71))))rF~ 

taking 6 o = K o ( f ( F t ) + g ( 7 l ) ) - r ( q o , l ( 2 ( f ( T l ) + g ( ~ ) ) ) ) r F ~  the result is proved. �9 

It is easy to deduce the following consequence of Lemma 3.4: 

LEMMa 3.5. -- For ~ given in Lemma 3.4, there exists -~ > 0 such that i f  u is a solution of  
(3.11) with ]u(0)] = d then 

[ u ( r ) [ 2 + [ u ' ( r ) [ 2 ~ - ~ ,  Vre [0, R] .  

Now, for every d e  R,  d ~ 0, let us define 

(3.17) Xd = {(u,3`): (u,3`) is a solution of (3.11) and u(0) > d  if d>0 ,  u(0) < d  if d < 0 } .  

From Lemma 2.5 we deduce that the function given by 

n : Z,d--->N: (u, 3,) ~-~n(u), 

where n(u) is the number of zeros of u in [0, R), is well defined; as in [21], it can be proved 
that n is a continuous map. 

Moreover, from Lemma 3.1 of [21], using Lemma 2.3 and Lemma 3.5, we have the fol- 
lowing estimate from above on n: 

PROPOSITION 3.6. -- Consider the number ~ given in Lemma 3.4. Then there exists n * e 1N 
such that for any solution u of  (3.11) we have: 

]u(0)] = ~  ~ n(u)<n*. 

Now we prove an estimate from below on n; the argument is developed through some te- 
chniques of [21], where functions f rapidly growing at infinity are treated. However, since 
we are concerned with the dual condition near zero, we give the details. 

PROPOSITION 3.7. -- For every N > 0 there exists dN> O, dN < 7l, such that for any solution 
(u, 3`) eXd  (for some d) we have 

[u(0) [ ~< d N ~ n(u) > m.  
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PROOF. - -  Consider (u, 2 ) e X d .  First of all, we observe that for every N >  0 there is 
M(N) > 0 such that 

1 r du 1 
(3.18) M(N) J q~-l(q) , l (q~(s)  - q~(u))) < - - 'N  Vlsl ~<e~ 

0 

(cf. (5.7) in the Appendix). 
Now, using assumption (3.8), we deduce that there is eM(N) > 0 such that 

(3.19) V~(r,s) l>M(m) iq) ( s ) I ,  V r e [ 0 ,  R], V 0 <  IsI<<.eM(N), V 2 e [ 0 ,  1].  

Moreover, from Lemma 2.3, we can consider d~M~N ) :=dN such that for any ( u , A ) e X  

lu(0) I ~ NN ~ Ilulh -< ~(N~. 

Now, let us consider (u, 2) e X  with lu(O) I <" du: the equation in (3.11) can be written as 

{ (3.2o) 

y ' = - r ~ ( K -  1 ) A  ( r ,  u )  . 

We shall be concerned with the zeros {ri}i= 1 ..... t of u in the interval [R/2, R]. More preci- 
sely, we first estimate the distance between two successive zeros ri and ri+ 1 of u in the case 
when 

u'(ri)>O, u ' ( r i + l )  < 0 and u(r) > 0, Vr~(ri, ri+l). 

From (3.20) we infer that y'(r)  < 0 for every re  (r~, ri+ 1); since y(ri) > 0 and y(ri+ 1) < O, 
we deduce that there exists exactly one point r* ~ (ri, ri+ 1) such that y(r*) = 0; again from 
(3.20), it follows that 

u ' ( r ) > 0  Vre(r i ,  r*),  u ' ( r )  < 0  Vr~(r* , r i+  1) and u ' ( r * )  = 0 .  

Let B = (R/2)a(x-a); since r e  [R/2, R], from (3.20) and (3.19) we deduce 

y '  <~ - BM(N) ~(u).  

Now, suppose re  (ri, r*); by multiplying the first inequality in (3.21) by BM(N) d~(u) and 
the second one by ~ - l ( y / B )  (which is positive in (ri, r*)) and adding up, we obtain: 

BM(N) d p ( u ( r ) ) u ' ( r ) + d p - l ( ~ - - ) y ' ( r ) < O ,  Vre(r i ,  r*); 
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this implies that the function M(N)@(u(r))+cb.(y(r)/B) is decreasing in (ri, r*). 
Hence 

M(N) q~ (u ( r ) )+q~ . (~ - )>M(N)q~(u* ) ,  Vre (ri, r*), u* := u(r*);  

an easy computation gives 

~ (u ' ( r ) )  > cr *) - ~(u(r) ) ) ) ,  Vr~ (ri, r*), 

where c =  1/2 K-1. Solving with respect to u'(r) and integrating on (ri, r*), we get 

r ~ 

u'(r) 
f r 

dr > r* - ri; 

if we set u(r) = u, then we obtain 

(3.22) 
U* 

du 
r * - r i < o  f ~ - ' ( c ~ . ' ( M ( N ) ( ~ ( u * ) - ~ ( u ) ) ) ) "  

Now, an application of (iii), (if) in Proposition 2.2 yields the existence of M2(N) > M(N) 
such that 

(3.23) 

U* U* 

< ~p-1 o r  o M~(N) ( . .~( . (u*)- . (u)) )  

Hence, by (3.22), (3.23) and (3.18), we can conclude that 

[r*-r i[  < I /N .  

For the completion of the proof, it is now sufficient to observe that a computation analogue 
to the one developed above can be performed if we consider the interval (r*, ri+ 1) or an in- 
terval (r i, ri+l) where u is negative. �9 

We are ready to prove Theorem 3.2. 

PROOF OF THEOREM 3 . 2 .  - -  First of all, we recall from [21] that problem (3.11) can be put 
into the form (2.1) with respect to the Banach space C~([0, R]). 

Now, let no = max (n *, 2k0) (for the definition of k0 see Theorem 5.4 in the Appendix). 
Next, let us consider n > no and the number d, arising from Proposition 3.7. In order to pro- 
ve the existence of the solutions with exactly n zeros by an application of Theorem 2.1 let us 
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introduce the sets 

(3.24) B = {(u, 2) e d o m  de: u(0) < ~} 

(at as in Proposition 3.6) and 

A, = {(u, 2) e d o m  3r u(0) < d , } .  (3.25) 

Moreover, the functional 

will be defined by 

k: ZA (B\A.)--->N 

k(u, 2) = n(u). 

Let us now prove that conditions (2.2) and (2.3) are satisfied. Indeed, it is sufficient to ob- 
serve that 

8(-B\A,) = {(u, 2): u(0) = d} tO {(u,  2): u(0) = d ,} ;  

if (u, 2) eZ and u(0) = d, then, by Proposition 3.7 we get n(u) > n; on the other hand, if 
(u, 2) e Z  and u(0) = d then, by Proposition 3.6, we have n(u) < n*. Hence, being n* < n, 
condition (2.2) is satisfied. 

As far as the boundedness of k -1 (n) is concerned, if (u, 2) e k -1 (n) r  A (B\A,), then 
u(0) < ~ ~< do: Lemma 2.3 implies that Hullt ~< e0 and so also (2.3) is fulfilled. 

Finally, we have to choose an open set on which to compute the degree; to this aim, we 
refer to the discussion contained in the Appendix. Here, we only give some details; more 
precisely, for every a e (0, e0), let us define 

(3.26) 12a={ueC~([O,R]) :2(u ' ( r ) )+G(u(r) )<G(a) ,  VrE [0, R]} 

and p = [n/2 ]. 
In the Appendix it will be proved that there exist a p > 0 and e > 0 such that, when we set 

(3.27) 

it follows that 

/20 = 12,p+~ \12a~- ~, 

Finally, we define 

(3.29) [/on -- 120 A (B \A ,  ) 

and state the following: 

CLAIM 1. - The degree deg ( I -  JVo, Uo') is well defined and 

(3.30) d e g ( I -  ACo, Uo') # 0.  

(3.28) (k - 1 (n))o C 12 o. 
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The proof of the above claim (being essentially based on arguments already developed in 
[7, 8, 12]) can be found in the Appendix. 

Hence, an application of Theorem 2.1 provides the existence of a solution u, of problem 
(3.1) with 

n(u,) = n and U n ( 0 )  > 0 . 

We stress the fact that for this solution u, we have [[u, [[1 ~< e0. 
A similar argument, considering the sets 

B = {(u, 2) e d o m  N: u(0) > - d }  

(~ as in Proposition 3.6) and 

A, = {(u, 2) ~dom N: u(0) > - d,} 

shows that there exists at least one solution v, of (3.1) such that 

n(v,) = n and v,(0) < 0 .  �9 

4. - Nonl inear i t i es  wh ich  are superl inear at infinity. 

In this section, we deal with nonlinearities f which satisfy (H/) together with a rapid 
growth at infinity. More precisely, let us consider the following boundary value problem: 

(4.1) I V . ( b ( I V u l ) V u ) + f ( I x l , u ) = O  in 83 

L u = 0  on 883 

where 83 is the open ball of center 0 and radius R > 0 in R K (K > 1); let b: [0, + 0o)--> 
$ 

--> [0, + oo) and set ~p(s) =sb(Is]) ,  for s ~ R ,  and F(r, s) = [ f ( r ,  u) du. 
0 

We assume the following hypotheses on ~p, f and F: 

(K~) ~p: R-->R is an odd increasing homeomorphism such that 

~,(os) ~p(os) 
(4.2) lira inf > 1, lira sup < + ~ ,  Vo > 1 

~-.0 ~p(s) s--0 ~p(s) 

and 

~,(os) ~,(os) 
(4.3) lim inf > 1, lira sup ~ < + oo, 'r > 1. 

s-. + ~ ~p(s) ~-~ + ~ ~p(s) 

x 

We set hV(x)= f~p(s)ds for every x ~ R  and, like in [21], we introduce the constant 
0 
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F E (0, 1 ) defined by 

~U(s) 
F = lim sup - -  

~-~ + = s~p(s) 

(K/) f :  [0, R] x R - o R  is a continuous function such that 

(4.4) l im f ( r ,  u)  _ + oo,  
u-~0 ~p(u) 

uniformly in r e  [0, R] 

and 

f ( r ,  u) 
(4.5) lira - + o o ,  

lu l - - ,  + | ~ p ( u )  
uniformly in r e  [0, R].  

(KF) F(r, s) is differentiable with respect to r E [0, R] and there exists a continuous 
function a:  [0, R] - o R  + such that 

I I (4.6) ~Tr(r,s) <.a(r) F(r,s) ,  VrE[0 ,  R], V s E R .  

Now, for every x E R ,  let us define F~ = min{F(r,  x): r e  [0, R]} and, according to 
(3.6), let us consider the function f :  R - o  R defined by: 

(4.7) 
f ( s ) = { s u p { f ( r , u ) : r E [ O , R ] ,  UE[0 ,  S]} if S > 0  

inf { f (r ,  u): rE [O, R], UE [S, 0]} if S < 0 .  

Finally, like in [21], for every OE (0, 1), let us set 

F ~  
6 e = lira i n f -  

Isl--'+ | sf(s) 

We will prove: 

TheOREM 4.1. -- Assume (K~o), (Kf) and (KF). Suppose also that there exists Z > 0 such that 

8F 
(4.8) - - ( r , s ) > ~ O ,  VrE [0, R], Vlsl > z  

8r 

and that there exists 0 E (0, 1 ) such that 6 e > 0 and 

(4.9) K6 e > KF - 1. 

Then, there exists ~ such that for every n > -~ problem (4.1) has at least four radial solutions 
un, v,, w, and z, with un(0) > 0, vn(0) < 0, w,(0)  > 0 and z,(O) < O, all having exactly n 
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zeros in [0, R). Moreover, we have 

(4.10) 

and 

(4.11) 

l ~  lu (r)l + lu '(r) l  = 0 =  lim Ivy(r) I + ]v'(r)l, uniformly in rE[0, R] 
n - - + +  oo t/---+ + oo 

lim Iw,(r)l + Iw'(r)[ = + m = lim Iz,(r)l + Iz2(r)[, uniformly in r e [ 0 , R ] .  
n - - +  + oo t l---~ + 

REM~ 4.2. - Assumption (4.9) is a condition of subcritical growth at infinity on the lines 
of  [21]. In particular, when f(r ,  s) - a ( r )  [sl~-Z s near infinity (with a > 0 and a' >- O) and 
~p(x) = ]xlP-2x, p > 1, then (4.9) reduces to (cf. [15]) 

a(R) pK 
- - v <  - -p*.  
a(O) K - p  

For example, i f  we set A pU--V . (  ] Vu[p-2 Vu), then Theorem 4.1 guarantees that the Diri- 
ch[et problem for the equation A v u + al l u [~ - 2 u + a2 l ul v - 2 u = 0 (al, a2 > O) has, for each 
n sufficiently large, at least four radially symmetric solutions with n zeros in [0, R), provided 
that O < #  < p <  v <  p*. 

Assumption (4.8) can be omitted if  a stronger growth restriction on f at infinity is 
required. 

REMARK 4.3. -- Note that, by (Kw), (K/) and (Kv), we can repeat all the arguments in Section 
3 (in particular, the proof of  Theorem 3.2). 

Now, let us consider a continuous function g*: R--> R such that 

g*(x) x > O ,  Vx;~O 

g*(x) (4.12) lira - -  - + 0o 
x-,0 W(x) 

and g* (x) = f (R ,  x) for ] x] large. Let us define the homotopy 

f 2 ( r , x ) = 2 f ( r , x ) + ( 1 - X ) g * ( x ) ,  V ( r , x ,  2 ) ~ [ O , R ] x R x  [0, 1] .  

We consider the boundary value problem 

{ (r2(K-1)lp(u')) ' + ra(~c-1)r*(r u) = 0 
12 , 

(4.13) u ' ( 0 )  = 0 = u(R). 

By the choice of g*, the nonlinearity f~* satisfies the same assumptions of fi 
Now, as in Section 2, for a solution u of (4.13) with u(0) = d, we introduce the function 

E2(r, d) = s  Ffl (r, u(r)); moreover, we use the same notation of Section 3. In 
particular, for every d ~ 0, Xd is still defined by (3.17), according to the new boundary value 
problem considered. 

In what follows, we present some estimates on solutions of (4.13) which are based on ar- 
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guments developed in [21]; we point out that in that paper the authors deal with the case 
f(  Ix], u) = ~(u) - q( Ix], u) (with ~ growing faster than q~ at infinity and q bounded). How- 
ever, all the computations can be adapted to our more general situation. 

LEMMA 4.4 ([21, Corollary 5.1]). - Assume (K~), (Kv), (4.5), (4.8) and (4.9). Then, given 
any Mo > O, there exists ff'l(Mo) >- Mo such that for any solution u of(4.13) with u(O) ~ ~I we 
have 

lu(r) 12 + [~p(u'(r) )12 >- Mo, Vr~ [0, R] .  

Now, we state a lower estimate on the number of zeros of solutions to (4.13) which follows 
from the asymptotic behaviour of f~* at infinity; this estimate constitutes the counterpart of 
Proposition 3.7 where the analogous condition in zero is concerned. 

PROPOSITION 4.5 ([21, Lemma 5.3]) . -  Assume (Kv), (KF), (4.5), (4.8) and (4.9). Then for 
every N > 0 there exists MS > O, MS > 2, such that for any solution (u, 2) EXd (for some d) 
we have 

[u(0) [ >>-MS ~ n(u) > N .  

PROOF OF THEOREM 4.1. -- First of all, we observe that all the assumptions of Theorem 3.2 
are satisfied. Hence, there is no such that for n > no problem (4.1) admits the two solutions 
(of small norm) u. and v., with u.(O) > O, v.(O) < 0, both having n zeros in [0, R) and sati- 
sfying (4.10). 

The existence of the pair of solutions We and z, follows from [21], according to our pre- 
vious remarks where we have noticed that the estimates of [21] extend to the class of nonli- 
nearities we are treating. However, in order to enter in the setting of Theorem 2.1, we consi- 
der n > 2 ~ (~ as in Theorem 5.5 in the Appendix) and the corresponding M* given in Pro- 
position 4.5; then, take B 1 = dom Jr and 

A, ~ = {(u, k) ~dom Jr u(0) > M *  > 2}.  

Arguing as in the proof of Theorem 3.2, it follows, by Proposition 4.5, that condition (2.2) is 
satisfied. The boundedness of k - l (n )  (n > 2  h) (as well as (4.11)) follows from the elastic 
property stated in Lemma 4.4 with the same arguments already developed in the proof of 
Theorem 4.1 in [21] for nonlinearities which <<grow faster than $ at -+ oo>>. 

We omit the details concerning the choice of the open set on which to prove the degree 
condition (2.4), since they coincide with their analogue in the proof of Theorem 3.2. 

Then, take ~ = max (no, 2 h). The solutions u, and w,, for n > ~, are distinct, since (see 
the proof of Theorem 3.2 and the definition of A 1) un (0) < 2 and w, (0) > 2. Analogously, 
we have v, (0) > - 2 and z, (0) < - 2: thus, also v, and z, are different. This shows that pro- 
blem (4.1) has at least four radial solutions with n zeros in [0, R). �9 
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5. - A p p e n d i x .  

In this appendix we study, with the notation of Section 2 and by means of a time-map te- 
chnique, the autonomous problem 

(5.1) I ( ~ ( u ' ) ) '  + g(u) = 0 
L u ' ( 0 )  = 0 = u(R). 

In the sequel, we follow an approach like in [7, 8, 12]. 
Let us assume 

(He) q~ : [ - e 1, e 1 ] --~ [ - q~(s a ), q~(e 1 ) ] is an odd increasing homeomorphism such that 

r 
lim inf > 1,  'go > 1 

,--,o r 
(5.2) 

and 

(5.3) 
~(os) 

l i m s u p - -  < +oo ,  V o > I .  
,---,o q~(s) 

(Hg) g: I - e 0 ,  e0 ] - -*R  is a continuous function such that 

g(s) 
lim - -  = + ~ .  
,--.o q~(s) 

As it was done in Section 3, from (Hg) we deduce the existence of e0 > 0 such that 
g(s) s > 0, for all 0 < Is I ~< e0. Then, we recall that the solutions of the equation 

(5.4) (r '))'  + g(u) = 0 

satisfy the energy relation 

H(u(r), u ' (r ) )  = ~e(u'(r)) + G(u(r)) --- const, V r E R ,  

x x 

where, as before, G(x) = I g(s) ds and .e(x) = xq~(x) - I q)(t) dr. Then (recalling (2.9)), in 
0 0 

the phase-plane (x, y) = (u, ~p(u')) every (nontrivial) orbit of (5.4) is periodic and corre- 
sponds to the closed curve defined by the equation 

H(x,  y) = (b , (y)  + G(x) = G(a) 

for some a > 0 .  In particular, for a e ( O ,  eo) the (unique) solution of the Cauchy 
problem 

(5.5) I (r ')) '  + g(u) = o 
[ u(O) = a ,  u'(O) = 0 ,  
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which will be denoted by u(.; a,  0), is defined on R and satisfies the relation 

(5.6) H(u(r), u'(r)) = (@. o@)(u'(r)) + G(u(r)) = G(a), Vra [0, R].  

Moreover, we can define the functions Ti:(0, e0)---~(0, + oo) (i= 1,2) by 

(5.7) 
a ds f Tl(a) 

= J  (el) -i  o r  _ G(s)) 

and 

(5.8) 
0 

7~(a) = f 
- - a  1 

ds 

(~) -10~ib~l ) (G(a) - G(s) ) ' 

where G ( - a  l) = G(a). It is straightforward to check, integrating (5,6), that they represent 
the time needed for a quarter of rotation along the orbit of energy G(a) in the upper (lower) 
half plane: from the point (0 , (@- lo@. l ) (G(a ) ) )  to the point (a, 0) (from (a, 0) to 
(0, -(q~-I  or  and from the point ( - a  1, 0) to the point (0, (@-10~r 
�9 ( G ( - a l ) ) )  (from (0, - ( r  to ( - a l ,  0)), respectively. 

Now, we introduce some notation; let us define the set 8 ~= {(x ,y)  aQ]a.: 
2nx + (2n + 1) y = R  or b . : (2n + 1) x + 2 n y  = R or c.: 2(n + 1 )x+  (2n + 1) y = R  or dn: 
(2n + 1) x +2(n + 1)y = R  for some n a N } ,  where Q =  {(x, y) eR2:  x > 0, y > 0}. Mo- 
reover, let us consider the following open disjoint subsets of Q (see Figure 1): 

AI.= { (x, y)aQ: 2nx + (2n+ 1)y > R, (2n+ 1) x + 2ny > R, 2nx + (2n+ 1) y < R, 
(2n + 1) x + 2 n y  < R}, 

A 2 . = { ( x , y )  eQ:  2 n x + ( 2 n +  l ) y < R ,  (2n+ l ) x +  2ny> R } ,  

A3~= {(x,y) aQ: 2nx + (2n+ 1)y<R, (2n+ 1)x + 2ny<R,2(n + 1)x+ (2n+ 1)y> R, 
( 2 n +  1 ) x + 2 ( n +  1) y >R},  

A4n={(x , y )  aQ: 2 ( n + l ) x + ( 2 n + l ) y > R , ( 2 n + l  x + 2 ( n + l ) y < R } ,  

A s . = { ( x , y )  aQ: 2 n x + ( 2 n + l ) y > R , ( 2 n + l ) x + 2 n y < R } ,  

A6n={(x ,y )  aQ :  2 ( n + l ) x + ( 2 n + l ) y < R , ( 2 n + l ) x + 2 ( n + l ) y > R } .  
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_& 
2n 

R 
2 n + 1  

R 

A6n 

cn 

A3n 

Aln 

A2n 

R R R 
2,-,+i 2"~ 

Figure 1. - Some of the regions Ain. 

Arguing as in [8] and [12], we have the following facts, which are crucial for the proofs 
of Theorem 5.4 below and of our main results (Theorem 3.2 and Theorem 4.1), 
respectively: 

PROPOSITION 5.1. - Problem (5.1) has a solution of energy G(a) i f  and only i f  there exists 
an integer n ~ I'q, n >-O, such that 

2nTl(a)  + (2n + 1) T2(a) = R 

or 

(2n + 1) Tl(a)  + 2nT2(a) = R  
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o r  

o r  

2(n + 1) Tl(a) + (2n + 1) T2(a) = R 

(2n + 1) Tl(a) + 2(n + 1) T2(a) = R .  

Moreover, for any solution u of (5.1) with energy G(a) we have: 

(1) u has exactly 2 n zeros in [0, R) and u( O ) < 0<=~ (Tx(a), T2 ( a ) ) e a, . 

(2) u has exactly 2n zeros in [0, R) and u(O) > 0r (Tl(a), T 2 ( a ) ) e b , ;  

(3) u has exactly 2 n +  1 zeros in [0, R) and u ( 0 ) <  0<=~ (Tl(a), T2(a))ecn; 

(4) u has exactly 2n + 1 zeros in [0, R) and u(0) > 0-~, (Tx(a), T2(a)) ~d~. 

By the above Proposition, in order to obtain existence and nodal properties of so- 
lutions to (5.1), we are led to study the intersections between the support of the curve 
T: (0, e0)--~R 2 (defined by T(a) = (Tl(a),  Tz(a)))  and the set ,,~previously introduced. 
Now, we can prove the following: 

PROPOSmON 5.2. - For i = 1 ,2  we have 

(5.9) lim Tz(a) = O. 
a----~ 0 

P R O O F .  - -  Consider the case i = 1 (the case i = 2 is similar); for simplicity, we denote by T g 
the time-map relative to the equation (@(u ' ) ) '  + g(u) = 0. Due to (Fig) and the analogue of 
(3.19), for every A > 0 one has (for a small enough) Tg(a) <~ T(C)(a). Repeating the argu- 
ments in the proof of Proposition 3.7 (in particular, the application of (ii) in Proposition 
2.2), we deduce that 

lira TA*(a) : = z ( A ) ,  
a ---> O 

with lim x(A) = 0. The above facts are sufficient to obtain (5.9). 
A---> + 00 

REMARK 5.3 In the paper [32] it was proved, for the linear operator u~-~- u", 
that the time-map is infinitesimal for a--* + oo or for a--~O when g is superlinear 
at infinity or sublinear in zero, respectively. For nonlinearities g such that 

lira g(x)/dp(x) = + oo, the former fact has been generalized in [20]; for the case when 
ixl--,+o~ 
lim g(x)/~b(x) = + oo, the latter is extended in Proposition 5.2 above. 
x - - ) O  

Now, we prove a multiplicity result for the autonomous problem (5.1): 

THEOREM 5.4. -- There exists ko e N such that for every k >I 2k0 problem (5.1) has at least 
two solutions uk and vk with uk(O) >0 and vk(O) <0,  both having exactly k zeros in [0, R). 
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PROOF. - The asymptotic behaviour of Ti (i = 1 ,2) ,  described in Proposition 5.2, guaran- 
tees that the support of the curve T ~<emanates~> from the point P0 = (0, 0). In other words, 
recalling the definition of the straight lines ak, bk, ck and dk, there exists k0 s.t. the support of 
T intersects all these lines, for k I> k0; since each intersection gives rise to solutions of (5.1), 
the first part of the statement is proved. The nodal properties of these solutions easily follow 
from the second part of Proposition 5.1. �9 

Now, assume that g: R--> R satisfies g(x)x > 0 for every x e R,  x # 0, and 

(5.10) lim g(x) _ + 0o = lira g(x___~) 
Ixl-~ + ~ r  x-~0 r  

Then, we can prove: 

THEOREM 5.5. -- Suppose that g satisfies (5.10). Then, there exists h E N  such that for every 
integer n >I 2 ~ problem (5.1) has at least four solutions Un, Vn, W, and z, with u,(O) > O, 
v,(O) < O, w,(O) > O, z,(O) < O, having exactly n zeros in [0, R). 

P R O O F .  - -  According to Remark 5.3 and [21], one has lim T,(a) = 0, i = 1, 2; then, we 
Ct---> q- o~ 

can repeat the proof of Theorem 5.4 noting that we have P0 = Poo = (0, 0). In other words, 
whenever the support of the curve a ~ T(a) intersects one of the lines of the set 8~for some 
a i > 0, then it will necessarily intersect this same line for some a 2 ~ a 1. �9 

We end this Appendix by going back to the fact (used in Sections 3 and 4) that some 
<docal>> degree relative to the autonomous problem (5.1) is different from zero; more precise- 
ly, in the proof of Theorem 3.2 we stated the following: 

CLAIM 1. -- The degree deg ( I -  N0, U0") is well defined and 

(5.11) d e g ( I -  No, U0") ~ 0 .  

In the proof of Claim 1 we will use the next result. 

PROPOSITION 5.6. -- Let ~2 ~ be defined as in (3.26); if a > 0 is such that T(a) ~ ~then, for 
some n, 

d e g ( I -  N0, s'2 ~) = d e g B ( ~ , ( - a ,  a),  0) = { + 

1 if T(a)~Ain 

0 i fT(a)  EA2nUA4nUAsnUA6n 

1 if T(a) eA3n, 

where z-: R-->R is the shooting map defined by r(8) --- u(R; ~, 0). 

PROOF OF CLAIM 1. -- We give the proof for n even, n = 2p; we also recall that n > n * and 
n >2k0.  
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First, observe that Claim 1 was stated in Section 3 when we were considering functions 
un s.t. u,(O) > 0. With the notation introduced in the proof of Theorem 3.2, we observe 
that, by the choice of the sets B and An (recall (3.24)-(3.25)) and because T(ap + e) ~ 
T ( a p -  E)~ ~ deg(I-Jr  U0") is well defined. 

By Proposition 5.1 there exists at least a positive real number ap such that 

T(a ) 

By the continuity of Ti (i = 1,2),  there exists e > 0 such that (see Figure 1) 

(5.12) 

o r  

(5.13) 

o r  

T(ap + e) ~Alp 

T(ap - e) eAsp 

T(ap + e) ~A2p 
T(ap - e) eA3p 

T(ap + e) ~Alp 
(5.I4) T(ap - e) eA3p. 

Moreover, following a continuity argument developed in the proof of Th. 5.1 in [20], the 
real number e can be chosen such that, for Do defined in (3.27), we have 

(5.15) (k-l(n))or ~2o. 

Then, if U~ is defined by (3.29), by (5.15), we deduce that 

(k-l(n))o A D O = ( k  - 1  (n))0 A U~. 

When (5.12) or (5.13) occurs, from Proposition 5.6 we infer 

deg (I - 3r U0") = 1. 

When (5.14) occurs, again by Proposition 5.6 and by the additivity property of the degree 
we have 

2 = d e g ( I -  ~:o, Do) = d e g B ( r , ( - a p -  e, - a p  + e) U ( a p -  e, ap + ~), 0) = 

= d e g B ( r , ( - a p -  e, - a p  + e), 0) + d e g B ( r , ( a p -  e, ap + e), 0) . 

Hence 

degs (r, ( - a p  - ~, - a p  + e), O) = degs (r, (ap - e, ap + ~), O) = 1 . 
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Thus, we conclude that, in any case, 

d e g ( I -  N0, U0") = d e g ~ ( r , ( a p -  e,  a p  + e), 0)  = 1 . 

REFERENCES 

[1] A. AMBROSETTI - H. B~ZlS - G. CEKaMI, Combined effects of concave and convex nonlinearities in 
some elliptic problems, J. Functional Anal., 122 (1994), pp. 519-543. 

[2] A. AMBROSETTI - J. G~cra  Azo~Ro - I. PF~aL, Multiplicity results for some nonlinear elliptic equa- 
tions, J. Functional Anal., 137 (1996), pp. 219-242. 

[3] A. AMBROSETn - J. GARCIA AZO~RO - I. PEKaL, Quasilinear equations with a multiple bifurcation, 
Differential Integral Equations, 10 (1997), pp. 37-50. 

[4] T. B~TSCH - M. W~ZLEi, On an elliptic equation with concave and convex nonlinearities, Proc. 
Amer. Math. Soc., 123 (1995), pp. 3555-3561. 

[5] G. J. BUTLER, Rapid oscillation, nonextendability and the existence of periodic solutions to second 
order nonlinear ordinary differential equations, J. Differential Equations, 22 (1976), pp. 
467-477. 

[6] G.J .  BUTLER, Periodic solutions of sublinear second order differential equations, J. Math. Anal. Ap- 
pl., 62 (1978), pp. 676-690. 

[7] A. CAPIETTO - W. DaMBROSlO, Boundary value problems with sublinear conditions near zero, No- 
DEA, 6 (1999), pp. 149-172. 

[8] A. CmIETTO - J. MaWHIN - F. ZANOLIN, On the existence of two solutions with a prescribed number 
of zeros for a superlinear two-point boundary value problem, Topoi. Methods Nonlinear Anal., 6 
(1995), pp. 175-188. 

[9] A. CASTRO - A. KU~PA, Infinitely many radially symmetric solutions to a superlinear Dirichlet pro- 
blem in a ball, Proc. Amer. Math. Soc., 101 (1987), pp. 57-64. 

[10] Y. CHENG, On the existence of radial solutions of a nonlinear elliptic equation on the unit ball, No- 
nlinear Anal., 24 (1995), pp. 287-307. 

[11] C. V. COFFMAN - D. F. ULRICH, On the continuation of solutions of certain nonlinear differential 
equations, Monatsh. Math., 71 (1967), pp. 385-392. 

[12] W. DAMBROSlO, Multiple solutions of weakly-coupled systems with p-laplacian operators, Results 
Math., 36 (1999), pp. 34-54. 

[13] H. DANG - R. MANASEVlCH - K. SCHMITT, Positive radial solutions of some nonlinear partial differen- 
tial equations, Math. Nachr., 186 (1997), pp. 101-113. 

[14] H. DANG H. - K. SCHMITT - R. SHIVAJI, On the number of solutions of boundary value problems in- 
volving the p-Laplacian and similar nonlinear operators, Electron. J. Differential Equations, 1 
(1996), pp. 1-9. 

[15] A. EL t-IAcHIMI - F. DE THELIN, Infinitely many radially symmetric solutions for a quasilinear elliptic 
problem in a ball, J. Differential Equations, 128 (1996), pp. 78-102. 

[16] M.J. ESTEBAN, Multiple solutions of semilinear elliptic problems in a ball, J. Differential Equations, 
57 (1985), pp. 112-137. 

[17] B. FK~NCHI - E. LANCONELLI - J. SEPaUN, Existence and uniqueness of nonnegative solutions of quasi- 
linear equations in R", Adv. Math., 118 (1996), pp. 177-243. 



188 A. CAPIETTO - W. DAMBROSIO - F. ZANOLIN: Infinitely many radial, etc. 

[18] M. GA~CiA-HuIDOBRO - R. MANASEVICH - K. S C H M I T T ,  Some bifurcation results for a class ofp-lapla- 
cian like operators, Differential Integral Equations, 10 (1997), pp. 51-66. 

[19] M. GARCIA-HUIDOBRO - R. MAN~SEVlCH - K. SCHMITT, Positive radial solutions of quasilinear partial 
differential equations on a ball, Nonlinear Anal., 35 (1999), pp. 175-190. 

[20] M. GARC~A-HuIDOBRO - R. MAN~SEVlCH - F. ZANOLIN, Strongly non-linear second order ODE's with 
unilateral conditions, Differential Integral Equations, 6 (1993), pp. 1057-1078. 

[21] M. GAI~ClA-HuIDOBI~O - R. MAN~SEVlCH - F. ZANOLIN, Strongly nonlinear second order ODE's with 
rapidly growing terms, J. Math. Anal. Appl., 202 (1996), pp. 1-26. 

[22] M. GARCIA-HuIDOBRO - R. MAN~SEVlCH - F. ZANOLIN, Infinitely many solutions for a Dirichlet pro- 
blem with a non homogeneous p-Laplacian like operator in a ball, Adv. Differential Equations, 2 
(1997), pp. 203-230. 

[23] M. GARCIA-Ht3IDOBRO - P. U~ILLA, Multiplicity of solutions for a class of nonlinear second-order 
equations, Nonlinear Anal., 28 (1997), pp. 1509-1520. 

[24] M. GraLLAKIS, Existence of nodal solutions ofsemilinear equations in R u, J. Differential Equations, 
85 (1990), pp. 367-400. 

[25] Z. Goo, Boundary value problems for a class of quasilinear ordinary differential equations, Diffe- 
rential Integral Equations, 6 (1993), pp. 705-719. 

[26] H. JACOBOWlTZ, Periodic solutions of x" + f ( t ,  x) = 0 via the Poincard-Birkhoff theorem, J. Diffe- 
rential Equations, 20 (1976), pp. 37-52, and Corrigendum, the existence of the second fixed point: a 
correction to ,,Periodic solutions of x" + f ( t ,  x) = 0 via the Poincard-Birkhoff theorems,, J. Diffe- 
rential Equations, 25 (1977), pp. 148-149. 

[27] C. K. R. T. JONES, Radial solutions of a semilinear elliptic equation at a critical exponent, Arch. Ra- 
tion. Mech. Anal., 104 (1988), pp. 251-270. 

[28] M. A. KRASNOSEL'SKII - A. I. PEROV - A. I. POVOLOTSKII - P. P. Z A B R E I K O ,  Plane vector fields, Acade- 
mic Press, New York, 1966. 

[29] J. MAWHIN, Topological degree methods in Nonlinear Boundary Value Problems, CBMS Series, 
Amer. Math. Soc., Providence, RI, 1979. 

[30] V. MoRoz, Solutions of superlinear at zero elliptic equations via Morse theory, Topol. Methods No- 
nlinear Anal., 10 (1997), pp. 387-397. 

[31 ] F. I. NjOKU - P. OMARI - F. ZANOLIN, Multiplicity of positive radial solutions of a quasilinear elliptic 
problem in a ball, Adv. Differential Equations, 5 (2000), pp. 1545-1570. 

[32] P. OMAm - F. ZANOLIN, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory 
potential, Comm. Partial Differential Equations, 21 (1996), pp. 721-733. 

[33] Z. OPIAL, Sur les pdriodes des solutions de l'dquation diffdrentielle x" + g(x) = 0, Ann. Polon. Ma- 
th., 10 (1961), pp. 49-71. 

[34] W. REICHEL - W. WALTER, Radial solutions of equations and inequalities involving the p-laplacian, J. 
of Inequal. & Appl., 1 (1997), pp. 47-71. 

[35] B. L. SHEKHTER, On existence and zeros of solutions of a nonlinear two-point boundary value pro- 
blem, J. Math. Anal. Appl., 97 (1983), pp. 1-20. 

[36] E. W. C. VAN GROESEN, Applications of natural constraints in critical point theory to boundary 
value problems on domains with rotation symmetry, Arch. Math., 44 (1985), pp. 171-179. 

[37] M. WILLEM, Minimax theorems, Birkhiiuser, Boston, 1996. 
[38] E. YANAGIDA, Sturmian theory for a class of nonlinear second-order differential equations, J. Math. 

Anal. Appl., 187 (1994), pp. 650-662. 


