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Existence of Minimizers for a Class 
of Anisotropic Free Discontinuity Problems (*). 

CRISTINA TROMBETTI 

S u m m a r y .  - We prove the existence of minimizing pairs ( K ,  u ) ,  K compact set of R N and 
u e W 1, P(~\K), for the functional 

G(K, u ) =  f f ( x ,  Vu)+a I l u - g l q + ~ : ) c N - l ( K n ~ )  
Y2\K ~\K 

when the integrand f ( x ,  z) is convex with respect to z, [z [P <<.f(x, z) <<. L I zl;  P > 1, and sat- 
isfies suitable assumptions of uniform continuity in x with respect to z. 

1. - I n t r o d u c t i o n .  

In recent years functionals involving volume and interfacial energies have been in- 
troduced as models in fracture mechanics, phase transition and image segmentation. In 
particular the following functional 

Q Q 

includes those considered by [BZ], [DGCL], [Fo-Fr], [FF], [MS]. Here ~9 is a bounded 
open set of R N, f is a continuous convex function of polynomial growth, g �9 L | (~9), a ,  
fl > 0, q I> 1 and u is a function of bounded variation. We recall that for a B V  function u 
the jump set Su coincides ~C N - l-a.e, with the complement of the Lebesgue points and 
the symbol Vu stands for the approximate differential. In general the distributional 
derivative D u  can be represented by D u  = V u s  N + (u + - u - ) v ~  N -  1 k S~ + C(u), 
where C(u) is the so called Cantor part of Du.  

The results of De Giorgi and Ambrosio (see [DGA]) have showed that a natural 
class in which to minimize 5~is the class S B V ( ~ )  of those special functions u �9 B V ( ~ )  
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for which C(u) = O. In particular the lower semicontinuity result of Ambrosio (see [A1], 
[A2], [A3]) implies the existence of minimizers for 5~in this class. 

It is then natural to investigate if such minimizers are related to those of the ,,clas- 
sical- counterpart of 5 ~, i.e. the functional 

(1 .1)  ~ ( K , u ) =  l f ( x ,  V u ( x ) ) d x + a  ~ l u - g l q d x + f l : ) c N - l ( K A Q )  
Y2\K ~\K 

where now K is a closed subset in R N and u �9 W 1' P(~9\K). Notice that i f f ( x ,  z) = ]z ]2 
the above functional coincides with the model suggested by Mumford and Shah in the 
framework of image segmentation. For this model De Giorgi, Carriero and Leaci 
proved in [DGCL] that if u is a minimizer of ~ t h e n  the pair (S~, u) minimizes ~ and 
~(u ,  ~9) = ~(S~, u). This result has been obtained by means of a decay estimate of the 
energy in small balls which allows to prove that ~N - 1 ((Su \S~) N Y2) = 0. This amounts 
to give a first information on the regularity of the jump set of the minimizers since in 
general, if u �9 SBV(~) ,  S~ can be any (N - 1 )-rectifiable set (see [A]). The proof given 
in [DGCL] makes a strong use of the scaling properties of the Mumford-Shah function- 
als and of the classical sup estimates for the gradient of harmonic functions. 

This result has been later extended by [CL] to the case where f ( x ,  z) = I z] p, p > 1, 
and by [FF] to a class of convex integrands f not depending on x. 

In this paper we allow f to depend also on x under suitable assumptions of uniform 
continuity in x with respect to z. Moreover f is supposed to be convex in z, but not nec- 
essarily differentiable. The main difficulty here is, as usual, in proving the decay esti- 
mate of energy, which is achieved by a typical blow-up argument. In our case the main 
point is to recover the convergence of the rescaled minimizers vh to a W 1' p minimizer v 
of the same functional without the area term. Differently from the case when f is inde- 
pendent of x, the minimizer v is not in general Lipschitz continuous, however a recent 
result of [CFP] provides HSlder continuity estimates on v which enables us to conclude 
with the decay estimate. 

2. - P r e l i m i n a r y  r e s u l t s .  

Let E r R N, we denote by MN- 1 (E) the N - 1-dimensional Hausdorff measure of E. 
If u: ~ o R  is a Borel function and if x �9 ~9 we say that ~7(x) � 9  U { :r } is the approxi- 
mate limit of u at x if 

g(~t(x)) = lim IBQ(x) 1-1 ~ g(u(y) )dy  
~-.)0 B~(x) 

for every g �9 C(R U { r162 } ). 
We denote by Su the set af all point x �9 ~9 in which the approximate limit does not 

exist. Su is a Lebesgue negligible Borel set and the jump set of a B V  function u, Su, is 
N - 1-rectifiable (see [DG] or [F]). 

It  is well known that if u belongs to the space BV(g2) then Du,  its distributional 
gradient, can be decomposed as Du = Vu2  N + D ~ u where Vu is the density of Du with 
respect to ,~Y and D 8u is the singular part of Du with respect to 2N. We also recall that 
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a function u belongs to the space SBV(t~) of the ,,special functions of bounded varia- 
tions,,  introduced in[DGA], if u belongs to BV(t~) and if D~u is such that  
I D ~ u l ( ~ \ S u )  = 0.(For the study of the main properties of S B V  functions we refer  
to [A1], [A2], [DGA]). 

In the sequel we consider a bounded open set of R N ~ ,  a continuous function f :  Q • 
• R N--) [ 0, + ~ [ satisfying the following assumptions 

(2.1) f ( x ,  .) is convex for all x e t9 ; 

(2.2) I z lp<~f (x , z )<~LIz l  ~ for all x e Y 2 ,  Y z e R  g , 

with L > 1 and p > 1 ; there exists v > 0 such that  for every (Xo, Zo) e $9 • R N and for 
every ~ e Co1(~9) it results 

(2.3) ~f(xo, Zo+ V~(y))dy>~ f[ f (xo ,  Zo)+ V(IZo]2 +lV~12)(p-~)/~lVqgl~]dy; 
Y2 t~ 

there exists a continuous, bounded, increasing function w: [0 ,  + ~[ - - ) [0 ,  + ~[ ,  with 
w(0) = 0, such that  

(2.4) I f (x ,  z ) - f ( y ,  z) l <~ ~o( Ix - y[ ) lzl p . 

We also assume that  there exist Co > 0, 0 < m < p such that  

(2.5) I f ( x , z ) - f p ( x , z ) l < < . C o l Z l P - m +  l fora .e ,  x e ~ ,  Y z e R  N, 

where fp(x, z) is the p-recession function o f f ,  i.e. 

f ( x ,  tz) 
fp (x, z) = lira sup - -  for all x ~ ~ ,  Yz ~ R N . 

t-,+~ t p 

REMARK 2.1. - I t  is clear that  fp(x, .) is positively homogeneous of degree p and, if 
f ( x ,  .) is convex, then fp(x, .) is convex. Moreover if f verifies (2.2) then 

(2.6) IzlP<~fp(x,z)<~LIz[ p for a.e. x e t ~ ;  z e R N ;  

and if f verifies (2.4) then 

(2.7) Ifp(x, z) - fp(y ,  z) I <~ w( [x - Y I) [z [P . 

The proof of next lemma can be found, in a slightly different form, in Lemma 2.8 
in [FF]. 

LEMMA 2.2. - Under assumptions  (2.1), (2.2), (2.3) and (2.5) it results 

~fp(xo, Zo + Vcp(y))dy >I ~[fp(xo, Zo) + u( IZo I ~ + IVr dy 
Q 

for  every (Xo, Zo) �9 ~2 x R N and for  every cp e C~ ( ~2 ) 

Under assumptions (2.1) and (2.2) if u belongs to SBVlo~(~2) and c is a positive con- 
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stant we set, for every Borel set E r Q,  

(2.8) F(u,  c, E) = ~f(x,  Vu(x))dx + c~N-I (S~ N E ) ,  
E 

if c = 1 we set F(u,  E) = F(u,  1, E). 

DEFINITION 2.3. - A function u ~ SBVloc(~) is a local minimizer  in Q o fF(u ,  c, E) 
if  

F(u,  c , A )  < + ~ , YAcr ~9 (2.9) 

and 

F(u,  c, A) <. F(v, c, A) 

for any veSBVloc(tD) such that s u p p ( v - u ) c c A c c t ~ .  Similarly we say that 

WI~ p (~)  is a local minimizer of the functional ~f(x,  Vu(x) )dx  i f  U E 

E 

Sf(x,  Vu(x) )dx  ~< Sf(x ,  Vv(x))dx 
A A 

for any v �9 W11o~ p (~2) such that supp ( v - u ) r r A c r ~ .  

Le t  us recall the definition of deviation from minimality (see [AP]). 

DEFINITION 2.4. - The deviation f rom minimali ty  Dev (u,  c, $3) of  a function u �9 
�9 SBVloc(t~) satisfying (2.9) is the smallest 2 � 9  [0, + ~ ]  such that 

Sf(x,  Vu(x)) dx + c:)cN-I(Su MA) ~< Sf(x ,  Vv(x))dx + c:)cN-I(S v NA)  + 2 
A A 

for  any v �9 SBVloc(Q) such that supp ( v -  u ) r 1 6 2 1 6 2 1 6 2  s 

The deviation from minimality estimates how far is u from being a minimizer. Obvi- 
ously Dev(u ,  c, ~ )  = 0 iff u is a local minimizer. 

Le t  B be a ball in R N with N>~2.  I f  u:  B---~R is measurable we can define 
(see [DGCL]) 

u . ( s , B ) = i n f ( t E R :  I ( u < t } A B l ~ s } ,  0~<s~<lB I 

and the median of u in B 

m e d ( u ,  B) = u .  
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1 
If u belongs to SBV(B) and (2~N:)CN-I(Su A B)) N/(N-1) < --[B[ we set, (see [DGCL]), 

2 

V' (U, B)  -- u ,  ((2~ N~CN-I(Su A B)  ) N/(N-1), B)  , 

v"(u, B) = u .  (]B I - (2rN:)CN-I(Su A B)) N/(N-1), B), 

where ~ N is the isoperimetric constant relative to the balls of R N. In the following if u �9 
e SBV(B) ~ stands for (u A v"(u, B ) ) V  v' (u, B). 

We also recall that if ueSBV(Y2) then u belongs to WI'P(~9), with p~>l ,  iff 

MN-I(S u N ~)  = 0 and ( ( l u l  p+ IVul p) < + oo ,  

~J 

The following proposition is a consequence of the Poincar~ inequality, (see [DG- 
CL]), and of the compactness theorem in SBV (see [A1] or [A2]). The proof is essential- 
ly contained in Theorem 3.5 and Remark 3.2 in [DGCL], (see also Theorem 2.6 
in [CL]). 

PROPOSITION 2.5. - L e t  BcRN be a bal~ f :  B • RlV--> [0, + ~[  be a function verify- 
ing (2.1) and (2.2) and {uk} be a sequence in SBV(B) such that 

sup [f(x,  Vuh(x))dx < + ~ , 
heN ~ 

l i m  ~C N - 1 (Sub A B) = 0 
h 

and let mh be the medians of uh in B. Then there exist a subsequence {Uhk } and a func- 
tion u e  WI'P(B) such that 

u-ak - m h k * u  in LP(B) 

and 

[f(x,  Vu(x)) dx <~ limkinf [f(x,  V~hk(X)) dx .  
B B 

PROOF. - For simplicity we assume that 1 < p < N, the case p I> N can be dealt in a 
similar way taking into account Remark 3.3 in [DGCL]. From the Poincar~ inequality 
and from the assumptions we get 

Moreover 

and 

Ilua - mallp. <~ c(N, p) llVuhllp <~ C ( j f ( x ,  Vuh(x) ) dx) lip. 

IIV( h - mh) lip -< llVuh II, 

:)C N- 1 (S~ N B) ~< N- 1 ~C (S~h A B).  



282 C. TROMBETTI: Existence of minimizers for a class etc. 

Then there exists a subsequence uh~ such that  Uhk -- mhk converges strongly in LP(B) to 
a function u belonging to GSBV(~2), i.e. a function such that  u M e SBV(t2) for every M,  
where u M is the truncated function at level M.  For  every M let (uh~- mhk) M be the 
truncated function of Uhk- mhk at level M.  The compactness theorem implies that  
(Uhk- mhk) M-'->uM strongly in LP(B) and that  V(~h~- mhk)M--> VU M weakly in LP(B). 
Finally we get 

ff(x, Vu M) dx<~ limkinf ff(x, V((~h~--mak)M)dx<~ liminf ff(x, V~hk) 
B B B 

and 

~cN - 1 (SuM A B) <<. lira inf MN- 1 (S(uhk _ m S  A B) ~< lim inf ~C N - 1 (Sub k ~ B) = O. 
k k 

Then we deduce that  U M belongs to W 1' P(B) and that  V U  M is equibounded in LP(B). If  
M--* + oo we deduce that  u belongs to WI'P(B) and the thesis follows. �9 

The next theorem describes the limit behaviour of a sequence {uh } in S B V w h e n  the 
deviations from minimality and the area terms 3cN-I(Su h) go to zero. 

THEOREM 2.6. - Let B r c R  N be a ball centered at the origin with radius r, f :  B • 
X RN---> [0 ,  + oo [ be a function verifying (2.1) and (2.2), {uh } r SBV(B~), mh be the medi- 
ans of uh and { ch } r (0, + oo ). Assume that 

(i) sup F(uh, ch, B~) < + oo, 
h e n  

(ii) lim MN- 1 (Sub (3 B~) = 0, 
h 

(iii) lim Dev (uh, ch, B~) = 0. 

We also assume that 

uh(x) - mh---~u(x) e WI'P(B~) a.e. in B~. 

Then u is a local minimizer  of the functional ~f(x,  Vv(x) )dx  in WI'P(Br) and 
Br 

lira F(uh, ch, B e) -- [ f ( x  Vu(x)) dx VQ e (0, r) .  
h ~ ~ 

Bq 

PROOF. - The proof is essentially contained in Theorem 4.8 in [DGCL] and Theorem 
3.11 in [FF], where instead of (ii) it is assumed that  ch--* + oo. However what is really 
needed for the proof is that  

(2.10) lim inf ch (MN-1 (Sub N B,) )N/(N-1) ____ 0.  
h 

This is clear if lim inf ch < + ~ ,  while, if lim inf ch = + r162 (2.10) follows from assump- 
h h 

tion (i) and from the fact that  :)C N- 1(Sub A B,) is infinitesimal. �9 
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3. - T h e  D e c a y  L e m m a .  

In this section we are going to prove a lemma which estimates the decay of the func- 
tional F in small balls. We assume that the integrand f :  ~2 x RN---> [0,  + oo[ satisfies 
assumption (2.1), (2.2), (2.3) and (2.4). Moreover we assume that 

(3.1) f (x ,  tz) = tPf(x,  z) for a.e. x e t~ ; Vz e R  N ; Vt > 1. 

We first recall a regularity result proved in [CFP]. 

THEOREM 3.1. - Let f satisfy (2.1), (2.2), (2.3) and (2.4). For every a e (0, 1) there 
exists a constant ca, depending only on N,  p, L,  v, ~ ,  a, such that i f  u is a local mini- 

mizer of the functional I f ( x ,  Vw(x))dx in WllotP(~2), for every BR(XO)CC ~ and for 
every 0 < ~ < R s~ 

J 

f IVu l 'dx<.c  a f I V u l ' d x .  
Be(xo) ] BR(xO) 

REMARK 3.2 (Scaling). - If u e SBV(~2), BQ(xo)c ~2, it can be easily checked that, the 
resca led  function 

uq(y) = ~ ( 1 - p ) / P u ( x  0 + Qy) 

belongs to SBV(t)Q) where ~9~ = Q - l ( t 9 -  xo), and that 

~cN-I(SuqNBa)=QI-N~cN-I(SuNBao(Xo)) for 0 < a ~ < l .  

Moreover if f verifies assumption (3.1), then 

~f(xo+OY, VuQ(y))dy=Q 1-N f f (x ,  Vu(x))dx 
Bo Boo(Xo) 

and 

Dev(ue, c, Bo) = ~)1-NDev(u, c, B~q(xo)). 

These scaling properties allow us, with a typical blow-up argument, to prove the fol- 
lowing Decay Lemma: 

LEMMA 3.3 (Decay). - Let f :  f2 • R N---) [0, + oo[ be a function verifying assump- 
tions (2.1), (2.2), (2.3), (2.4) and (3.1). Let a be a given number in (0, 1) and t9 'r162 tg. 
For every c > 0 and 0 < v < 1 there exist 0 = O(a, c, v, F2') and e = e(a, c, v, ~2') such 
that i f x e F 2 ' ,  0 < R  < 1/2 dist(f2', aQ), ueSBVloe(~2) and 

F(u, c, BR(X)) <<- eR N-1 , Dev (u, c, BR(X)) <~ OF(u, c, BR(X)), 
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then 

F(u, c, B~R(X)) <~ (Lc~ + 1) v~-P+"VF(u, c, BR(X)) , 

where ca is the constant appearing in Theorem 3.1. 

PROOF. - Let us fix c > 0, 0 < v < 1 and 0 < a < 1 and argue by contradic- 
tion. 

If the decay property is not true there will exist two sequences { e h }, { 0 h } such that 
limb c h = lihm 0h- -0 ,  functions uheSBVlor163 and balls B~(xh)cs with xhe ~2' and 

0 < rh < 1/2 dist(D ', ~2), such that 

and 

F(uh, c, B~h(xh)) = F~hrh N - 1  , Dev (uh, c, B~k(xh)) = OhF(uh, c, B~h(xh)) 

Moreover we set 

( C 
Fo, h Vh~ 

eh 

vh(y) = r(h ~ -P)JP e ;IJPUh(Xh + rhY). 

= f f (  + r o y ,  Vvh(y))dy+ c ~)cN_l(Zvh , B1 Xo 
l B1 8 h 

( c ) I  
Fh vh, - - , B 1  = f (xh+rhy ,  Vvvh(y))dy+ c ~N_l(Svh~B1) ,  

8h B1 eh 

while the symbols Dev0, h and Devh will denote the deviation from the minimality rela- 
tive to the functionals Fo, h and Fh respectively. From Remark 3.2 we easily obtain 
that 

and that 

(3.2) 

( c ) ( c )  
Fh v h , - - , B 1  = 1 ,  Devh v h , - - , B 1  = 0 h  

~h ~h 

( ) C 
Fh vh, ~ , B~ 

eh 
> (Lc~ + 1) v N-p+"p. 

Notice that ff w �9 SBV(B1 ), supp (w - vh) c B1 and ( c ) ( c )  
(3.3) Fo, h w, - - , B 1  <~Fo, h v h , - - , B 1  , 

eh •h 

CI B1) , 

F(uh, c, B~rh(xh) ) > (Lc, + 1) vN-P+~V F(uh, C, Brh(Xh) ) .  

Up to a subsequence we may assume that l i m x h = x o e ~ '  and llmrh=ro<<. 
~< 1/2 dist (D ', ~12). h h 

For every h �9 N and y �9 B1, we set 
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by (2.4) we have 

(c 
(3.4) Fo, a vh, ~ 

eh  
,B1 <Fa v a , - - , B 1  +(Oh [VVh[ p ~  

e h B1 

( c )  s <~Fa w , - - , B  1 + O h + ( o  h IVval~-< 
h B1 

(s s ) ~<Fo, h w , - - , B 1  + 0 h + ( o h  IVvkl~+ IVwl ~ , 
h l \B1 B1 

where (o a = (o( I xa - Xo I + Ira - ro ] ). Assumption (2.2) implies that  (c)  
(3.5) [ Vvh I p <~ Fa va, - - ,  BI = 1 

B1 E h 

then (2.2), (3.3), the first inequality in (3.4) and (3.5) imply that  

f I V w l P ~ l  §  �9 . 
B1 

Then we have 

(c)  
Po, a v a , - - , B i  ~Fo, a w , - - , B x  + 0 a + ( o a ( 2 + ( o D .  

Ea ~h 

If  (3.3) does not hold the above inequality is trivial. In conclusion we have proved 
that  

(c)  
Devo, a v a , - - , B 1  ~ < ( o a ( 2 + m a ) + 0 h .  

Eh 

Notice also that  since c/e h *  + ~ as h --> + ~ we have that  lira NN - 1 (Sv, A B 1) = 0. 
Thus, by Proposition 2.5 and Theorem 2.6, we deduce that  thereaexists v ~ W 1' P(B1) lo- 

cal minimizer of ~f(xo + roy, Vw(y))dy such that  
B1 (c)  

f (xo+roy,  Vv (y ) )dy=hmFo,  h va, q , B  o ~ 1 ,  V 0 < Q < I .  
~h 8o 

Finally Theorem 3.1 implies that  there exists Ca > 0 such that  

(3.6) f IYvl" <<" caog-'+~" I IVv[P <" % o N - ' + ' "  
8~ 8~ 
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Assumption (2.2) and inequality (3.6) imply 

limFo, h vh, - - ,  B~ = f(xo + r o y ,  Vv (y ) )dy<~Lc~v  N-p+"p,  
E h Br 

hence, since 

Eh ~h 

we get a contradiction with (3.2), thus proving the desired estimate. 

4. - The dens i ty  l o w e r  bound.  

In order to prove the existence of minimizers of the functional ~ Iet us introduce the 
following relaxed functional defined on SBV:  

~(u, ~)= ~f(x, Vu(x) )~  + .  i' l u - g l  q dx + ~ : "  '(s~ n Q) 
~9 Q 

where g e L ~ (~) and q I> 1. 
If we denote by u M = - M  V (u A M )  the truncate of u at the level M = HglIL ~, it re- 

sults that u M belongs to the space SBVloc(~9), SuMCSu and VuM=Vu~{lu[<M[} 
(see [ADM]); thus 

~ ( u  M, ~ )  <~ ~(u ,  ~9). 

It is then clear that, in order to minimize ~, we may restrict to those functions u such 
that IlUl]L ~ <<. IlgllL ~. The existence of minimizers for ~ follows from compactness and 
lower semicontinuity results contained in [A1]. 

THEOREM 4.1. - I f  a > O, g ~ L ~ ((2) and f is a continuous funct ion  verifying (2.1), 
(2.2), there exists u ~ SBVloc(t~) m i n i m i z e r  of  8:. Moreover IlUlIL ~ <~ IlgllL | 

REMARK 4.2. - If  U is a minimizer of ~, B e ( x ) c  s and v E SBV(BQ(x))  is such that 
supp (v - u) cc BQ (x) then 

~(u,  Be(x ) )  <. 5(v M, Be(x ) )  

and so 

~ f ( x ,  Vu(x)) dx + ~C N-  1 (S~ Cl Be(x ) )  <~ 

Bo(x) 

-< ~ f ( x ,  Vv(x))  dx + ~c N -1 (&  n B e (x))  + 2q a ~  ~ e N IlgllL 
BQ (x) 
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then 

Dev (u, Be(x)) <. 2 q aw NQ N IlgllL 

for all balls Be(x)r  Q. 
Let us now recall the definition of quasi minimizer of the functional F(v, Q) 

(see lAP] or [AFP]). 

DEFINITION 4.3 (quasi minimizers). - A  function u e SBVloc(~9) is a quasi minimiz- 
er of the functional F( v , t~ ) i f  there exists w >I 0 such that 

Dev (u, Be(x)) <. (oQ 8 

for some s ~ (N - 1, N]. 

We will denote b y M , , ~ ( O )  the class of all quasi minim~er verifying the above 
inequ~ity. 

LEMMA 4.4 (Energy upper bound) . -  Let f :  Y2 • RN---> [0, + ~[ be a function verify- 
ing assumptions (2.1) and (2.2). I f  u e M ~ , ~ ( ~ )  then~ for every ball Be(x)c t9  it 
results 

~ f ( y ,  Vu(y)) dy + MN- 1 ( S  u (-~ BQ(x)) <~ N o  NQ N- 1 + O.)Q s . 

Be(z) 

PROOF. - Let us fix p ' < Q  and 
= u(y) XB~(~)\Be.(~ ). 

The quasi minimality of u implies that 

hence 

let us consider the function w(y)= 

F(u, Be(x)) <<. F(w, Be(x)) + wQ 8 , 

f f ( y ,  Vu(y))dy + ~ N -  1 ( S  u CI Bo,(x)) <. N O ) N Q  N -  1 .~_ o)Qs ; 

BQ,(x) 

if r $ r we get the thesis. �9 

In the following if ueSBVloe(t~) we set 

Fp( u, E) = ~ fp (x, Vu(x) ) dx + ~)cN- I ( S  u N E) 
E 

for every Borel set E r ~9, fp being the p recession function of f defined in Section 2, 
and we set Devp(u, E) for the deviation from minimality of u with respect to the func- 
tional Fp. 

Let us now prove two lemmas. 
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LEMMA 4.5. - Let f: ~ x RN---> [0, + w[ be a function verifying assumptions (2.1), 
(2.2), and (2.5). Let Be(x)c t~, then for every fl > 0 there exists a constant -5 = -5(fl, N)  
such that for all u~SBV(Be(x)  ) it results 

Fp(u, Be(x)) <<. (1 + fl) F(u, Be(x)) + "~QN 

and 

F(u, Be(x)) <~ (1 +f l )  Fp(u, Be(x)) + -ce N . 

PROOF. - Let  ueSBV(Be(x))  and let ~/> 0. We have 

Fp(u, Be(x) )=F(u ,  Be(x)) + ~ [fp(y,  Vu(y))  - f (y ,  Vu(y) )]dy , 
B e (x) 

assumption (2.5) implies 

Fp(u, Be(x)) <~F(u, Bo(x)) + co f IVulp- '~+  COO)NO N �9 

Be(x) 

HSlder and Young inequalities imply that  there exists 5 = 5(~) such that  

IVul '-m<~r ~ IVul'+NO)NC(y)O N" 
Be(x) BQ(x) 

Then 

Fp (u, B e (x) ) <~ F(u, B e (x) ) + co y 

by (2.2) we get 

f [ V u l P + C o C ( ~ / ) N O ) N o N + C o o ) N O  N 

Be(x) 

Fp(u, Be(x)) <<. (1 + Cot )F(u ,  Be(x))  + -5(~, N) ~)N 

setting fl = Co y the first estimate is proved. The second one follows similarly. �9 

LEMMA 4.6. - Let f :  t? x R y ~ [ O, + ~ [ be a function verifying assumptions (2.1), 
(2.2), and (2.5). Let B e (x)r g2. I f  u ~ Ms. ~ (t~), then for every fl > 0 there exists a con- 
stant ~ = 5(fl, N) such that 

Devp (u, Be(x)) <~ fl(2 + fl) Fp(u, Be(x)) + 5QN + (1 + fl) O)Q~. 

PROOF. - Let  v e S B V ( ~ )  such that  s u p p ( v - u ) c B e ( x ) .  If  Fp(v, Be(x))<<. 
<~ Fp (u, Be(x)) given fl > 0, Lemma 4.5 and the quasi minimality of u imply that  there 
exists ~ = -5(fl, N)  such that  

Fp(u, Be(x)) <. (1 + fl) F(u, Be(x)) + -5QN << 

~< (1 + fl) F(v, Be(x) ) + (1 + fl) O)e s + -se N ~< 

~< (1 + fl)2Fp(v, Be(x)) + -5(1 + fl) •Y + (1 + fl) O)Q8 + ~)N.  

If  Fp(v, Be(x))>~Fp(u, Be(x)) the above inequality is trivial. 
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Therefore setting 5 = ~(2 + fl), we have 

Devp (u, B e (x)) ~< fl(2 + fl) Fp (u, B e (x)) + cG Y + ( 1 + fl) WG'. 

LEMMA 4.7 (Density lower bound). - Let f :  Q • RN---> [0, + ~ [  be a function verify- 
ing asumptions (2.1), ..., (2.5). Let t9 ' r162 tg; then there exist 0 o and Q o depending on N ,  
p, L,  v, Q' such that i f  u e M s , ~ ( ~ )  then 

Fp(u, Be(x)) > OoG N-1 

for all balls BQ(x)cc ~2 'co  $2, with center x e Su ~ Y2' and radius G < Go. 

PROOF. - Let  us fix a e (0, 1) and 5 > 0 such that 1 - 5 - p(1 - sa )  > 0 and such that 
s - N + l > 5 > 0 .  

Let  r e  (0, 1) such that (Lc, + 1)r  1-e-v(1-a)  < 1, where ca is the constant given in 
Theorem 3.1. We set eo=e(a ,  v, ~ ' )  and O=O(a, r, ~ ' )  where e(a ,  v, ~9') and 
O(a, v, t~') are as in Decay Lemma. Finally we fix f l=f l (a ,  r,  t g ' ) > 0  such that 
(fl(2 +fl))/O< 1/2 and Go > 0 such that 

G o < m i n  0eo I.N_1+5; 0e 0 TN_I+ 5 
4~ 4(1 + fl) w 

where ~ is the constant given in Lemma 4.6. We can assume that the point x in Su is the 
origin. 

We claim that if G < G0 and B Q r 1 6 2 1 6 2  then inequality 

(4.1) Fp(u, B e) <~ eoG N- 1 

implies 

(4.2) Fp(u, B~h e) <<. eoThS(ThG)N-1 , V h e N .  

Assume now (4.2) true for a given h > 0 and assume 

(4.3) Devp(u ,  B~h~) <~ OFp(u, B ~ ) ,  

then the Decay Lemma implies 

Fp(u, B~§ e) ~< (Lc~ + 1) vN-P+aPFp(u, B~h e) <~ 

<~ eo(Lca + 1) TN-p+ap vh~(vh G)N-1 ~-- 

= eo(Lca + 1) Vap-p-5+IT(h+I)5(vh+IG)N-1 < eoT(h+l)5(~'h+lG)g-1 

If  (4.3) is not true by Lemma 4.6 we have 

Devp(u, B~%) fl(2 + fl) 5 (1 + fl) w < - -  Fp(u, B~%) + (rhG) N + (vhG) s 
rp(u ,  B~h e) <. 0 0 -0 0 
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so that  

2~ 
Fp(u, B~Q) <~ - f f  (rh q) N + 

2(1 + fl) w 

0 

and thus 

Fp(u ,  Brh+lo) ~E0( 'gh+lQ)N-lr(h+l)5 X 

X 
~ 2(1 +f l )  w s vh(1-a)V-(N- l+d)  _[_ OF.O o s - N  + l.~h(s-N + l - 5 ) ~ - ( N -  l +5)] 

2(i  + fl) w 

Os o 

o 

Q s - N + I T - ( N - I + 5 )  

Eo(Th+ l o)N-1T(h+ I)5 . 

This proves (4.2). I f  Fp(u, BQ) <~ eO N-1 for some O < G0 then 

lim gl  -N Fp(u ' Be ) = 0 
0---~ 0 

and Lemma 2.6 and Theorem 3.6 in [DGCL] imply that  0 ~ S~ so we fall in a contradic- 
tion. This proves the thesis for every x �9 S~ A ~2 ', and by a density argument  we get the 
thesis for every x �9 S~ A ~2 '. �9 

PROPOSITION 4 . 8 . -  Let f :  t2 •  + oo[ be a function verifying (2.1), (2.2), 
(2.3), (2.4), (2.5) and let ueMs ,~ (Q) .  Then 

~'cN- 1(~ ~ -Su \Su )  ~-. O . 

PROOF. - Let  ~2 ' co  s and let x e S'u N t9 '. Lemma 4.7 and assumptions (2.2) imply 
that  

Setting 

we have 

l imin f [  f IVuIP+:>cN-I(S~nBo(x))" ol-N>0. 
~ o  / J 

He( z ) 

' } 
LBQ(x) 

~r N - -  t S~cS2 \ r ib  
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and then 

n  u)\Zuc 

Being ~ N -  1 ((~r~, \Su) \ ~  ~) = 0 (see Lemma 2.6 in [DGCL]), we get 

~)~N-1 ( ( S u n  ~ '  ) \ S u )  = O . 

Letting Q '  ~ ~ we get the thesis. �9 

THEOREM 4.9. - L e t  f :  ~ x RN---> [0, + cr be a function verifying (2.1), (2.2), (2.3), 
(2.4), (2.5); a > 0; g �9 L | (Q). I f  u �9 SBV1oc(Q) is a minimizer  of  S~(u, ~) ,  then the pair 
(Su, u) is a minimizer  of G, i.e. 

~(Su, u) <~ ~(K, v) 

for any closed set K c R N  and any v � 9  WI~P(~\K).  

P R O O F .  - If  u is a minimizer of 5 ~ in (2 then 

:F(o, = Ilgll  < + 

so I Vul �9 LP(~2) and thus u belongs to Wllo~p(~\Su). Let  now v be a function belonging 
to Wll~P(Q\K) such that  ~(v, K) < + ~ .  We can assume that  v is bounded, v belongs to 
SBVloc(~) and S~ c K,  (see Lemma 3.2 in [FF] or Lemma 2.3 in [DGCL]). From the min- 
imality of u and Proposition 4.8 we get 

~(Su, u) = i f (u ,  ~ )  ~< ~(v ,  ~ )  ~< ~(K, v), 

so the theorem follows. �9 

REMARK 4.10. - Notice that  by Theorem 4.9 and Lemma 4.4 it follows that  if 

1 < p  < N  and i f u  is a minimizer of 5~(u, ~ )  then, for every x0�9  ~ \S~ ,  I IVulP de- 
Bt(x0) 

cays like QN- ~ as r goes to zero. Therefore we may deduce, by the classical Morrey esti- 
mates, that  u �9 C~ (p - 1)/P(~\Su). 
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