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Existence Results for Nonlinear Parabolic Equations
via Strong Convergence of Truncations (*).

ALESSIO PORRETTA

Summary. ~ We prove existence results for the initial-boundary value problem for parabolic
equations of the type
w+A(uw) +glx, t, w) |Vul?=f in 2x(0,T),
u=0 on 82 x (0, T),
u(x, 0) =up(x) n 2,
where Q is a bounded open subset of RN and T >0, A is a pseudomonotone operator of Ler-
ay-Lions type defined in LZ(0, T; H{(2)), f belongs to L(Q), ug is in L(Q2) and gz, t, s)
s only assumed to be a Carathéodory function satisfying a sign condition. The result is
achieved by proving the strong convergence in L2(0, T; HL(R2)) of trucations of solutions of
approximating problems with L' converging data. To underline the importance of this tool,
we show how it can be used for getting other existence theorems, dealing in particular with
the following class of Cauchy-Dirichlet problems:
u+ A(u) =f+div(d(u)) i Qx(0,T),
u=0 on 3Q x (0, T,
u(x, 0) = ug(x) n 2,

where ®eC%(R, RY), and the date f and w, are still taken in LY(Q) and L'(RQ)
respectively.

1. - Introduction.

In this paper we deal with a class of nonlinear parabolic equations in a cylinder
Q=2 x (0, T), where Q is a bounded open subset of RV and T >0, whose simplest

(*) Entrata in Redazione il 2 aprile 1998.
Indirizzo dell’A.: Dipartimento di Matematica «G. Castelnuovo», Universitd di Roma I, P.le
Aldo Moro 2, 00185 Roma, Italy.
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model is the following Cauchy-Dirichlet problem:

w— Au+ gz, t,w)|Vu|?=f in Q,
1.1 u=0 on %,
u(x, 0) = uy(x) in Q,

where 2 denotes the lateral surface of @ and g: @ X R— R is a Carathéodory function
satisfying the sign condition

1.2) g(x,t,s)8=0, VseR, ae. (x,0)e@.

Under this assumption on g, if %, = 0 the existence of a weak solution « of (1.1) belong-
ing to L2(0, T; H}(2)) was proved first in [LaMu] if f is in the dual space
L2%(0, T; H"1(Q)), then in [DO] if f belongs to L1(Q) and g satisfies the following ad-
ditional hypothesis:

(13) 35, 0>0: gx,t,s)sign(s)=6>0, VseR: |s|=0, and ae. (x,t) in Q.

In this latter paper, (1.8) plays a fundamental role since it allows to find a priori esti-
mates in L2(0, T; H{(£2)) even with L' data (in the stationary case this was pointed
out in [BG2ZJ), hence a compactness result for approximating solutions provides the de-
sired existence theorem. Note however that several examples of g satisfy (1.2) but not
(1.3), mainly all functions g(x, ¢, s) with a sign condition and such that g(x, ¢, s) tends
to zero as s tends to infinity, but also for istance g(x, ¢, s) = s(sins)? and similar oscil-
lating functions are not included in (1.3).

Here we extend the results in [DO] in two different directions. First of all, assum-
ing only (1.2), for every fin L'(Q) and u, in L!(£2) we prove the existence of a solution
of (1.1), which belongs to L?(0, T; W¢'9(82)) for some ¢q < 2 (indeed, it enjoys the same
regularity of solutions of equations with measure data as it is stated in [BDGO]). Sec-
ondly, we show that if (1.3) holds true it can be found a solution in L2(0, T; H{ (R2)) for
every u, in L1(£2), and that this condition on the initial datum can not be weakened. In
order words, we state that the problem

u,—Au+g(x, t, ) |Vu|®’=f in Q,
u=90 on X,
w(x, 0) =4 in ,

with fin L*(Q), admits no solution % in L2(0, T; Hg (£2)) such that g(=, ¢, u) | Vu|® be-
longs to L!(Q) if A is singular with respect to Lebesgue measure.

The main point which allows to go further the previous works, in the sense that (1.3)
is not essential to us, is the proof of a compactness result for the truncations of sol-
utions of approximating problems with L !-converging right hand sides, without an a
priori bound in the space L2(0, T; H}(£2)). In order to underline the importance of
this tool, we have chosen to plan the paper in the following way: in Section 2 we prove a
first compactness theorem for simpler equations which do not contain the lower order
term g(x, t, u) | Vu|?; in this context it appears as a different proof of a result previous-
ly obtained in [Bl] (for elliptic equations see [Mu], [LM] and [LP]), and we show that
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the same method applies to more general operators in divergence form, in order to find
a solution to Cauchy-Dirichlet problems whose model is the following one:

u, — div (A, )1+ |u|)"Vu+ &(w))=f in Q,
(14) u=0 on X,

u(x, 0) = uy(x) in Q,
where 0 < a < A(x, t) <, m =0 and & is only assumed to be continuous on R, and as
before fis in L(Q) and %, in L'(L). Since no growth assumptions are made on @ and
m, problem (1.4) will be studied in the framework of renormalized solutions, which
were first introduced in [DL] in a different context, then used in this setting in
[BDGM] for the stationary case and in [BIMu] for evolution equations (see also
[ReD.

Section 8 will be devoted to the proof of our main resulf, eoncerning problem (1.1) or
the more general model

w, — div (A, (1 + |u| )" Vu) + g(x, ¢, ) |Vu|?=f in Q,
=0 on X,
u(z, 0) = uy(x) in 2,

while in Section 4 we will prove the following trace result, showing some simple but in-
teresting applications.

THEOREM 1.1. — Let p > 1, p' its conjugate exponent (1/p +1/p'=1),a,beR, and
define the space

VP((a, b)) = {u: 2% [a, b)) >R: ueL?(a, b; W§?(Q)),
uye L? (@, b; WP (2))+ L' (2 x (a, b))}.
Then we have, with continuous injection,
VPcC(o, b LY(Q)). =

2. — Strong convergence of truncations without lower order terms.

In this section we consider equations which do not contain lower order terms, in or-
der to better show the method we use for proving the strong convergenece of trunca-
tions. We will henceforth deal with the divergence form operator A(u)=
= — div(a(x, t, u, Yu)), where a(x,t,s, £): @ XRxR¥Y—RY is a Carathéodory
function (i.e. it is measurable with respect to (x, ¢) and continuous with repect to s and
&) such that:

@.1) ax, t, s, E)E=alEl?, a>0,
2.2) latx, ¢, s, &) | < b(|s|)Alx, t) +|&]]1,
(2-3) [a/(xyt, s, &)—a,(x,t,s,5')]-[5—5']>0,
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for almost every (x, t) in Q, for every s in R and every &, &' in RN (& = &'), with h(x, t)
in L2(Q) and

b:[0, + ©)—> (0, + ) continuous .

Note that our assumptions include the classical case of the laplacian, but also more gen-
eral operators given, for istance, by a(x, ¢, s, &) = (1 + |s|)™& with m = 0. It should
also be noticed that assumption (2.1) implies that a(x, ¢, s, 0) =0 for every s in R and
almost every (x, t) in Q.

Next we define, for neN, a,(x, t, s, &) = alx, t, T,(s), £), where, for every pos-
itive real number k, T,(s) = min(k, max(u, —k)) denotes the truncation function.
Thus, thanks to the continuity of b, we have that A, (u) = —div(a,(z, t, 4, Vu)) is a
bounded and coercive operator between the space L2(0, T; H{(2)) and its dual
L2(0, T; H "1(R)). Hence the classical theory developed in [L] applies to give a weak
solution u, in C([0, TJ; L%(2)) N L2(0, T; Hy(R)) to the initial-boundary value problem

(un)t +An(un) =fn in Q ’
2.4) u, =0 on %,
u’n(xa O) =u0n(x) in Q ’

where {f,} and {uy,} are sequences of smooth functions (for instance, f, e C *(Q) and
gy € C © (£2)) which will converge respectively in L!(Q) and in L1(Q) to f and uy. Here
when we talk of weak solutions we mean solutions in distributional sense, as it is classi-
cally stated, with test functions that can be taken in L2(0, T; Hi(22)).

Our first theorem will concern the behaviour of the sequence {u,) of solutions of
(2.4) as n tends to infinity, and in order to deal with the time derivative of truncations,
we introduce a time-regularization of a function v in L2(0, T; H{(R)). Thus we define,
for v in L2(0, T; H}(R)), and v >0,

4
v, (®, t) = Ivﬁ(x,s)e”(s“”ds, Wz, s) =v(x, $) X0, n(s),

where x p denotes the characteristic function of a set E. This convolution function has
been first used in {La], then in [DO] and [BDGO], and it enjoys the following proper-

ties: v, belongs to C([0, TJ; H{ (Q)), »,(x, 0) =0 and v, converges strongly to v in
L2(0, T; H}(R)) as v tends to infinity. Moreover, we have

W,y =v(v—2,)

as a vector valued distribution, and finally if v belongs to L *(Q) then v, belongs to
L (@) as well and

@2.5) vl =@ <Wlp=@, ¥»>0.
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Let us note that in the following of this work we will set
4
() = [ Ti(s) ds,
0

the primitive of the truncated function T(%).

THEOREM 2.1. — Let a(x, t, s, &) satisfy assumptions (2.1)-(2.3), and let us also as-
sume that

f—=f weakly in LYQ),
Uon—> Uy Stromgly in LY(R),
and let u, be a solution of (2.4). Then there exists a measurable function u: @ >R

such that T\(u) belongs to L%(0, T; H}(R)) for every k>0 and, up to a subse-
quence,

T.(u,) > Ti(u)  strongly in L2(0, T; H(R)) for every fixed k>0.

Proor. - First of all we choose, for 7 in (0, T), T}, (4,) % (0, - as test function in (2.4);
integrating by parts, and denoting by (-, -) the duality between Hj () and H ~1(£2), we
have, since |S()|<k|t|,

I<(un)t’ T(u,)) = ISk (u, (7)) die — ke|luag 10y »
0 @

hence assumption (2.1) implies, for every t in (0, T),

T

@8)  [Sin@)dr+a [|VTw,)|? dodt < kg o) + | fullr) < ck -
Q 0 Q

Inequality (2.6) gives the usual estimates for parabolic equations with L! data (see
[BG], [BDGO], [ST]), that is to say u, is bounded in L%(0, T; W} 9(Q)) for every
g<(N+2)/(N+1)and in L*(0, T; L'(£2)), from which we can deduce that

@mn kliIP meas {(x,t) €Q: |u,| >k} =0 uniformly with respect to n.

Moreover we have from (2.6) that T,(u,) is bounded in L2(0, T; H}(R2)) for every
k>0. Now, if we multiply the approximating equation by Gj(u,), where B,(s) is a
C?(R), nondecreasing function such that B,(s) =s for |s|<k/2 and G,(s) =k for
|s| >k, we get

(B (un)); — div (@, (2, t, Uy Ytay) B (uy,)) + @p (e, E, Uy, Vi) YV, Bpu,) = Gipluy) f,

in the sense of distributions. This implies, thanks to (2.6) and to the fact that Bj, has
compact support, that G,(u,) is bounded in L2(0, T; H{(R2)) while its time derivative
(B (uy,)); is bounded in L2(0, T; H ~1(2)) + L'(Q), hence a classical compactness re-
sult (see [Si]) allows us to conclude that B, (u,) is compact in L2(Q). Thus, for a subse-
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quence, it also converges in measure and almost everywhere in . Since we have, for
>0,

k
meas {(x, t): |4, — Uy, | > 0} < meas [(w, 0: |u, | > E] +

+meas [(x, £ || > g] + meas {(x, t): | B(u,) — Gi(uy) | > 0},

by (2.7) for every fixed £ >0 we can choose k large enough to have
(2.8) meas {(x, t): |uy — Uy, | > 0} <meas {(x, t): | Bg(u,) — Cgluy) | >0} +e,
Vn, meN .

The fact that G, (u,) converges in measure for every k > 0 implies, using (2.8), that, up
to subsequences, u,, also converges in measure and almost everywhere in Q. In particu-
lar, we have found out that there exists a measurable function » in L * (0, T; LY(2)) N
NLI0, T; W} URQ)) for every g< (N + 2) /(N +1) such that T,(u) belongs to
L2(0, T; H}(RQ)) for every k>0, and for a subsequence, not relabeled,

2.9 Tp(uy) — Ty (u)
weakly in L2(0, T; H{(R2)), strongly in L2(Q) and a.e. in Q.

Let us take now a sequence {y;} of C,” (£2) functions that strongly converges to u, in
LY(R), and set

(2.10) ny, () = Tp(u), + e " Ti(yp;).

The definition of 7, ;(u), which is a smooth approximation of 7} (u), is needed to deal
with a nonzero initial datum (see also [P]); note that this function has the following
properties:

@.11) (14,;))y = v(Tp(u) — 1, j(w)), 7, ;(wX0) =T (y;), |1, ;w)|<k,
’ n,,;w)—>T,(w) stronglyin L2(0, T; H{(Q)), as v tends to infinity .

Similarly to the elliptic case (see [LP]), we choose

(2.12) Wy, = Top (U, — Tr () + Ti(uy) — 17, ; (1))

as test function in (2.4), with >k > 0. We state separately, in next lemma, the be-
haviour of the term ﬂ(un)t, w, ). Henceforward, we will denote by w(n, v, j, k) all

0
quantities (possibly different) such that

im lim lim lim w(n,v,j,k) =0,

h—+0 j—>+®0 vo>4+0 1=+
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and this will be the order in which the parameters we use will tend to infinity, that is,
first %, then v, j and finally A. Similarly we will write only w(n), or w(n, v), o(n, v, h)
to mean that the limits are made only on the specified parameters.

LeMMA 2.1. - Under the previous assumptions we have

T
f«un)t’ wn) zw(n,v,j, h).
0

PROOF. - First of all observe that, since |7, ;j(u)| <k, w, can be written in the fol-
lowing way:

Wy = Tho U — 17, () = Tho— iy — Tie())

t
Hence, setting G(t) = I T, _1(s—T,(s))ds, we have:
0
T T
@13)  [(Cundes wa) = [, 500 Tt =, ) +
0 0

+ [Suer =1, ;ONT) do — [ Gun(D) do + [ Gluga) do — [ Sy s (o — Tu(y 1)) o
[} Q Q Q

Define now the function R(y) =S, .« (y — 2) — G(y), with |z| <k; then

Ry)=8,,,(y+2)=0 where |y| <k,
R' W) =Thi(y—2)—Th(y— T (y)) =0 wherey=k=z,
R'(y)=0 wherey < —k<z.

Hence for every z: |z| <k, we have R(y) = 0 for every y in R, and since |7, ;(u)| <k
we get, from (2.13),

T T
(2'14) [<(un)t9 Wn> = I((ﬂ v,j(u))tv Th+k(un - ”v,j(u)» +
0 0
+ IG(uOn) dx - ISh+k(u0n —Ti(yp;))de.
Q o
Using (2.11) we have:

T
f<(nv,j(u))tr Th+k(un - nv,j(u))) = v[(Tk(u) - nv,j(u))Th+k(un_ ”v,](u))dxdt s
0 Q
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so that as » tends to infinity we find:

T
[(G1s, 5@, Tii = 7,,500)) =
0
= () + [ (Tuw) = 17,,5) Ty s — 1, (W) dudt =
Q

=w(n)+v j w—1n,,;w)Thir(w—1n, j(u)dedt +
{|u] <k}

+ f (k—n,, ;W) Thsr(w—1, (w)dedt +
{u>k}

+ j (k-7 ;) Ther(u—n, ;(u)dedt.
{u< -k}

Since |7,,;(u)| <k, last three terms are positive, hence we deduce from (2.14), letting
n and j go to infinity,

T
J((un)t, wy) = w(n) + jG(uo) - JS,H,C(uO — Tp(ug)) dx + w(n, 7).
0 2 o]

Since we have |G(ug) — Sy (uo ~ Tie(to))| < 2k | U | X {jug| > 1}, it follows that

Jm [ Guo) — [ Sy (2o = Ty(ue)) de = 0,
Q Q

and so

T

J((un)t, we) = o, v, i, k). =
]

Henceforward, the proof will follow the lines of the elliptic case treated in [LPJ;
first of all, Lemma 2.1 allows us to write:

@2.15) ja,,(x, W, Vi) Vi, dac dt < jfnwn +wln,v,j,h).
Q q

Now, note that Vw, =0 if |u, | >h +4k; then, if we set M = h + 4k, splitting the
integral on the left hand side of (2.15) on the sets {|u, | >k} and {|u, | <k}, using the
fact that a(x, ¢, s, £)-£= 0 and a(x, t, s, 0) = 0, we have, for n large (for simplicity we
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will omit hereafter the dependence on x and ¢ in the function a(x, t, s, &)):

(2.16) [an(un, Vau,) Vo, dac dt = j Ty (), Vo (10)) Vatr, dv dt =
Q Q

> [alTulwy), Tu(w)) V(Tilwy) = 17, 5(0) dardt —
Q

-~ j le(Ta (), YTag ()| V7, ;(w)| dewdit .

{lua | > &}
Last term can be dealt with in the following way:

Ia(TM(un)v VTM(un))I lvﬂ y,j(u)l dedt <
{1 | >k}

< j T (), VT3 ()| |VTx(w0) | di it +
{lun ] >k}

+ j 6T (), VTa ()| |V, () — VT (w) | dawdit .
Q

Reealling that M = h + 4%, we note that, for fixed k, in virtue of (2.9) and the growth
assumption (2.2), a(Ty(u,), VT (u,)) is bounded in L2(Q)" with respect to », while
| VT:(%) | X {ju,| >} Strongly converges to zero in L2(Q). Moreover we can use (2.11) to
obtain:

(a( Ty (), VTa ()| [V, j(0)] < 00(n, v).
{Ja] >k} '

Last inequality, together wit (2.15) and (2.16), allows us to deduce:
[ o), VTu(n)) VTuly) = 7, 5(u)) dwdt < [y, dwdt + i, v, j, ),
Q Q
which yields, thanks to (2.9) and (2.11),
ja(Tk(un)’ VTk(un)) V(Tk(un) - Tk(u)) dxdt s ffnwn dxdt + w(’"ﬂ v, j’ h') ’
Q@ Q

where w(n, v, §, k) includes, at every new step, all the terms which will go to zero once
the parameters will tend to infinity in the prescribed order. As the right hand side is
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concerned, we have, simply using the Lebesgue theorem,

[fow, dwdt = [ T (u = Tuw) + Tutw) 1, ;W) dedt + () =
Q Q

= [fTo = Ty dwdt + w(n, v) = w(n, v, b).
Q

Therefore we can conclude:

f [T (), VT (%)) — a(Ti (), VI3 ()N VT () — VT ()] dedt <
Q

Solr,v,j, h) - fa(Tk(un), VTi(u) V(T (uy) — Ti(u)) da dé.
Q

Using (2.9) for the last term in the right hand side and letting first » tend to infinity,
then respectively v, j and &, we can finally write:

217 lim_ J[a(Tk(un), VTi(un)) — Ty (), VT (u)VTi () — VT (w)] dxdi =0,
Q

which is enough to obtain, using assumption (2.3) (see LLemma 5 of [BMP]), that
Ty (u,) —>Ty(u)  strongly in L2(0, T; H3(Q)),

for every fixed k>0. =

REMARK 2.1. - In the proof of Theorem 2.1 it can not be assumed that u,, converges
to uy only weakly in L!(£), in fact the strong convergence of u,, has been essentially
used in the proof of Lemma 2.1. Let us also remark that the use of the approximation y ;
of u, is also necessary, we can not take the same u,, instead of y ; since we need to pass
first to the limit in 7 in all the integrals, and of course Vu,, does not converge in

L2Q).

REMARK 2.2. — The previous proof works exactly in the same way under a milder co-
ercivity assumption on a(z, t, s, §). To be more precise, assume that instead of (2.1) the
following condition holds:

2.18) a(z, t, s, E)-E=ay|E|?, Vs:|s|sk, a;>0.

Clearly, (2.18) includes the classical case where a; = o > 0 for every k, but it goes fur-
ther since it admits the possibility that the sequence a; converges to zero as k tends to
infinity, a case which corresponds to a degenerating coerciveness assumption, and it is
satisfied for instance if a(x, ¢, s, &) = /(1 + |s|)* with 1> 0.
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With this hypothesis (2.6) becomes
.[Sk (un(‘[)) dx +a IcJ' J' |VTk(un) |2 dxdt = k(”uOn “LI(Q) + ” fn ”Ll({)) ) = Ck ’ Vt € (Ov T) ’
2 02

which still implies that T),(u,) is bounded in L2(0, T; H} (Q)) for every k > 0 and u, is
bounded in L * (0, T; L1(R2)), hence

klirP meas {(z, t): |4, | >k} =0 uniformly with respect to = .

As in the proof of Theorem 2.1, this is enough to deduce that there exists a function % in
L= (0, T; L'(£2)) such that, for a subsequence, «, converges to % almost everywhere in
Q and T (u,) converges to T} (u) weakly in L2(0, T; H} (£2)), strongly in L2(Q) and al-
most everywhere in §). Hereafter, the rest of the proof of Theorem 2.1 applies straight-
forwardly in this setting too; it only remains to point out that Lemma 5 in [BMP], which
gives the conclusion by (2.17), is applied to the coercive function a(x, t, T)(s), &), for
every k>0. =

Let us give an application of Theorem 2.1, in order to obtain for the following initial
boundary value problem similar results to those proved in [LP] and [B] for the station-

ary case:
uy — div (e, t, u, Vu) + ®(u))=f in Q,
(2.19) u=0 on ¥,

u(x, 0) = ug(x) in ,

under assumptions (2.1)-(2.3), and with @ e C°(R, RY). The absence of growth condi-
tions on @ may imply that the term ®(u) does not belong to L(Q)", so problem (2.19)
can not be formulated in the sense of distributions. For the same reason, in the elliptic
case (see [BDGM]) it has been adapted to this setting the definition of renormalized
solution introduced in [DL] in a different context. Then this notion has been extended
to parabolic equations in [BIMul]; it formally consists in multiplying (2.19) pointwise by
S’ (u), where S is a smooth function on R such that S’ has compact support, so that all
the integrals in the weak formulation are in fact taken on the set { |u| < L}, where L is
such that supp(S')c{—-L, L].

DEFINITION 2.1. — A measurable function u in L*(0, T; W 1(R)) will be said a
renormalized solution of (2.19) if T,(u) belongs to LZ%(0, T; H}(Q)) for every
k>0,

(2.20) Jim [ @ t,u Vo) Vudzdt=0,
* {(, t: h<|u|<h+1}

u satisfies in the sense of distributions
@221  (S(u)),— div(alx, t, u, Vu) S’ (u) + D(u) S'(u)) + alx, t, u, Vu) VuS"(u) =
=8"(u) f—S"(u) &(u) Vu,
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for every S e C ™ (R) such that S' has compact support, and v satisfies the initial con-
dition in the sense that S(u) belongs to C°([0, T]; L'(R)).

Let us note that all the terms in (2.21) have distributional meaning since §' has
compact support and we have asked that T)(u) is in L2(0, T; Hy(2)) for every k> 0;
as far as (2.20) is concerned, it is usually required in order to have uniqueness. Thus we
are able to obtain the following existence result, which estends those obtained if @ =0
and with standard growth conditions in [BIMu], [Pr] and [BDGO] (here also with a
measure as right hand side).

THEOREM 2.2. — Assume thot a(z, t, s, &) sotisfies (2.1)-(2.8), and that ® belongs
to C°(R, RY), feL (Q), uge L'(Q). Then there exists a renormalized solution u
of (2.19).

Proor. — We set @,(s)=d(T,(s)), and we consider the approximating prob-
lems

(u,); — div(a,(x, t, u,, Yu,)+ D,(uw,))=,f, in Q,
(2.22) u, =0 on %,

U, (2, 0) = up, (2) in 2,
where f, and u, are sequences of smooth functions converging strongly to fin L(Q)
and to u, in L'(Q) respectively. The existence of a solution u, in L2(0, T; HJ(2)) N
NC(0, TI; L3(R2)) of (222) (a distribution solution with test functions in
L%(0, T; H}(R))) can be proved easily by means of Schauder’s fixed point theorem;

then we take T} (u,) as test function in (2.22) and we observe that for » sufficiently
large we have:

[ @ ) VT4 () davdt = | S(Tuwa)) VT4(wy) dudit,
Q Q

Y
so that, by the divergence theorem in Sobolev spaces, denoting @(y) = f &(z) dz, it
follows: 0

T T
f@n(un) VT, (u,) dadt = fdtfdiv(@(Tk(un)))dx= jdt j (T (w,))Fdo=0
Q 0 2 0 2

where 7 denotes the unit outward normal to 322. Therefore we easily see that again
we find estimate (2.6), which implies, like in the proof of Theorem 2.1, that there exists
a measurable function % in L*(0, T; LY(Q2))NLI0, T; W 4(Q)) for every
g < (N +2) /(N +1) such that T(u) belongs to L?(0, T; Hg (2)) for every k> 0 and
up to subsequences

u,—4 ae. in Q,

T.(u,)—T,(u) weakly in L2(0, T; H(R)) for every k>0.



ALESSIO PORRETTA: Existence results for nonlinear parabolic equations, etc. 155

In order to prove the strong convergence of truncations, we can repeat the proof of
Theorem 2.1, since the added term ~div (% ,(%,)) can be dealt with as follows: when
we take w,, defined in (2.12), as test function in (2.22), since Vw, =0 on the set where
|4, | >k + 4k, setting M = h + 4k we can write

jqbn(un) Vv, da df = f¢(TM(un))an ddt .
Q

Since @(Ty(u,)) strongly converges to @(Ty(w)) in L2(Q) while Vw, weakly con-
verges to VTy(u — T,(u) + Tp(u) — 7, ;(uw)) in L%*(Q) as n tends to infinity, we
obtain:

[ @) Voo, didt = [ STy () Vot (w — Tyw) + Tu(w) = 7,,;w)) dwdt + w(n).
Q@

Then, letting v go to infinity we get:

2.23) j @, (u,) Vw, dxdt = j B(Ty () VToy (u — Ty(w)) dx dt + w(n, v).

Applying again the divergence theorem to the function ¥(y) = J D(2) X {h<|z) <h+2k} 02
we conclude from (2.23)

T
jgbn(u,,) Y, dedt = w(n, v) + jdtjdiv(qf(TM(u)))dx = w(n, v).
Q 0 Q

This is the only change required in order to apply the proof of Theorem 2.1 to the sol-
utions of (2.22), then we can conclude that

(2.24) T.(u,)— T, (u) strongly in L2(0, T; H}(RQ)) for every k>0.

Moreover, choosing T (u, — Tj(u,)) as test function in (2.22) and reasoning as above
we get:

a(x, t, u,, Vu,) Y, dadt < jfn:r1 (uy — Ty () dac dt +
{h<|u,|sh+1} Q

o [ luwldrs [ |fldedt+ [ uen|da,

{luon | > 1) {lwn | > 1) {luon|>#)

which implies, passing to the limit first in % then in 4 (for the term in the left hand side
we use Fatou lemma), that u satisfies (2.20).

In order to show that « is a renormalized solution of (2.19), we multiply (2.22) by
S’ (u,), with Se C *(R) and S’ having ecompact support, say supp(S’')c{—L, L]. Since
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we have S'(u,)(u,);=(S(u,));, we obtain the following equality in the sense of
distributions:

2.25)  (S(us)); — div(an(®@, €, Un, Vitn) S () + D () S () +
+a,(x, t, Uy, YUu,) Vi, S"(u,) =8’ (w,) f~ 8" () @, (ut,) Vo, .
Now observe that
an (2, £, Uy, Yu,) ' (u,) = alae, £, Tp(u,), VI (,)) S (T (wy)) ,
so that thanks to (2.24), and the growth assumption (2.2), we have
(%, t, Uyy Yu,) 8" () = al, t, Tp(u), VI (w))S' (Tp(w)) = alx, t, u, Vu) S’ (u),

and the convergence is strong in L%(Q)Y. With an identical reasoning we have
that

a, (X, t, Uy, Yu,) Y, S"(u,) = alx, t, u, Vu) VuS"(u)  strongly in L1(Q),

and the other terms are dealt with in the same way, using always (2.24) and the
fact that S’ has compact support. Thus, passing to the limit in (2.25) as n tends to
infinity, we find that « is a renormalized solution of (2.19) since it satisfies (2.21).
As far as the initial condition is concerned, it is enough to observe that S(u) be-
longs to L%(0, T; H{(R)) and from the equation, (S(u)), belongs to L(Q)+
+L%0, T; H'(2)), hence by Theorem 1.1 we have that S(u) belongs to
C(0, T, L'(2)). =

3. - Equations with lower order terms having natural growth conditions.
In this section we consider the following Cauchy-Dirichlet problem:

u; — div (a(z, t, u, Vu)) + g(x, t, u, Vu) =f in Q,
(3.1) u=0 on X,

u(x, 0) = uy(x) in Q,
where a(x, ¢, s, §) satisfies assumptions (2.1)-(2-8), and the function g(x, ¢, u, Yu)
plays the role of an Hamiltonian with quadratic growth with respect to the gradient,
that is g(x, t, s, &) is a Carathéodory function (i.e. g(x, t, s, &) is measurable with re-

spect to (x, ¢) and continuous in s and &) for which there exist positive constants y
such that:

B2 |gx,t,s, &) |<yr(1+]E|%), VseR:|s|<k, VEeRY,
and ae. (#,0)eQ, Vik>0,

B3 g(x,t,s,E)s=0, VseR, VEeRand ae. (x,%t) in Q.
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Note that no growth assumptions from above are made either on a(x, ¢, s, &) or on
9(x, t, s, &) as functions of s; as far as the data are concerned, we will take

fel'@Q), 20, wuel'(Q), %=0.

We remark that the assumption of positivity on the data is not necessary to find a sol-
ution of (3.1), on the other hand the extension to nonpositive f and %, does not add sub-
stantial difficulty to the problem apart from rather tedious technicalities.

First of all, we prove a compactness result on the truncatures of the approximating
solutions, which extends the one obtained in [DO], since we will not assume to have an a
priori bound in the space L2(0, T; H{(Q)).

THEOREM 3.1. — Assume that (2.1)-(2.3) and (3.2)-(3.3) are satisfied and that {f,}
and {uy,} are two sequences of smooth functions such that

20, f.—of weakly in LY(Q),
U =0, Ug—uy Strongly in L1(Q).
Then if {u,}cL?(0, T; H}(R)) is a sequence of solutions of
() — div (a(x, , u,, Vu,)) + g(x, t, u,, Vu,) =f, in @,
34) u, =0 on %,

U, (2, 0) = 2y, () n Q,

there exists a measurable function u such that T,(u) belongs to L%(0, T; H} (Q)) for
every k>0 and, up to subsequences,

T(u,) — T (u)  strongly in L%(0, T; H}(Q)) for every k>0,

g(x, t, Uy, Vu,) —>g(x, t, u, Vu)  strongly in LY(Q).

Proor. — We divide the proof in four steps.

Step 1:

Here we find the usual a priori estimates; first of all observe that thanks to the sign
condition assumed on g it is easily proved (it suffices to take %, , the negative part of
u,, as test function in (3.4)) that since f, and u,, are positive then u, is positive as
well.

Moreover if we take T} (u,) as test function in (3.4) the term with g(x, ¢, u,, Vu,)
can be dropped out by (3.3), and we obtain the estimate (hereafter we will denote by c;
positive constants not depending on »):

(3.5) jsk(un)(r)dm+jj|VTk(u,,)|2skc0, Vre(0,T), Vk>0.
Q 0 Q

Like in the proof of Theorem 2.1, we deduce that there exists a measurable function
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in L=, T; LY(2))NLY0, T; Wg-9(R)) for every ¢ < (N +2)/(N+1) such that
T.(w) is in L2(0, T; H}(R2)) for every k>0 and, up to a subsequence,

8.6) Ty(u,)— Tiw(u) weakly in L2(0, T; H{(£2)), strongly in L2(Q) and a.e. in @ .
Consider now a function o5 e C'(R) such that

05(s) =0 if |s|<h,

04%(s) =sign(s) if |s|=zh+e,

©5)' ()20, VseR.
Using @5(u,) as test function in (3.4) we have, setting R;(s) = f o4 (t) dt,

jR,,(un(T))dmja(x by Uy V) Vit (05) () d dt +

+ jg(x, £ U, Vtty) 05 (%) dac dt < jfn@;(un) dwdt + JR;f(uOn)dx.
Q Q Q

Using (2.1), the fact that @} is non decreasing and that 0 < Rj(¢) < |t|x (j¢>n We
get:

[o@, t, w, Vi) @i dedt<s [ |fi|dedt+ [ |, |de.
Q {lun|>h} {luon | >R}

In virtue of the sign condition on g we can apply Fatou lemma to obtain, as ¢ tends to
Zero,

3.7 [ o, tow, V) dedt< [ |fuldedt+ | |uge|de.

{lun | >k} {lon | >k} {luon | >R}

Step 2:

Let again #, ;j(u) = Ti(u), + e " T;(y;) be the regularization of Tk(u) which has
been defined in (2.10) (hence v ; is smooth aznd converges strongly to u, in L1(R)), and
consider the auxiliary function ¢ ,(s) = se**", already used in [BMP] (and in several pa-
pers afterwards) to deal with an Harmltoman term growing quadratically with respect
to the gradient. Now we take ¢, (u, — 7, ;(1))~ as test function in (3.4), with 4 to be
chosen later; note that this is an admissible test function since #,, ; is bounded by k.
From the equation we get (henceforward we will omit to write explicitly in all the inte-
grals the dependence on x and t):

T
f((un)t, @y =1, (w) ")+ fa(un, Va,) Vu, =1, ;(u))” @3 (u, — 1, ;(u))” dedt +
0 Q

+ fg(um Vuy) @5 (U, — 1, ;(u))” dedt = anw(un —7,,;(w)” dedt,
) Q
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from which it follows:

(3.8 [ { (@, Yat) = @lth, V7, ;())) Vs — 71, j(U)) } -

{we sy, jW)}

@iy =7, ;) dedt < ffnw(un —n,,;(u)” dedt +
Q

T
+ Ig(unv Vun) (pl(un - ”v,j(u))_ daedt + I((un)ty (pl(un - nvj(u))_)"’
Q 0

+ Ia(un’ V”v,](u))v(un - ”v,j(u))_ (Pi(un had 7]1,,]'(%))_ dxdt.
Q

Observe that since 7, ;(u) is bounded by k, we have that ¢ ; (u, — 7, ;(#))” =0 on the
set where u, >k, hence we have

Ja(um Vi, ;) V(u, — 17, ;(w)” @i (u, =, j(u))” dedt=
Q

= Ia(Tk(un)a Vﬂ v,j(u))v(Tk(un) - ”v,j(u))_ (pj.(un - "v,j(u))_ dadt .
Q

Using now (3.6) and (2.2), we have that a(T)(u,), V,,;(w)) @3 (u, — n,, j(u))” strongly
converges in L2(@)", as » tends to infinity, in virtue of Lebesgue theorem, hence we
can pass to the limit to get:

im |a(u,, V1, ;@) V(u, —n,, ;@) @i(u, —n, ;) dedt=

n—>+w

= fa(Tk(u), V., ;) V(T (w) —n,, ;)™ @i (w—1n,, ;(u))” dadt.
Q

Recalling that », ;(u) converges to T,(u) as v tends to infinity strongly in
L%(0, T; H}(2)) and almost everywhere in @, we obtain, adopting the same notation
as in Section 2,

ja(u'm V’?v,j(u)) V(un - ”v,j(u))_ lp,,% (un - ”v,j(u))‘ dxdt= w(n, V)-
Q

By the same arguments it can be proved that the first term in the right hand side
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of (3.8) goes to zero as first # and then v go to infinity, so that (3.8) implies

(3.9) f {(a(un, Vu,) — alun, V17, ;(w))) V(u, — 17, j(w))}-

{un<n,, j(w)}

iU, —n,, ()" dedt < fg(un, V) @5 (s —1,,;(u))” dadt +
Q
il
+ f((un)t, @, —n, ;)" )+ o, v) <o, v) +
0

T
+7kf | Vit |2 @ 2 (o — 1, (w)) ™ dacdt + f((un)t, @ (u,—m, ;(U))7).
Q 0

We also have, by (2.1), and since ¢ ;(u, — 7, ;(%))” =0 if u, >k,
af | Vi 2@ (uy — 1, ;(0))” daedt <

Q
< fa(um Vi) V(= 17y, 5 () @1 (U — 71, (%))~ ddt +

Q

+ Ia'(unv Vun) V”v,j(u) (pl(un - nv,j(u))‘ drdt <
Q

< J {(@(tn, Vutz) — alta, V7, ;(w))) V=1, ;W) } @ 1 U — 7, j(w))™ daxdt +
{un <9, ;(w)}

+ [alTuun), V(Tu(a)) Vi, ;) @1 (g = 7, 5(w)) ™ dvlt +
Q
+ [ alon, V1, 50)) Vot = 1,,50)) 9. = 1, 5(0)) ™ dvit .
Q

Recalling the convergence of 7, ;() to Ty (w) in L2(0, T; H{(£)) and using (3.6) and
the fact that ¢, (u — T (u))” =0 we find, as n and v tend to infinity,

af | Ve, |20 (uy — 1, (0))” dadt < w(n, v) +
Q

+ j {(au, Vi) — @i, Vi, ;D)) Vi — 17, j(u))} @2 (0 — 7,5 ()" dacdt,
{u, <7, j(W}
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and so (3.9) becomes

f {(atuy, Vu,) ~ alu,, V1, ;(w))) V(u, - m,j(u))}(m - —w) dedt <

{un<n,,;m)}

T
<an, V) + [()y @30 =1, 5w)7).
0

Choosing 4 large enough so that ¢j(s) — ﬂ(p ROE 121. for every s in R, we get:
a

g (a(un’ Vun) - a(un’ an,](u))) V(u'n - ﬂv,j(%)) dxdt =

{7/'ns ﬂv,j(u)}

T
Sw(n, V) + I«un’)t’ <pl(un-77v,j(u))_>'
0

This step will be concluded after the proof of the following lemma.

LemMA 3.1. - We have:
7
J’((un)t’ (p}.(un - ”v,j(u))_> S w(n9 V;j)-

PROOF. ~ Let @7 (s) = Jtpl(t ) dt; then we have

j((un)t,w(un Ny, ()" )—fdn Uy, — 1, ; ()T dac

~ [ @5 (o — Tuly ) do + [((m,j(u))t, @40t = 7,,50))7),
2 0
which yields, since @ (s) <0 and by definition of the v-regularization,
ﬁ(un)t, @iy =1, ;)" )< - f¢; (ugn — T () der +
0 Q
+vI(Tk(u) — 17y, j))@  (tty — 77, ()™ dewdit .
Q

Now we can pass to the limit as n tends to infinity by means of the Lebesgue theorem;
also using that @, ")t <0, we get:

T
[(@e @100 = 1, ;0)7) < — [ @7 (g~ Tu(w ) do + ().
9 Q
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Thus the conclusion of the lemma follows by letting j go to infinity and recalling that
@;(s) =0 if s is positive. =

Using this result we have thus proved that

(3.10) [ (o, V)~ aluy, V1, ;@) Vi~ 17, ;) dedt < w(n, v, 5).

{uns 75, j(0)}
Step 3.

In this step we will closely follow the technique already used in the proof of Theo-
rem 2.1; indeed we take

Wy, = Tox (g — Th(u) + (Tr(u,) — 11, j(w))*)

as test function in (8.4), with 2> k. Since w, is positive, we easily obtain from the
equation

T
3.11) f((un)t, w,) + fa(un, Vau,) Vw, dedt < ffnwn dadt .
0 Q q

In order to deal with the first term of (3.11) we observe that the function w, can be
written as w, = T+, — 1, ;(w))* = T),_ (U, — Ti(u,)). Defining the function of
real variable

T T
Syt i(®) = IT,Hk(s*)ds and G(t) = jTh_k(s —T.(s))ds,
0 0
we have

T

[()ss ) = [Sia = ., ;@IXT) do = [ Gl (1)) der +
0 Q Q2

T
+ JG(%n) de — _[Sh++k(u0n = Ty () da + I((”v,j(u))ty Thosic(uy — Wv,j(u))+>-
@ Q 0
Since S, 1 (y —2) — G(y) = 0 for every yeR if |z| <k, we get:
T
I«un)t? W,) = VJ(Tk(u) =, j(U)) Tp o p (U — 1, ;)" dacdt +
0 Q

+ IG(uOn) de — JSh++k(u0n = Ty(y;))de = VI(Tk(u) =7, ;)" Thor(u—n, j(u)* dedt A
Q Q Q

+ [ Gluo) do — [yt 1 o ~ Tilw ;) dav + o).
Q Q



ALESSIO PORRETTA: Existence results for nonlinear parabolic equations, etc. 163

Proceeding as in the proof of Lemma 2.1 we then find, as j and ~ tend to infinity,
T
[(@ades wny = 0(m, v, 5, ),
0

which together with (3.11) implies
8.12) fa(un, Vau,) Vv, de dt < jfnwndxdt +awn,v,j,h).
g q

With the same arguments used in Theorem 2.1 it can be proved that

j al,, Vu,) Voo, dxdt = j ATy (W), VT4 () V(T ) — 17, ;)" dwdt + w(n, v),
Q Q

hence by (3.12) we have
f (a(T(uy), VT () — a(T (), V71, ;) V(T () — 17, ;(w))* dacdt <
Q

s J’fnwn - Ia(Tk(un), V"v,](u))V(Tk(un) - 7]v,j(u))-'- dxdt + w(n’ V,j! h)-
Q Q

Using (2.11) and (3.6), together with assumption (2.2), last term go to zero as first 7 and
then v and % tend to infinity, so we deduce:

(313) j(a(Tk(un)’ VTk(un)) - a‘(Tk(un)7 V’] v,](u))) V(Tlc(un) - nv,j(u))+ dxdt <
¢ <o, v, j, h).

Step 4.

Since 7, ;(#) is an approximation of T,(u) in the strong topology of
L2(0, T; H{(R)), and T,(u,) strongly converges to T} (u) in L2(Q), we can write

[ (AT (), VT () — ATy (u), VT3 (1)) V(T (00) — Ty (w)) diw dt <
9

< f (T (u), VT () — (T (), V7, () V(T () — 7, j(w)) dac dt + w(n, v),
G _

from which it follows (recall that (u, — 7, ;)™ = (Ty(u,) — 7, ;)™ ):
J(a’(Tk(un), VT (ue)) — Ty (%), VT, (4))) V(T () — Tie(w)) dic dt <
Q

< [(@(TCun), VTn)) = alTiCtn), Vi1,,50))) V(Tit) = 1,5 w)) davdlt +
Q

[ (e, V)~ alun, Vi, )) Vet = 1, w) dedt + an, v).
{un <77y, 5000}



164 ALESSI0 PORRETTA: Existence results for nonlinear parabolic equations, etc.

Thus thanks to (3.10) and (3.13) we have proved that

tim [ (@(Tu(), VTe()) — alTuwn), VT, )) V(Ty() = Ty(w) dwdt =0,
Q

so by Lemma 5 in [BMP] (it is here that we use assumption (2.3)) we obtain:
3.19) Tv(u,)— Ti(u)  strongly in L%(0, T; H3(R)) for every k>0.
Now observe that we have, for every o> 0,
meas {(z, t): |Vu, — Vu| > o} <meas{(x, t): |u, | >k} +
+meas {(x, t): |u| >k} + meas {(x, t): |V(Tp(u,)) — V(Ti(w))| > a},

then as a consequence of (3.14) we also have, that Vu,, converges to Vu in measure, and
therefore, always reasoning for subsequences,

Vu,—Vu ae. in Q,
which implies
g(x, t, uy,, Yu,) —>gx, t, u, Yu) ae. in Q.

In virtue of Vitali theorem, in order to prove the strong L! compactness of
g(x, t, u,, Vu,), it is enough to show that it is an equi-integrable sequence. Indeed we
have, for a subset £ of Q,

j]g(un,Vun)ldmdt= j |9, Vi) | diw it + j |90k, Vuu,) | ddt <
E

E0 {|u,| Sk} E0 {|un| >k}

< [y +|VTw) [Ddwdt+ [ |fu|dwdt+ [ Jug|de,
& {l%a| >k} {luon | >k}

where we have used estimate (8.7). Recalling that |VT;(u,) |%, f, and u, are all strong-
ly convergent sequences, it is possible to fix a k sufficiently large in the previous in-
equality to get that, as meas (E) tends to zero, all the three terms of the right hand side
go to zero uniformly with respect to %, that is g(u,, Vu,) is equi-integrable. Thus we
have obtained that

gz, t, U,, Vu,) =gz, t, u, Vu) strongly in L1(Q). =

Reasoning as in Theorem 2.2, the convergence of g(x, , %,, Vu,) in L’(Q) and the
strong convergence of truncations in LZ(0, T; Hj(£2)) allow to deduce the following
existence result.

THEOREM 3.2. — Let assumptions (2.1)-(2.3) and (3.2)-(3.3) be satisfied and let f and
uo be positive functions belonging to L'(Q) and to L'(£2) respectively. Then there
exists a positive renormalized solution w of (3.1) in the sense that u is in
L=, T; LY(2))NLI0, T; Wg9(R)) for every ¢<(N+2)/(N+1), T\(u) belongs to
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L2(0, T; H}(Q)) for every k>0,

(3.15) hlim f a(x, t, u, Vu) Vudedt=0 ,
—)+m{(m,t):h,sush+l}

u satisfies in the sense of distributions
8.16) (S(w)), —div(alx, t, u, Vu) S’ (u)) +
+alx, t, u, Vu) VuS"(u) + g, t, u, Vu) S'(u) =S"(u) f

for every S e C ™ (R) such that S’ has compact support, and u satisfies the initial con-
dition in the sense that S(u) belongs to C°(0, T; L'(2)). =

REMARK 3.1. - With minor modifications it is possible to find a solution if the right
hand side is of the form f+ y with fin L*(Q) and y in L%(0, T; H ~1(Q)).

REMARK 3.2. — The Dirichlet problem (8.1) (as well as problem (2.19) actually), under
assumptions (3.2)-(3.3), can also be formulated in the framework of entropy solutions.
We recall that this notion has been first introduced in [BBGGPV] for elliptic equations,
then extended to evolution problems in [Pr] (see also [AMST)], [P]); let us precise this
definition (T (s) and its primitive S,(s) are defined as before).

DEFINITION 8.1. — A measurable function u in L' (0, T; Wg'1(R)) is an entropy
solution of (3.1) if u belongs to L= (0, T; L(R2)), T,(u) belongs to L2(0, T; HJ (Q))
for every k>0, S;(u(-, t)) belongs to L'(RQ) for every te[0, T] and every k>0,
g(x, t, u, Vu) is in LY(Q) and u satisfies:

3.17) jsk(u — o)z) dz + J((ptTk(u — @) dt +j ja(x, t, u, Vu) VT, (u — @) dxdt +
2 0 0 Q

+”g(x,t,u,Vu) Tk(u—tp)dxdtsffka(u—¢)dwdt+fSk(uo—w(O))dx,
0 Q 0 Q o]

forevery te[0, T, k>0, and for all ¢ in L2(0, T; H}(R)) N L *(Q) such that ¢, be-
longs to LY(Q) + L?(0, T; H 1(Q)).

It is worth noting, like for the renormalized solutions, that all the terms in (3.17)
(the duality (-, -) in the second integral is between L(Q)+ L2(0, T; H 1(R)) and
L2(0, T; H}(R2)) N L *(Q)) make sense since T} (u — ¢) belongs to L2(0, T; H} (Q))
(indeed VTj (% — @) =0 if |u| >k + |||l =g ). Moreover the trace result in Theorem
1.1 implies that ¢ is in C([0, T}; L'(R)), and since |Sy(u — @)(®)|<|S,u(t))]| +
+k|p(t) | e L1(R2), the first and last terms are well defined.

The existence of one entropy solution can be deduced from our previous result on
renormalized solutions. Indeed, the solution obtained by approximation as before is in
L>(0, T; L*(2)) and S (u(-, t)) belongs to L(Q) for every k> 0. Then we choose
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in (3.16) S(s) = H, (s) with H,(s) = j h,(t) dt and
0

1, 0<s<mn,
n+1-3s n<ssn+1

hn(s)'_‘ ’ ’
0, n+l<s,

h,(—8), s<0,

and we take T}, (H,(u)— @) as test function in (8.16), with ¢ having the properties
asked above, and k > 0. Integrating by parts we obtain:

318 [S.Ha(w) - 9@ da + [(py, Te(Ho ) - @) dt +
Q 0

+ j Ihn(u.) alx, t, u, Vu) VT, (H, () — @) dedt +
0 Q

+ I Ih,{(u) alx, t, u, Vu) VuT, (H,(u) — @) dxdt +
0 Q

+[ [ot@, t, u, V) T (H, () - @) dedt <
0 Q

+ [ jka (H,(u) — ) dadt + jsk (H,,(up) — 9(0))d .
0 Q o]

Note that %, (%) converges to 1, while H,(u) converges to u, almost everywhere in @,
and moreover h,(u) = —sign(%) ¥ (n<juj<n+1}- We get from (3.18):

(319)  [Se(Huw) — @)@) da + [(@, Tu(Halw) - 9)) dt +
Q 0

+ I Ig(m, t, w, Vu) T, (H,(u) — @)dxdt +
0 Q

T

+ j jhn(u) ale, t, u, V) VT, (H,(w) — @) dx dt <
002

< j jka(Hn(u)—<p)dxdt+ fSk(Hn(uo)—¢(0))dw+
0 Q 2

+k J a(x, t, w, Vu) Vudedt .

{n<|ulsn+1}
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Since |H,(u)|<|u| we have, by the Lipschitz continuity of Si(s), that
0 <8, (H,(u) — @)t) <8, (u®)) +k|e) |,

hence by Lebesgue theorem

(3.20) lim [ S (H, (W) = 9)(0) do = [Sy(u— ¢)@) da,
(] 2

and similarly

3:21) Jm (S, (o) ~ 9(0)) di = [ 84 (o =~ 9(0)) dix .
2 2

Moreover, we have that VT, (H, () ~ @) = 0if |H, () | > k + ||@llL =gy, but [H,(u) | >n
if |u|>n and H,(u) =u if |u|<n, hence for n >k + ||¢|,~q We can write, setting
M=k + |gllo:

f Ihn(u) alx, t, u, Vu) VT, (H, () — @) dedt =
0 R

= f jkn(u) a(x, t, Ty (), VT () VT (Ty (u) — @) dzdt,
00

which yields

622  lim_ j j h,(w) a(, t, u, Vu) VT, (H, () — @) da dt =
0 Q
= j j al, t, Tyy(w), VT3y()) VT, (Tyy (1) — @) der dt =
0 Q

= [ ja(m, t, u, V) VT, (u — @) dwdt .
0 Q

Similarly we see that T,(H,(u)— ¢) converges to Ty(u—¢) strongly in
L%(0, T; H (2)) and weakly-* in L *(Q), so that we deduce

(3.23) Jdim (@4, TuHow) - @) dt = [(@1, Tulu~ @) >dt.
0 0

Putting together (3.20)-(3.23), using (3.15) and the Lebesgue theorem, we pass to
the limit in (3.19) as » tends to infinity and find that « is an entropy solution
of 1), =
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REMARK 3.2. — Both the result of this section and those of Section 2 can be proved in
exactly the same way for similar divergence form operators which have a growth of or-
der p with respect to the gradient, on the model of the p-laplacian. For the sake of sim-
plicity, we have chosen here to set our problems in the space L2(0, T; H} (R2)) instead
of LP(0, T; Wi P(Q)).

4. - A trace result.

Here we are going to give the proof of Theorem 1.1; let us point out that this trace
result, as far as we know, is new and represents the more natural extension to the L'
framework of the classical theorem which states that if » belongs to L2(a, b; H}(R2))
and u, belongs to L%(a, b; H ~1(R2)) then % is in C([a, b]; L3()).

Proor orF THEOREM 1.1. — Let u be a function of the space
Vi(a, b)) = {u: 2 x [a, b]>R: ue L*(a, b; W} P(RQ)),
u,eL? (a, b; W LP(Q))+ LY(Q x (a, b))}.

By classical arguments (for instance the proofs of Lemma 1 and Lemma 2 in Chapter
XVII, n.2 of [DaL] can be rewritten for our case in the same way) we have the follow-
ing things: first, there exists a continuous prolongation operator P from V{((a, b)) to
VP(R), so that we can find a function Pu in LP(R; W' P(Q)) with (Pu), in
L? (R; W™LP(2))+ L' (2 X R) such that Pu = in [a, b]; in addition, it is possible
to find a sequence {y,} cC,” (R; W{:?(2)) such that v, strongly converges to Pu in
VP(R), that is

@1 Y.~ Pu strongly in L?(R; W} P(Q)),
. ()= (Pu), strongly in LP (R; W b?(Q))+ LY (2 xR).

Let now S;(s) = JTl(t) dt; we have
0

t
d
[$iwu-v®rda= [ = [$1p,-wu)0) dudo=
P _% dog

t
= [ [Tiwu= 9@~ @) )0) dado.
-—® R
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Since by (4.1) v, is a Cauchy sequence in V' (R), we can write:

4.2) [$:@u-pu)®) de<wtn, m), VseR,
0

where w(n, m) denotes a term which goes to zero as #» and m go to infinity. On the
other hand we have:

|(¢n—¢m)(3)|2

[S1(wn~wu)s) du= . da +
Q {l¥a—9vml<1}
1
R R S Ol I
2
{1¥a=¥m|=1}
- 2 -
2 2
{an_Wm|<1} {|Wn_¢m|;1}

which yelds, by (4.2),

Iw)n_wml(S)dx= j |0 — ¥m|(s) de + J' |¢n—¢m|(s)dxs
2 {|¢n_¢m|<l} {an‘Wlel}
1/2
s f |[Wn—¥m|2(8)da| |RQ'2+20(n, m) <
{l'/’n—’/’m|<l}

< (2|2|w(n, m)2+20(n, m).
Therefore 1, is a Cauchy sequence in C2(R; L'(2)) (the space of continuous functions
from R in L'(2) having compact support) equipped with the topology of uniform con-
vergence, and since the limit of 9, in VP(R) is Pu we have that
Y,—Pu in CO(R;L(2)),
which implies, since Pu = u in [a, b], that « belongs to C([a, b]; L'(2)). m

An immediate application of this trace result is the following one.

THEOREM 4.1. — Assume that A(x, t, s) is a Carathéodory function such that, for
positive constants a, f:

4.3) O<as<A(x,t,s)<fB, VseR, ae (x,t)e@
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and let (3.2)-(3.3) be satisfied together with the following assumption:
(44) 3L, 6>0:9(x,t,s, &) sign(s) =6|&|?,

Vs: |s|=L>0, VEeRV,ae (x,t) in Q.
If fis in LY(Q), then there exists a solution u of

uy— div (A(x, t, u) Vu) + g(x, t, u, Vu) =f in Q,
4.5) u=0 on X,
w(, 0) = ug in Q,

such that w is in L*(0, T; H (2)), g(x, t, u, Yu) is in L' (Q) and the equation is sat-
isfied in distributional sense, if and only if uy belongs to L'(R).

PROOF. — If there exists a distributional solution % in LZ2(0, T; H{()) with
9(x, t, u, Yu) in L'(RQ), then by Theorem 1.1 u belongs to C([0, TJ; L'(£2)), hence %,
must be in L!(L). On the other hand, the existence of at least one solution of this kind
has been obtained by approximation in Section 3. It is enough to observe that the se-
quence {u,} of solutions of

(u,), — div (A(x, t, u,) Vu,) + 9z, t, u,, Vu,) =f, in @,
(4.6) %, =0 on X,
U, (2, 0) = uy, () in Q,
is bounded in L2(0, T; H (2)), so that the limit function, which is a distributional sol-

ution of (4.5), belongs to L2(0, T; H}(R)) as well. Indeed, taking T} (u,) as test func-
tion in (4.6) we get:

[$1Gua(D)) v+ @ [ | VT () |2 doit + [9@, t, wa, Vi) To ) dedt <
Q Q e

SI/“fn”Ll(Q) + J-SL(MOn) dx ’
Q

where Sy (s) denotes, as before, the primitive of T (s). Since { f,} and {u,, } are bound-
ed in L'(Q) and in L'() respectively, using also (4.4) we obtain:

a j |Vu, |2 dacdt + OL j |Vu, |2dedt<Le,
{(x, t): |u, | <L} {(x, t): |uy | 2L}

which gives the desired estimate. =
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