
Annali di Matematica pura ed applicata 
(IV), Vol. CLXXVII (1999), pp. 143-172 

Existence Results for Nonlinear Parabolic Equations 
via Strong Convergence of Truncations (*). 

ALESSIO PORRETTA 

Summary. - We prove existence results for the initial-boundary value problem for parabolic 
equations of the type 

ut + A(u) + g(x, t, u)IVul 2 = f  

u=O 

u(x,  O) = Uo(X) 

in t9 x (0, T), 

on @~• (O, T), 

in ~ ,  

where ~ is a bounded open subset of  R N and T > 0, A is a pseudomonotone operator of Ler- 
ay-Lions type defined in L Z(O, T; Hol(t~) ),fbelongs to L I(Q), Uo is in L I(Y2) and g(x, t, s) 
is only assumed to be a Carathdodory function satisfying a sign condition. The result is 
achieved by proving the strong convergence in L 2 (O, T; Hol ( t~ ) ) of t~cations of solutions of 
approximating problems with L 1 converging data. To underline the importance of this too~ 
we show how it can be used for getting other existence theorems, dealing in particular with 
the following class of Cauehy-Dirichlet problems: 

u(x, O) = Uo(X) 

in ~ x ( 0 ,  T), 

on @~9 x (0, T), 

in ~ ,  

where O e C ~  RN), and the data f and Uo are still taken in LI(Q) and L I ( ~ )  
respectively. 

1.  - I n t r o d u c t i o n .  

In this paper  we deal with a class of nonlinear parabolic equations in a cylinder 
Q = g2 z (0, T), where ~9 is a bounded open subset of R N and T > 0, whose simplest 

(*) Entrata in Redazione il 2 aprile 1998. 
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Aldo Moro 2, 00185 Roma, Italy. 
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model is the following Cauchy-Dirichlet problem: 

u t - A u + g ( x ,  t, u){Vu{ ~ = f  in Q,  

(1.1) u = 0 on X,  

u(x, O) = Uo(X) in ~9, 

where X denotes the lateral surface of Q and g: Q x R - * R  is a Carath~odory function 
satisfying the sign condition 

(1.2) g(x, t, s) s >t0, V s e R ,  a.e. (x, t) � 9  

Under this assumption on g, if Uo = 0 the existence of a weak solution u of (1.1) belong- 
ing to L2(0, T; Hol(tg)) was proved first in [LaMu] if f is in the dual space 
L2(0, T; H-1(~9)),  then in [DO] if f belongs to LI(Q) and g satisfies the following ad- 
ditional hypothesis: 

(1.3) 36, a > 0 :  g(x , t , s )  sign(s)>~5>O, V s � 9  {s{~>a, anda.e.(x , t )  inQ.  

In this latter paper, (1.3) plays a fundamental role since it allows to find a pr /or /es t i -  
mates in L2(0, T; H~(tg)) even with L 1 data (in the stationary case this was pointed 
out in [BG2]), hence a compactness result for approximating solutions provides the de- 
sired existence theorem. Note however that several examples of g satisfy (1.2) but not 
(1.3), mainly all functions g(x, t, s) with a sign condition and such that g(x, t, s) tends 
to zero as s tends to infinity, but also for istance g(x, t, s) = s(sins) 2 and similar oscil- 
lating functions are not included in (1.3). 

Here we extend the results in [DO] in two different directions. First of all, assum- 
ing only (1.2), for every f i n  L I(Q) and Uo in L 1(~9) we prove the existence of a solution 
of (1.1), which belongs to Lq(0, T; W 1' q(~))  for some q < 2 (indeed, it enjoys the same 
regularity of solutions of equations with measure data as it is stated in [BDGO]). Sec- 
ondly, we show that if (1.3) holds true it can be found a solution in L~(0, T; H0~ (tg)) for 
every uo in L 1 (~) ,  and that this condition on the initial datum can not be weakened. In 
order words, we state that the problem 

u t - A u + g ( x ,  t, u){Vu{2=f  in Q,  

u----O on ~,, 

u(x, 0) = ;t in ~9, 

with f i n  L~(Q), admits no solution u in L~(0, T; H~(t~)) such that g(x, t, u) {Vu{ 2 be- 
longs to L I(Q) if X is singular with respect to Lebesgue measure. 

The main point which allows to go further the previous works, in the sense that (1.3) 
is not essential to us, is the proof of a compactness result for the truncations of sol- 
utions of approximating problems with L 1-converging right hand sides, without an a 
pr /or /bound in the space L2(0, T; Hol(Q)). In order to underline the importance of 
this tool, we have chosen to plan the paper in the following way: in Section 2 we prove a 
first compactness theorem for simpler equations which do not contain the lower order 
term g(x, t, u) [ Vu{ 2; in this context it appears as a different proof of a result previous- 
ly obtained in [B1] (for elliptic equations see [Mu], [LM] and [LP]), and we show that 



ALESSIO PORRETTA: Existence results for nonlinear parabolic equations, etc. 145 

the same method applies to more general operators in divergence form, in order to fred 
a solution to Cauchy-Dirichlet problems whose model is the following one: 

u t - d i v ( A ( x ,  t)(1 + [u [ )~Vu+  q b ( u ) ) = f  in Q,  

(1.4) u = 0 on X,  

u(x, O) = Uo(X) in tg,  

where 0 < a <<. A(x ,  t) <<. fl, m >>- 0 and q) is only assumed to be continuous on R ,  and as 
before f i s  in L i(Q) and u0 in L 1(g2). Since no growth assumptions are made on ~b and 
m, problem (1.4) will be studied in the framework of renormalized solutions, which 
were first introduced in [DL] in a different context, then used in this setting in 
[BDGM] for the stationary case and in [B1Mu] for evolution equations (see also 
[Re]). 

Section 3 will be devoted to the proof of our main result, concerning problem (1.1) or 
the more general model 

u t -  div(A(x, t)(1 + lul)~Vu) +g(x,  t, u)IVu[ 2 = f  in Q,  

u = 0  on X,  

u(x, O) = Uo(X) in ~9, 

while in Section 4 we will prove the following trace result, showing some simple but in- 
teresting applications. 

THEOREM 1.1. - Let p > 1, p '  its conjugate exponent (1/p + 1/p' = 1), a, b e R ,  and 
define the space 

V~((a, b)) = {u: t9 x [a, b]--->R: u e L P ( a ,  b; Wol'P(&9)), 

v a e L  f (a, b; W-I'P'(~r~))4-L 1 (Q X (a, b))}.  

Then we have, with continuous injection, 

VPr b]; L I ( ~ ) ) .  " 

2. - S t r o n g  c o n v e r g e n c e  o f  t r u n c a t i o n s  w i t h o u t  l o w e r  order terms.  

In this section we consider equations which do not contain lower order terms, in or- 
der to better show the method we use for proving the strong convergence of trunca- 
tions. We will henceforth deal with the divergence form operator A(u ) - -  
= - div(a(x, t, u, Vu)), where a(x, t, s, ~): Q x R  •  N is a Carath6odory 
function (i.e. it is measurable with respect to (x, t) and continuous with repect to s and 
~) such that: 

(2.1) 

(2.2) 

(2.3) 

a ( x , t , s , ~ ) . ~ > ~ a l ~ l  2, a > 0 ,  

l a(x, t, s, ~) I -< b(Isl)[h(x, t) + I 1], 
[a(x, t, s, ~ ) - a ( x ,  t, s, ~ ' ) ] . [ ~ -  ~'] > 0 ,  
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for almost every (x, t) in Q, for every s in R and every ~, ~' in RN(~ ~ ~'), with h(x, t) 
in L2(Q) and 

b: [ 0, + r162 ) --* (0, + ~ ) continuous. 

Note that our assumptions include the classical case of the laplacian, but also more gen- 
eral operators given, for istance, by a(x, t, s, ~) = (1 + [ s [ )m ~ with m t> 0. It should 
also be noticed that assumption (2.1) implies that a(x, t, s, O) =0 for every s in R and 
almost every (x, t) in Q. 

Next we define, for n � 9  an(X, t, s, ~) - a ( x ,  t, Tn(s), ~), where, for every pos- 
itive real number k, T~(s)=min(k ,  m a x ( u , - k ) )  denotes the truncation function. 
Thus, thanks to the continuity of b, we have that An(u) =- -d iv(an(x ,  t, u, Vu)) is a 
bounded and coercive operator between the space L2(0, T; H1($9)) and its dual 
L2(0, T; H-1(~9)).  Hence the classical theory developed in [L] applies to give a weak 
solution un in C([0, T]; L2(t?)) A L2(0, T; H1(~9)) to the initial-boundary value problem 

(2.4) [ (un)t+An(un) =fn in Q,  

un=O on X,  

Un(X, O) = Uon(X) in ~2, 

where {fn} and {U0n } are  sequences of smooth functions (for instance, fn �9 C | (Q) and 
Uon �9 C | (~ ) )  which will converge respectively in L I(Q) and in L 1 (~9) to f and Uo. Here 
when we talk of weak solutions we mean solutions in distributional sense, as it is classi- 
cally stated, with test functions that can be taken in L2(0, T; H~($9)). 

Our first theorem will concern the behaviour of the sequence {un) of solutions of 
(2.4) as n tends to infinity, and in order to deal with the time derivative of truncations, 
we introduce a time-regularization of a function v in L 2 (0, T; Ho1(t~)). Thus we define, 
for v in L2(0, T; Hol(tg)), and v > 0, 

t 
v,,(x, t) = f v~(x, s) e v(8-t) ds , ~,(x, s) = v(x, s) Z(o, r)(s), 

where Z s denotes the characteristic function of a set E.  This convolution function has 
been first used in [La], then in [DO] and [BDG0], and it enjoys the following proper- 
ties: v~ belongs to C([0, T]; H~(t~)), v~(x, O) = 0 and v, converges strongly to v in 
L2(0, T; Ho1(~9)) as v tends to infinity. Moreover, we have 

(vv)t = v(v - v~) 

as a vector valued distribution, and finally if v belongs to L ~ (Q) then vv belongs to 
L | (Q) as well and 

 2.5) IIv IIL <Q> IIvlIL <Q> , w > o . 
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Let us note that in the following of this work we will set 

t 

Sk(t) - ~ Tk(s) ds , 
0 

the primitive of the truncated function Tk(t). 

THEOREM 2.1. - Let a(x, t, s, ~) satisfy assumptions (2.1)-(2.3), and let us also as- 
sume that 

fn---->f weakly in LI(Q) ,  

uon ---) Uo strongly in Ll( tg) ,  

and let un be a solution of (2.4). Then there exists a measurable function u: Q--->R 
such that Tk(u) belongs to L2(O, T; H0~(~9))for every k > 0  and) up to a subse- 
quence, 

Tk(un)---*Tk(u) strongly in L~(O, T; Hol(Q) ) for  every fixed k > O. 

PROOF. - First of all we choose, for r in (0, T), Tk(un) Z(o, 3) as test function in (2.4); 
integrating by parts, and denoting by (., .) the duality between H0~ (Q) and H -1(~2), we 
have, since IS~(t) l <~ ki t  I , 

T 

rk(un)>  Sk(un( ))dx- klluonllLl(o), 
0 

hence assumption (2.1) implies, for every v in (0, T), 

( 2 , 6 )  ~Sk(Un('g))dx'~-a ; f IVYk(Un)12dxdt~k(llUonHLl(Q)+llfnHLi(~))~ek. 
~2 o 

Inequality (2.6) gives the usual estimates for parabolic equations with L 1 data (see 
[BG], [BDGO], [ST]), that is to say un is bounded in Lq(O, T; Wl'q(~)) for every 
q < (N + 2 ) / ( N  + 1 ) and in L ~ (0, T; L I(Q)),  from which we can deduce that 

(2.7) lim meas {(x, t) ~ Q: l un I > k} = 0 uniformly with respect to n .  
k--* + r162 

Moreover we have from (2.6) that Tk(un) is bounded in L2(0, T; Hl(~9)) for every 
k > 0. Now, if we multiply the approximating equation by ~ (un ) ,  where ~k(s) is a 
C2(R), nondecreasing function such that ~ k ( s ) = s  for Isl <.k/2 and ~ k ( s ) = k  for 
I sl > k, we get 

(~k(un) )t - div (a~(x, t, un, VUn) ~k(Un) ) -~ a~(x, t, Un, VUn) VU n ~(~(Un) = "~(Un) f ,  

in the sense of distributions. This implies, thanks to (2.6) and to the fact that ~ has 
compact support, that ~k (u~) is bounded in L 2 (0, T; H I (t~)) while its time derivative 
(~(un)) t  is bounded in L2(0, T; H-1(~9)) + LI(Q), hence a classical compactness re- 
sult (see [Si]) allows us to conclude that ~k(un) is compact in L2(Q). Thus, for a subse- 
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quence, it also converges in measure and almost everywhere in Q. Since we have, for 
0 > 0 ,  

meas{(x,  t): lu~-uml >o} ~<meas (x, t): lu.[ > ~ + 

{ k}  +meas{(x ' t ) :[~(u~)-~k(um)[>~ +meas (x, t): ]u,~[> ~ 

by (2.7) for every fLxed e > 0 we can choose k large enough to have 

(2.8) meas{(x,  t): [un-um[>a}<~meas{(x,t): [ ~ ( u n ) - ~ ( u m ) [ > a } + e ,  

Vn, mEN.  

The fact that ~Sk(u ~) converges in measure for every k > 0 implies, using (2.8), that, up 
to subsequences, us also converges in measure and almost everywhere in Q. In particu- 
lar, we have found out that there exists a measurable function u in L ~ (0, T; L1(s N 
ALq(O,T;Wol'q(s for every q < ( N + 2 ) / ( N + I )  such that Tk(u) belongs to 
L2(0, T; Ho1(s for every k > 0, and for a subsequence, not relabeled, 

(2.9) Tk(u~) ~ Tk(u) 

weakly in L2(0, T; H1(s strongly in L2(Q) and a.e. in Q.  

Let us take now a sequence {~j}  of Cc | (s functions that strongly converges to Uo in 
L1(s and set 

(2.10) n,, j(u) =- Tk(u)v + e -"tTk(y.,j). 

The definition of yv,j(u), which is a smooth approximation of Tk(u), is needed to deal 
with a nonzero initial datum (see also [P]); note that this function has the following 
properties: 

I(y,,,j(u))t = v(Tk(u) - ~],,,j(u)), yv,j(u)(O) = TkOpj), [rlv,j(u)[ <~ k,  
(2.11) [yv,j(u)--->Tk(u) strongly in L2(0, T; H1(s as v tends to infinity. 

Similarly to the elliptic case (see [LP]), we choose 

(2.12) wn = T 2 k ( U n  - -  Th(u,~) + Tk(u,) - ~ v , j ( u ) )  

as test function in (2.4), with h > k > 0. We state separately, in next lemma, the be- 
T 

haviour of the term f((un)t, w~}. Henceforward, we will denote by w(n, v, j, h) all 
o 

quantities (possibly different) such that 

lim lim lim lira w(n, v, j ,  h) = 0 ,  
h ~ + ~  j - - ) + ~  v ~ + ~  n-*+r 



ALESSIO PORRETTA: Existence results for  nonl inear parabolic equations, etc. 149 

and this will be the order in which the parameters we use will tend to infinity, that is, 
first n, then v , j  and finally h. Similarly we will write only w(n), or w(n, v), oJ(n, v, h) 
to mean that the limits are made only on the specified parameters. 

LEMMA 2.1. - Under the previous assumpt ions  we have 

T 

f((u.) t ,  w~) I> w(n, ~,, j ,  h). 
o 

PROOF. - First of all observe that, since ]~]v,j(U) [ ~ k, W n can be written in the fol- 
lowing way: 

w .  = T h + k ( u .  - ~ , ~ ( u ) )  - T h - k ( u n  -- T k ( u ~ ) ) .  

t 

Hence, setting G(t) = ~ Th_ k (s - Tk (s))  ds, we have: 
o 

T T 

(2.13) f((u,) t ,  w , ) =  f<r]~,j(u)t, Th+k(un-TI~ , j (U) ) )+  
o o 

§ fe(u (Y))d  § fG(uo.)d - 
12 12 12 12 

Define now the function R(y )  - Sh + ~ (y - z) - G(y), with [z [ ~< k; then 

R(y )  = Sh+k(Y + z) I> 0 

R ' ( y )  = T h + k ( Y -  z ) -  T h - k ( Y - -  Tk(y))  ~ 0 

R ' (y) <~ 0 

where ]y[ ~<k, 

where y I> k I> z ,  

where y ~< - k ~< z .  

Hence for every z: [z] ~< k, we have R(y )  >I 0 for every y inR,  and since ]~]v,j(U) [ ~ k 
we get, from (2.13), 

(2.14) 
T ' T 

o o 

12 12 

Using (2.11) we have: 

T 

[ ( (y ~,j(u) )t, Th +k (un - y ~,j(u) ) ) = v [ (T~(u) - yv , j (u )  ) Th + ~ (un - ~7~,j(u) ) dxd t  , 
o Q 
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so that  as n tends to infinity we find: 

T 

~(07v,j(u) )t, Th+k (U~ -- ~ , j (U)  )) = 
o 

= co(n) + v ]  (Tk(u) - rl~,j(u))Th+k (u -- ~1 ~,i(u))dx dt = 
O 

=co(n) + u ~ (U-r l~ , j (u ) )Th+k(u-r]~ , j (u) )dxdt  + 
{M <-k} 

+ ~ (k -~ lv , j (u ) )Th+k(u-~ l~ , j (u ) )dxd t+  
(u>k} 

+ f (-k-rlv, j(u))Th+k(u-~]v,j(u))dxdt.  
{u< -k} 

Since I~] v,j(U) l ~ k, last three terms are positive, hence we deduce from (2.14), letting 
n and j go to infinity, 

T 

w~)>~w(n)+ fG(uo)- fs § Tk(uo))dx+co(n, j ) .  
o Q 12 

Since we have I G(uo) - Sh + k (u0 - Tk (Uo)) I ~< 2 k I Uo I• {I ~ I > h}, it follows that 

h~+.lim ]G(uo)- ]Sh+k(Uo-- Tk(uo))dx=O 
~2 Q 

and so 

T 

I((Un)t, Wn)  ~ w(n, ~,, j ,  h). 
o 

Henceforward, the proof will follow the lines of the elliptic case t reated in [LP]; 
first of all, Lemma 2.1 allows us to write: 

(2.15) f a~(x, run) Vw~ dxdt <- ~f~w~ + w(n, j ,  h). Un, v ,  

Q q 

Now, note that Vw~=O if lu~ I>  h + 4 k ;  then, if we set  M =  h + 4 k ,  splitting the 
integral on the left hand side of (2.15) on the sets { lu~ I > k} and { lun I <" k}, using the 
fact that a(x, t, s, ~).~ >I 0 and a(x, t, s, O) = 0, we have, for n large (for simplicity we 
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will omit hereafter the dependence on x and t in the function a(x, t, s, ~)): 

(2.16) fan(Un, Vu~) VWn dxdt = fa(TM(U.), VTM(U~)) Vw~ dxdt >I 
Q Q 

f a(Tk(u~), VTk(Un) ) V(Tk(Un) - y~.j(u) )dxdt - 
Q 

- ~ la(TM(U.), VTM(Un))I IVrl~.j(u)l dxdt. 
{l~l>k} 

Last term can be dealt with in the following way: 

la(TM(U~), VTM(U~))[ Iv~]~.j(u)l dxdt <~ 
{4u.l>k} 

<- ~ I a(TM(u~), VTM(U~) )I IVTk(u)l dxdt + 
{Ju~l>k} 

+ f [a(TM(Un), VTM(Un)) I IVr]v, j (U)  -- VTk(U) I dxdt.  
Q 

Recalling that M = h + 4k, we note that, for fixed h, in virtue of (2.9) and the growth 
assumption (2.2), a(TM(Un) , VTM(Un)) is bounded in L~(Q) N with respect to n, while 
I VTk (u) I X {l~ I > hi strongly converges to zero in L 2 (Q). Moreover we can use (2.11) to 
obtain: 

f la(TM(U~), VTM(U~)) I IVr/~. j(u)[ ~< og(n, v). 

Last inequality, together wit (2.15) and (2.16), allows us to deduce: 

f a(Tk(u,), VT~(u.)) V(Tk(u~) - ~ ~,j(u) )dxdt <~ ff~w, dxdt + w(n, v, j ,  h), 
Q Q 

which yields, thanks to (2.9) and (2.11), 

~a(Tk(u.), VTk(u~)) V(Tk(u~) - T~(u)) dxdt <~ ffnWn dxdt + w(n, v, j ,  h), 
Q Q 

where ~o(n, v, j ,  h) includes, at every new step, all the terms which will go to zero once 
the parameters will tend to infinity in the prescribed order. As the right hand side is 
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concerned, we have, simply using the Lebesgue theorem, 

f fnwndxdt  = | fT2k(u - Th(u) + Tk(u) - ~]v,j(u) )dzcdt + w(n) = 
Q Q 

t 

= | fT2k(u - Th(u))dxdt + o~(n, v) = o(n,  v, h). 
Q 

Therefore we can conclude: 

f [a(Tk(u~), VTk(un)) - a(T~(u~), VT~(u))][VTk(un) - VTk(u)] dxdt <~ 
Q 

<<. w(n, v , j ,  h ) -  f a(Tk(u~), VTk(u) )V(Tk(u , ) -  Tk(u))dxdt .  
Q 

Using (2.9) for the last term in the right hand side and letting first n tend to infinity, 
then respectively v, j and h, we can finally write: 

(2.17) lim f[a(Tk(u,), VTk(u, ) ) -a(Tk(u, ) ,  VTk(u))J[VTk(un)-VTk(u)] dxdt=O,  
Q 

which is enough to obtain, using assumption (2.3) (see Lemma 5 of [BMP]), that 

Tk(u,)-->Tk(u) strongly in L2(0, T; Hol(~)) ,  

for every fixed k > 0. �9 

REMARK 2.1. - In the proof of Theorem 2.1 it can not be assumed that Uon converges 
to u0 only weakly in L I(Y2), in fact the strong convergence of uon has been essentially 
used in the proof of Lemma 2.1. Let us also remark that the use of the approximation Wj 
of uo is also necessary, we can not take the same uo~ instead of V)j since we need to pass 
first to the limit in n in all the integrals, and of course Vuo. does not converge in 
L 2( Q) N. 

REMARK 2.2. - The previous proof works exactly in the same way under a milder co- 
ercivity assumption on a(x, t, s, 5). To be more precise, assume that instead of (2.1) the 
following condition holds: 

(2.18) a(x , t , s ,~ ) .~>~ak l~ l  2, Ys: I s l < k ,  a k > 0 .  

Clearly, (2.18) includes the classical case where ak I> a > 0 for every k, but it goes fur- 
ther since it admits the possibility that the sequence a k converges to zero as k tends to 
infinity, a case which corresponds to a degenerating coerciveness assumption, and it is 
satisfied for instance if a(x, t, s, 5) = 5/(1 + [s I) 4 with )~ > 0. 
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With this hypothesis (2.6) becomes 

 Sk(u, (v))dx+akff lVTk(u )l dxdt< k(llUo=lLl( )+llf.llLl( ))< ck, W (0, T), 
Q 0 

which still implies that Tk(un) is bounded in L2(0, T; Hol (tg)) for every k > 0 and u~ is 
bounded in L = (0, T; Ll( tg)) ,  hence 

lira meas {(x, t): l u~ ] > k} = 0 uniformly with respect to n .  
k--~ + ar 

As in the proof of Theorem 2.1, this is enough to deduce that there exists a function u in 
L ~ (0, T; Ll( tg))  such that, for a subsequence, un converges to u almost everywhere in 
Q and Tk(un) converges to Tk(u) weakly in L2(0, T; Hol(~)), strongly in L2(Q) and al- 
most everywhere in Q. Hereafter, the rest of the proof of Theorem 2.1 applies straight- 
forwardly in this setting too; it only remains to point out that Lemma 5 in [BMP], which 
gives the conclusion by (2.17), is applied to the coercive function a(x, t, Tk(s), ~), for 
every k > 0. �9 

Let us give an application of Theorem 2.1, in order to obtain for the following initial 
boundary value problem similar results to those proved in [LP] and [B] for the station- 
ary case: 

ut - div(a(x, t, u, Vu) + O(u)) = f  in Q,  

(2.19) u = 0 on X,  

u(x, O) = Uo(X) in Q ,  

under assumptions (2.1)-(2.3), and with ~ e C~ R~). The absence of growth condi- 
tions on �9 may imply that the term O(u) does not belong to LI(Q) N, s o  problem (2.19) 
can not be formulated in the sense of distributions. For the same reason, in the elliptic 
case (see [BDGM]) it has been adapted to this setting the definition of renormalized 
solution introduced in [DL] in a different context. Then this notion has been extended 
to parabolic equations in [B1Mu]; it formally consists in multiplying (2.19) pointwise by 
S '  (u), where S is a smooth function on R such that S '  has compact support, so that all 
the integrals in the weak formulation are in fact taken on the set { I u I ~< L }, where L is 
such that supp(S ' ) r  [ - L ,  L]. 

DEFINITION 2.1. - A  measurable function u in LI(0,  T; W01, 1(~9)) will be said a 
renormalized solution of (2.19) i f  Tk(u) belongs to L2(0, T; H~(tg)) for every 
k > 0 ,  

(2.20) lim f 
h-'-~ + ~ 

{(x,  t): h ~  < lul ~<h+ 1} 

a(x, t, u, Vu) Vudxd t  = O, 

u satisfies in the sense of distributions 

(2.21) (S(u)) t -  div (a(x, t, u,  Vu) S ' (u )  + O(u) S ' (u ) )  + a(x, t, u, Vu) Vu S"(u)  = 

= S'(u)  f -  S"(u) O(u) Vu,  



154 ALESSIO PORRETTA: Existence results for nonlinear parabolic equations, etc. 

for every S e C | (R) such that S '  has compact support, and u satisfies the initial con- 
dition in the sense that S(u) belongs to C~ T]; 51($,~)). 

Let us note that all the terms in (2.21) have distributional meaning since S '  has 
compact support and we have asked that T~(u) is in L2(0, T; H1 (~9)) for every k > 0; 
as far as (2.20) is concerned, it is usually required in order to have uniqueness. Thus we 
are able to obtain the following existence result, which estends those obtained if (P = 0 
and with standard growth conditions in [B1Mu], [Pr] and [BDGO] (here also with a 
measure as right hand side). 

THEOREM 2.2. - Assume that a(x, t, s, ~) satisfies (2.1)-(2.3), and that ~ belongs 
to C~ (R, R y), f e L 1 (Q), u0 e L 1(f2). Then there exists a renormalized solution u 
of (2.19). 

PROOF. - We set O n ( S ) -  q)(T~(s)), and we consider the approximating prob- 
lems 

(2.22) { (u~)t - div(an(x, t, u~, Vu.) + (/)n(u~)) =fn in Q, 

Un = 0 on 2:, 

u~(x, O) = Uo~(X) in t~, 

where f~ and uo~ are sequences of smooth functions converging strongly to f in L I(Q) 
and to Uo in Ll(~9) respectively. The existence of a solution u~ in L2(0, T; H l ( t g ) ) A  
A C([0, T] ;L2(~) )  of (2.22) (a distribution solution with test functions in 
L2(0, T; H01(tg))) can be proved easily by means of Schauder's fixed point theorem; 
then we take Tk(un) as test function in (2.22) and we observe that for n sufficiently 
large we have: 

~ r  VTk(u~) dxdt = f (/)(T~(u~)) VTk(Un) dxd t ,  
Q q 

y 

so that, by the divergence theorem in Sobolev spaces, denoting ~ ( y ) =  r e ( z ) d z ,  it 
follows: o 

T T 

f VT (un)dxdt = f dt f div = f dt f 
Q o ~ o ~ 

where ~ denotes the unit outward normal to ~tg. Therefore we easily see that again 
we find estimate (2.6), which implies, like in the proof of Theorem 2.1, that there exists 
a measurable function u in L~(O,T;LI ( t~ ) )ALq(O,T;Wol 'q (Y2) )  for every 
q< ( N + 2 ) / ( N +  1) such that Tk(u) belongs to L2(0, T; Hol(~)) for every k > 0  and 
up to subsequences 

u~---)u a.e. in Q, 

Tk(u~)-->Tk(u) weakly in L~(0, T; Hl ( tg) )  for every k > 0 .  
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In order to prove the strong convergence of truncations, we can repeat the proof of 
Theorem 2.1, since the added term - d i v  (On (Un)) can be dealt with as follows: when 
we take w~, defined in (2.12), as test  function in (2.22), since VWn =- 0 on the set where 
I us I > h + 4 k, setting M - h + 4 k we can write 

f r VWn dxdt = f ) VWn dxdt .  
Q Q 

Since r strongly converges to q)(TM(U)) in L2(Q) while Vw~ weakly con- 
verges to VT2k(u-Th(u)+ Tk(u)-~lv,j(u)) in L2(Q) as n tends to infinity, we 
obtain: 

f (~-)n(Un) VW n dxdt = f q)(TM(U) ) VT2k (u - Th(u) + Tk(u) - r] v , j (u ) )dxd t  + co(n). 
Q Q 

Then, letting v go to infinity we get: 

(2.23) f r Vw~ dxdt = f r ) VT k(u - Th(u) )dxdt + w(n, v). 
Q Q 

y 

Applying again the divergence theorem to the function g~(y) = f r  )~ {h < Izl < h + 2k} dz 
we conclude from (2.23) o 

T 

f dxdt=co(n, u)+ f dtf div(~g(TM(U)))dx=co(n, u). 
q 0 Q 

This is the only change required in order to apply the proof of Theorem 2.1 to the sol- 
utions of (2.22), then we can conclude that  

(2.24) Tk(u~)---)Tk(u) strongly in L2(O, T; Hi ( f2 ) )  for every k > 0 .  

Moreover, choosing T1 ( u s -  Th(Un)) as test  function in (2.22) and reasoning as above 
we get: 

f a(x, t, Vu~) Vu~ dxdt <~ [f~Tl(u~ - Th(u~))dxdt + Un, 

{h<~lUnl<~h+l} Q 

§ f lUonIdx~ f l f~ ldxd t§  f luo~ldx, 
{lUo~l>h) {lunL>h) {luo~l >h) 

which implies, passing to the limit first in n then in h (for the term in the left hand side 
we use Fatou lemma), that  u satisfies (2.20). 

In order to show that  u is a renormalized solution of (2.19), we multiply (2.22) by 
S '  (us), with S e C ~ (R) and S '  having compact support, say supp (S ' )  r [ - L ,  L]. Since 
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we have S'(un)(Un)t~-(S(Un))t, w e  obtain the following equality in the sense of 
distributions: 

(2.25) (S(un) )t - div(an(x, t, un, Vu~) S ' (un) + cP ,(u~) S ' (un) ) + 

Now observe that 

+a~(x, t, u, ,  Vu,) Vu~S"(u~) = S ' (u,)  f -  S"(u~) O~(u~) run .  

a~(x, t, u , ,  Vu~)S '(u~) = a(x, t, TL (U,), VTL (U~) ) S ' (TL (U~) ) , 

so that thanks to (2.24), and the growth assumption (2.2), we have 

an(X, t, Un, VUn) S'(un)"'>a(x, t, TL(U), VTL(u))S '  (TL(U))--a(x, t, u, V u ) S ' ( u ) ,  

and the convergence is strong in L2(Q) N. With an identical reasoning we have 
that 

a~(x, t, un, Vu,) Vu~ S"(u,~)---*a(x, t, u, Vu) VuS"(u)  strongly in LI(Q),  

and the other terms are dealt with in the same way, using always (2.24) and the 
fact that S '  has compact support. Thus, passing to the limit in (2.25) as n tends to 
infinity, we find that u is a renormalized solution of (2.19) since it satisfies (2.21). 
As far as the initial condition is concerned, it is enough to observe that S(u) be- 
longs to L2(0, T;Hol(tg)) and from the equation, (S(u))t belongs to LI (Q)+ 
+ L 2 ( O , T ; H - I ( ~ ) ) ,  hence by Theorem 1.1 we have that S(u) belongs to 
C([0, T]; L I ( ~ ) ) .  " 

3. - Equations with lower order terms having natural growth conditions. 

In this section we consider the following Cauchy-Dirichlet problem: 

(3.1) 

u t -d i v (a ( x ,  t, u, Vu) )+g(x ,  t, u, Vu) = f  in Q,  

u = O  on X,  

u(x, O) = Uo(X) in tg, 

where a(x, t, s, ~) satisfies assumptions (2.1)-(2-3), and the function g(x, t, u, Vu) 
plays the role of an Hamiltonian with quadratic growth with respect to the gradient, 
that is g(x, t, s, ~) is a Carath~odory function (i.e. g(x, t, s, ~) is measurable with re- 
spect to (x, t) and continuous in s and ~) for which there exist positive constants ~'k 
such that: 

(3.2) [g(x, t, s, ~)1 <~ ~ ( 1 +  1~12), V s e R :  Isl<~k, V ~ e R  N, 

and a.e. (x, t ) � 9  Q, V k > 0 ,  

(3.3) g ( x , t , s , ~ ) s > ~ O ,  V s e R ,  V~eRN and a.e. (x , t )  in Q.  
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Note that no growth assumptions from above are made either on a(x, t, s, 2) or on 
g(x, t, s, ~) as functions of s; as far as the data are concerned, we will take 

f e L l ( Q ) ,  f ~ > 0 ,  u 0 e L l ( D ) ,  u0~>0. 

We remark that the assumption of positivity on the data is not necessary to find a sol- 
ution of (3.1), on the other hand the extension to nonpositive f and Uo does not add sub- 
stantial difficulty to the problem apart from rather tedious technicalities. 

First of all, we prove a compactness result on the truncatures of the approximating 
solutions, which extends the one obtained in [DO], since we will not assume to have an a 
pr /or /bound in the space L2(0, T; H01([2)). 

THEOREM 3.1. - A s s u m e  that (2.1)-(2.3) and (3.2)-(3.3) are satisfied and that {f~} 
and {u0~} are two sequences of smooth functions such that 

f~>~O, f , - -* f  weakly in LI(Q) ,  

uo, >I 0,  Uo,---> uo strongly in L 1 ( t2 ) . 

Then i f  {us} r  T; H1([2)) is a sequence of solutions of 

t 
'(u,~)t - div(a(x, t, us, Vu,))  + g(x, t, us, Vu~) =fn in Q, 

(3.4) us = 0 on X,  

[us(x ,  O) = Uo,(X) in t2, 

there exists a measurable function u such that Tk(u) belongs to L2(0, T; Ho1(~9))for 
every k > 0 and, up to subsequences, 

Tk(u~)---> T~(u) strongly in L2(0, T; Hol(Q) ) for every k > 0 ,  

g(x, t, u,~, Vu~)---~g(x, t, u, Vu) strongly in L I(Q). 

PROOF. - We divide the proof in four steps. 

Step 1: 

Here we find the usual a prior/estimates; first of all observe that thanks to the sign 
condition assumed on g it is easily proved (it suffices to take u,- ,  the negative part of 
us, as test function in (3.4)) that since f~ and u0~ are positive then us is positive as 
well. 

Moreover if we take Tk(u~) as test function in (3.4) the term with g(x, t, us, Vu~) 
can be dropped out by (3.3), and we obtain the estimate (hereafter we will denote by ci 
positive constants not depending on n): 

/2 0 /2 

Like in the proof of Theorem 2.1, we deduce that there exists a measurable function u 
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in L ~ (0, T; L~(t~)) ALq(0,  T; w l ' q ( ~ ) )  for every q < ( N +  2 ) / ( N +  1) such that 
Tk(u) is in L2(0, T; HI ( t ) ) )  for every k > 0 and, up to a subsequence, 

(3.6) Tk(u~) -~ Tk(u) weakly in L2(0, T; H01(tg)), strongly in L2(Q) and a.e. in Q.  

Consider now a function ~)~e CI(R) such that 

0~(s )  -- 0 if Isl ~<h,  

ei(s)=sign(s) if Is l>~h+e,  

(e~)'(s) I> 0 ,  V s e R .  
8 

Using Q~(Un) as test function in (3.4) we have, setting R~(s) - fQ~(t) dt, 
0 

f R~ (u~(T) )dx + _ [ a(x, t, u~, Vu~) Vu~(e~)'(u~) dxdt + 
D q 

§ fg(x,t, Un, Vun) O~h(U~)dxdt~ ff Qg(u )d dt § fRZ(uo~)d~ 
Q Q 

Using (2.1), the fact that q~ is non decreasing and that 0 <<.R~(t)<<. Itlg(itl>a} we 
get: 

f g ( x , t , u . , V u . ) o ~ ( u D d x d t < -  f ] f~ldxdt+ f luo.le . 
Q {lunl>h} {luo~l>h} 

In virtue of the sign condition on g we can apply Fatou lemma to obtain, as e tends to 
zero, 

(3.7) f Ig(x,t,u~,Vu,~)ldxdt<. f IAIdxdt+ f lUo~ldx. 
{lu.I >h} {lull >h} { lUo~ I >h} 

Step 2: 

Let again ~]v,j(u) = Tk(u)~ + e-UTk(~Pj) be the regularization of Tk(u) which has 
been defined in (2.10) (hence ~ j  is smooth and converges strongly to u0 in L1(~9)), and 
consider the auxiliary function ~ ~ (s) = se xs~, already used in [BMP] (and in several pa- 
pers afterwards) to deal with an Hamiltonian term growing quadratically with respect 
to the gradient. Now we take q~(Un- ~]~,j(U))- as test function in (3A), with ;t to be 
chosen later; note that this is an admissible test function since r] ~,j is bounded by k. 
From the equation we get (henceforward we will omit to write explicitly in all the inte- 
grals the dependence on x and t): 

T 

{((Un)t,  Qg ). (U n -- Y] vj(U) ) -  ) A- ~ a(Un, rUn)  V(U n -- ~] v,j(U) ) -  ~ i (Un -- ~] v,j(U) ) -  d x d t  + 
o Q 

+ fg(un, Vun) q~ (u~ - ~] v, j(u))-  dxdt = ]f~cfx(Un - rlv, j (u)) -  dxd t ,  
Q Q 
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from which it follows: 

(3.8) f {(a(Un, V u n ) - a ( u . ,  V r i ~ , j ( u ) ) ) V ( u . - r l ~ , j ( u ) ) } "  
{u~.< ,1 ~, j(u)} 

�9 q~'~(u~ - ~]~,i(u))- d x d t  <~ - f f~qg~(u .  - ~]~,j(u))- d x d t  + 
Q 

T 

+ fg(u , + > + 
Q o 

+ fa(Un,  VrIv , j (u))V(un - r]v , j (u))-  qg~(Un - r Iv , j (u) ) -  d x d t .  
Q 

Observe that since y ~, j (U)  is bounded by k, we have that cf ~ (u .  - ~1 ~, j ( u ) ) -  - 0 on the 
set  where u .  > k, hence we have 

f a(u~, Vtl ~,j(u) ) V(un - r /~, j(u))-  qg~ (us - ~ ~,j(u) ) -  d x d t  = 
Q 

= f a ( T k ( u . ) ,  Vy  ~, j(u))  V(Tk(un) - t /~ , j (u)) -  q~'z (un - tl ~ j ( u ) ) -  d x d t .  
Q 

Using now (3.6) and (2.2), we have that a(Tk (u~), V~] ~, j (u))  ~ ~ (u~ - ~/~, j ( U ) )  - strongly 
converges in L2(Q) N, as n tends to infinity, in virtue of Lebesgue theorem, hence we 
can pass to the limit to get: 

lim f a(u~, V t l~ , j (u ) )V(u~  - t l~ , j (u ) ) -  cp'z(u. - ~!~ 3(u))  - d x d t  = 
Q 

= fa (T~(u ) ,  V y ~ , j ( u ) ) V ( T k ( u )  - r l v , j (u ) ) -  cf'~(u - r l~, j (u))-  d x d t .  
Q 

Recalling that Y]u, j (U)  converges to Tk(u)  as v tends to infinity strongly in 
L z(0, T; H01(tg)) and almost everywhere in Q, we obtain, adopting the same notation 
as in Section 2, 

f a(un, V~l~,j(u)) V(u. - ~? ~,j(u) ) -  cf '~ (u~ - rlv, j(u) ) -  d x d t  = w(n ,  u). 
q 

By the same arguments  it can be proved that the first term in the right hand side 
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of (3.8) goes to zero as first n and then v go to infinity, so that (3.8) implies 

(3.9) f {(a(u~, V u . ) - a ( u , .  V~lv, j (u)))V(u.-~I~,j(u))} .  

�9 cf'~(u. - y~ , j (u) ) -  dxd t  <. fg(u~,  Vu.) qg~(u. - y~ , j (u ) ) -  dxd t  + 
Q 

T 

+ f( (u . ) t ,  q~x(u~ - ~]~,j(u))-) + o (n ,  v) <~ w(n,  v) + 
0 

T 

+r f IVu. - + ). 
Q 0 

We also have, by (2.1), and since cp~(u~ - yv , j (u ) ) -  - 0 if us > k, 

a f  IVu~ 12q~x(u.- rl~,j(u))- dxdt  <. 
Q 

<. f a(u. ,  Vu.) V(u. - ~I~,i(u) )q~ ~ (un - y~,~(u) )-  dxd t  + 
q 

+ fa(u~,  Yu.) V~l~,j(u) cp~(u. - rlv, j(u))-  dxd t  
Q 

<. f { (a (u~ ,Vu . ) -a (u~ ,Vr l~ , j (u ) ) )V(u~-y~ , j (u ) ) }c f x (u ,~ -~ lv , j (u ) ) -  d x d t +  
{u~.< ~.,j(u)} 

+ fa(T~(un), V(Tk(u.) )Vy~, j (u)cf~(u. -  ~]~,j(u))- dxd t  + 
q 

+ fa(u~,  V~l~,j(u))V(u~ - yv , j (u ) )q~(u~  - r]v,j(u))- d x d t .  
q 

Recalling the convergence of ~]~,j(u) to Tk(u) in LZ(0, T; H~(~) )  and using (3.6) and 
the fact that cpz(u - Tk(u))-  =- 0 we find, as n and v tend to infinity, 

a f  IVu,~ 12(p~ (u~ - y~,j(u) )-  dx dt <~ o (n ,  v) + 
Q 

+ f {(a(u~, Vu.) - a(u~, Vr] v,j(u)))V(u~ - rIv,j(u))} cfx(u~ - ~7~,j(u))- d x d t ,  
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{u~ ~< ~ ~,~(u)} 

2 {u,-<, ~,j(u)} 

and so (3.9) becomes 

{(a(u~, Vu~)-a(u~,  V ~ v , j ( U ) ) ) V ( U  n - -  ~]v,j(U))}(~0~- ~...~k)a dzdt<" 

T 

<~ w(n, v) + f((u.) t ,  q~(u.  - 77~,j(u))- ). 
o 

Choosing ~ large enough so that ~ ( s )  - ~ k ~ ( s ) / >  ~ for every s in R,  we get: 
a 2 

(a(u~, VuD - a(u,. V~,~(u)))V(u,~ - ~ , ~ ( u ) ) ~ d t  ~ 

T 

~< ~(n,  v) + ~((u~)t, r - ~v,~(u))-) .  
o 

This step will be concluded after the proof of the following lemma. 

LEMMA 3.1. - We have: 
T 

f((unlt, q)~(u~ - yv, j (u))-  ) < w(n, v , j ) .  
o 

$ 

PROOF. - Let ~ ( s ) =  ~rf~( t - )dt ;  then we have 
T 0 

I ((u~)~, ~ (u~ - ,7~,j(u) )-  ) = ~ �9 ; (u~ - ,~,~(u)  )(T) ~ - 
o Q 

T 

- ~ (~ - T k ( ~ ) ) a x  + ~((,l~,j(u))~, ~ ( u ~  - ,~v,~(u))-) ,  
Q 0 

which yields, since q~i-(s)~< 0 and by definition of the v-regularization, 
T 

f((u~)t, q ~ ( u . -  rl . , j(u))-} ~ - f ~ ;  (Uo,~- Tk(v/j))dx + 
o 

+ u I (Tk(u) - ~ ~,j(u) )~ ~ (u. - ~ ~,j(u) )- gxdt  . 
Q 

Now we can pass to the limit as n tends to infinity by means of the Lebesgue theorem; 
also using that q)~(t-) t ~< 0, we get: 

T 

f ( (u~)t ,  cp z (u,~ - ~]~.j(u) ) -  ) ~ - ~ ~ -~ (Uo - Tk(~P j)  ) dx  + co(n) .  
o ~9 
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Thus the conclusion of the lemma follows by letting j go to infinity and recalling that 
�9 ~- (s ) -  0 if s is positive. �9 

Using this result we have thus proved that 

(3.10) f (a(un, Vu~)-a(u,~, Vrl~,j(u))) V(u,~ - r]v, j(u))dxdt  <~ w(n,  v, j ) .  
{un.< ~ ~,j(u)} 

Step 3. 

In this step we will closely follow the technique already used in the proof of Theo- 
rem 2.1; indeed we take 

w,  =- T2k(u~ - Th(u~) + (Tk(u~) - y~,j(u) ) + ) 

as test function in (3.4), with h > k. Since w~ is positive, we easily obtain from the 
equation 

T 

( 3 . 1 1 )  f((Un)t, Wn)+ fa(Un, VUn) Vwndxdt  < . f f n w n d x d t .  
o q Q 

In order to deal with the fn'st term of (3.11) we observe that the function w~ can be 
written as w~= Th+k(u,~-r]v,j(u)) + -  Th-k(u,~--Tk(u,~)). Defining the function of 
real variable 

T T 

Sh+§ = f T a + k ( s + ) d s  and G( t )=  ~T~_k(s-Tk(s))ds, 
o o 

we have 

T 

f((u.)t, w~)-- f s,:§ v . , ( u ) ) ( r ) e x  - I a ( u ~ ( r ) ) ~ x  + 
o 12 ~9 

T 

S + f((~]~,j(ul)t, Th+k(u~ - e~, j(u))  + ). + f~(uo~)dx-f ~§  
12 D 0 

Since S ~ - + k ( y - z ) - G ( y )  >~0 for every y e R  if Izl ~<k, we get: 

T 

f<(u~)t, wn) >~ v f ( T k ( u ) - y ~ , j ( u ) ) T h + ~ ( u ~ - y ~ , j ( u ) )  + dxdt  + 
o q 

+ f e(uo~)dx - f s~*+ ~ (uo~ - r k ( ~ j ) ) d x  ~ f ( n ( u ) - ,  ~,,(u))+ r~+~ (u - ,  ~,;(u))+ dxdt~ 
12 12 Q 

+ fa(uo)dx- fs;+~(uo- T~(~;))dx+~(n). 
12 ~2 
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Proceeding as in the proof of Lemma 2.1 we then find, as j and h tend to infinity, 
T 

~((un)t, wn) t> w(n, v, j ,  h), 
0 

which together with (3.11) implies 

(3.12) f a(u~, Vu~) Vw~ dxdt <<. ~fn W~ dxdt + w(n, v, j ,  h). 
Q Q 

With the same arguments used in Theorem 2.1 it can be proved that 

~a(Un, Vu~) Vw~ dxdt ~ ~a(Tk(u~), VT~(un)) V(Tk(u~) - yv,j(u)) + dxdt + w(n, v), 
Q q 

hence by (3.12) we have 

~ (a(Tk(un), VTk(u~)) - a(Tk(u~), V~?~,j(u) )) V(Tk(u~) - ~7v,j(u) ) + dxdt <~ 
Q 

<- ffnw~ - f a(T~(un), Vyv,j(u) ) V(Tk(un) - y~,j(u) ) + dxdt + w(n, v, j ,  h). 
q Q 

Using (2.11) and (3.6), together with assumption (2.2), last term go to zero as first n and 
then v and h tend to infinity, so we deduce: 

(3.13) ~(a(Tk(u~), VTk(u~)) - a(Tk(u~), Vr]v,j(u)))V(Tk(Un) -- T ] v , j ( U ) )  + dxdt <<. 
Q 

<~o(n, v , j ,  h). 

Step 4. 

Since ~ , j ( u )  is an approximation of T~(u) in the strong topology of 
L2(0, T; H0 (~2)), and T~(un) strongly converges to Tk(u) in L2(Q), we can write 

I (a(Tk(u~), VTk(un))-  a(Tk(u.), VTk(u) )) V(T~(un) - Tk(u) )dxdt  <<. 
Q 

<- ~ (a(Tk(un), VT~(un))-  a(Tk(u~), V~] v,/(u)))Y(Tk(u~)- ~]~,j(u))dxdt + w(n, v), 
Q 

from which it follows (recall that (un-  7?v,j(u))- = (Tk(u~)- ~]~,j(u))-): 

f (a(Tk(un), VTk(u~)) - a(Tk(u~), VTk(u))) V(Tk(un) - Tk(u)) dxdt <<. 
Q 

<~ f (a(Tk(Un), VTk(Un) ) - a(Tk(Un), Vr] v,j(u) )) V(Tk(Un) - ~]~,j(u) )dxdt  + 
Q 

+ ~ (a(u,, Vun) - -  a ( U n ,  VY] v,j(u)) ) V ( u  n - ~] ~,j(u))dxdt + w(n, v). 
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Thus thanks to (3.10) and (3.13) we have proved that 

lim [ (a(Tk(u~), VTk(u~)) - a(Tk(u~), VTk(u)))V(Tk(un) - Tk(u))dxdt = O, J Q 

so by Lemma 5 in [BMP] (it is here that we use assumption (2.3)) we obtain: 

(3.14) Tk(u,)-oTk(u) strongly in L2(0, T; H1(~9)) for every k > 0.  

Now observe that we have, for every a > 0, 

meas {(x, t): IVu~-Vu[  > a }  ~< meas{(x, t): l u l l > k }  + 

+ meas { (x, t): I u l > k } + meas { (x, t): I V(Tk (u~)) - V(T~ (u)) I > a},  

then as a consequence of (3.14) we also have, that Vu. converges to Vu in measure, and 
therefore, always reasoning for subsequences, 

Vun---) Vu a.e. in Q, 

which implies 

g(x, t, un, Vu.)---)g(x, t, u, Vu) a.e. in Q. 

Vitali theorem, in order to prove the strong L 1 compactness of 

g(x, t, un, Vu,)---)g(x, t, u, Vu) strongly in L I(Q). �9 

Reasoning as in Theorem 2.2, the convergence of g(x, t, un, Vu~) in LI(Q) and the 
strong convergence of truncations in L2(0, T; H~(Y2)) allow to deduce the following 
existence result. 

THEOREM 3.2. - Let assumptions (2.1)-(2.3) and (3.2)-(3.3) be satisfied and let f and 
Uo be positive functions belonging to L I(Q) and to L I(Y2) respectively. Then there 
exists a positive renormalized solution u of (3.1) in the sense that u is in 
L ~ (0, T; L I (~ ) )  A Lq(O, T; W 1' q(tg)) for every q< (N+2)/(N+I), Tk(u) belongs to 

In virtue of 
g(x, t, un, Vun), it is enough to show that it is an equi-integrable sequence. Indeed we 
have, for a subset E of Q, 

I Ig(Un' VUn) ldxdt= ~ Ig(Un' VUn) ldxdt "~- f Ig(Un' VUn) ld~dt~ 
E En {lu.l-<k} E n { l u ~ l > k }  

< . f r k ( l + l V T k ( u , ) l ' ) d x d t +  f I f , ]dxdt+ ~ ]uo~ldx, 
E {]unl>k} {lUon] >k} 

where we have used estimate (3.7). Recalling that ]VTk(u.) ]~-, fn and u0~ are all strong- 
ly convergent sequences, it is possible to fix a k sufficiently large in the previous in- 
equality to get that, as meas (E) tends to zero, all the three terms of the right hand side 
go to zero uniformly with respect to n, that is g(u,, Vu,) is equi-integrable. Thus we 
have obtained that 
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L2(0, T; Hol(t2))for every k > 0 ,  

(3.15) lim f 
h---) + ~ 

{(x, t): h ~ u < ~ h  + X} 

a(x, t, u, Vu) Vudxd t  = 0,  

u satisfies in the sense of distributions 

(3.16) (S(u))t - div (a(x, t, u, Vu) S ' ( u ) )  + 

+ a(x, t, u,  Vu) VuS"(u)  + g(x, t, u,  Vu) S '(u) = S '  ( u ) f  

for every S ~ C ~ (R) such that S '  has compact support, and u satisfies the initial con- 
dition in the sense that S(u) belongs to C~ T; L ~( t~ ) ). �9 

REMARK 3.1. - With minor modifications it is possible to find a solution if the right 
hand side is of the form f +  X with f in LI(Q) and X in L2(0, T; H - l ( t 2 ) ) .  

REMARK 3.2. - The Dirichlet problem (3.1) (as well as problem (2.19) actually), under 
assumptions (3.2)-(3.3), can also be formulated in the framework of entropy solutions. 
We recall that this notion has been first introduced in [BBGGPV] for elliptic equations, 
then extended to evolution problems in [Pr] (see also [AMST], [P]); let us precise this 
definition (Tk(s) and its primitive Sk(s) are defined as before). 

DEFINITION 3.1. - A  measurable function u in LI(0, T; Wo 1' 1(t2)) is an entropy 
solution of (3.1) i f  u belongs to L | (0, T; L X(t2) ), Tk(u) belongs to 52(0, T; H~(12)) 
for  every k > 0 ,  Sk(u( . , t ) )  belongs to L1(12) for every t e l 0 ,  T] and every k > 0 ,  
g(x, t, u, Vu) is in L I(Q) and u satisfies: 

(3.17) fSk (u-q) ) (v )dx+f<qDtTk(u-qD))d t+ f a ( x , t , u ,  Vu) VTk(U-qD)dxd t+ 
~2 0 0 

T T 

§ f fg(x, t, u, Vu)T (u- )d dt  f ffT (u-q ) dt § fSk(uo- 
0 t 2  0 Q t2 

for  every v e [ 0, T], k > 0, and for all q9 in L 2 (0, T; H I ( t2 ) ) N L | ( Q) such that q9 t be- 
longs to L I ( Q ) + 5 2 ( 0 ,  T; H-I(Y2)). 

It is worth noting, like for the renormalized solutions, that all the terms in (3.17) 
(the duality (. ,-) in the second integral is between LI (Q)+L2(O,  T; H-1(~2)) and 
L2(0, T; Hol(~2))NL| make sense since T ~ ( u -  cp) belongs to L2(0, T; H I ( ~ ) )  
(indeed V T k ( u -  cp) =-0 if lul > k + IlcpllL| ). Moreover the trace result in Theorem 
1.1 implies that ~ is in C([0, T]; L I ( ~ ) ) ,  and since ISk(u-q))( t ) l  << . IS~(u(t))l + 
+klq~(t) I e L l ( ~ ) ,  the first and last terms are well defined. 

The existence of one entropy solution can be deduced from our previous result on 
renormalized solutions. Indeed, the solution obtained by approximation as before is in 
L | (0, T; L1(~2)) and Sk(u(', t)) belongs to L I ( ~ )  for every k > 0. Then we choose 
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in (3.16) S(s) = H~(s) with H~(s) = ; h,~(t) dt and 
o 

I 
1, O<~s<~n, 

n + l - s ,  n<~s<~n+l ,  
h,(s) = O, n + l ~ < s ,  

{h~(-s ) ,  s-<O, 

and we take T~(H~(u)-  rp) as test function in (3.16), with q) having the properties 
asked above, and k > O. Integrating by parts we obtain: 

1[ 

(3.18) fSk(H~(u) - r dx + ;(q)t, Tk(Hn(u) - qg)> dt + 
t9 0 

1[ . 

+ ~ ~h~(u) a(x, t, u, Vu) VTk(H.(u) - cf)dxdt + 
o g2 

1[ 

+ ; ;h i (u )  a(x, t, u, Vu) VuT~(H.(u) - qg)dxdt + 
o 

1[ 

+ f f g ( x , t , u ,  Vu) Tk(H~(u)-cp)dxdt<~ 
o 

+ f ~ fTk(H~(u) -c f )dxd t  + ~Sk(Hn(uo)-~p(O))dx. 
o t? t~ 

Note that hn(u) converges to 1, while H,~(u) converges to u, almost everywhere in Q, 
and moreover h i (u ) =  -sign(u)Z{n<~lul<~n+l}. We get from (3.18): 

(3.19) ~Sk(Hn(u) - cf)(v) dx + ~(q~t, Tk(H,~(u) - ~)> dt + 
o 

1[ 

+  g(x, t, u, vu) Tk(Hn(u)- )dxdt + 

+ ; I h n ( u ) a ( x , t ,  u, Vu)VTk(H~(u)-c;)dxdt < . 
o t ~  

o t~ ~2 

+k ; a(x, t, u, Vu) V u d x d t .  
{n~lu{~n+i} 
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Since IH~(u) [ <~ [u I we have, by the Lipschitz continuity of Sk(s), that 

0 <~ Sk(H~(u) - q~)(t) ~ Se(u(t))  + klq~(t) l, 

hence by Lebesgue theorem 

(3.20) lira f Sk(H,~(u) - r dx = [ Sk(u - q~)(r) dx , 
~t - - - )  q- ov  J J 

t-2 Q 

and similarly 

(3.21) lira ~Sk(H~(uo) - qg(O))dx = [Sk(Uo - q)(O))dx. 
't't'--> + ~ 

Y2 $2 

Moreover, we have that VTk(H,~(u) - fp) = 0 if Ig (u) I > k § II IIL but IH~(u) [ > n 
ff [u[ > n and H,~(u) = u ff [u] ~< n, hence for n > k + ]]cf]IL| we can write, setting 
M = k + II~IIL| 

f ~hn(u) a(x, t, u, Vu) VTk(H,(u)  - fp)dxdt = 
o 12 

which yields 

= ~ 1h~(u)a(x ,  t, TM(U), V T M ( u ) ) V T k ( T M ( U ) - e f ) d x d t ,  
o t ~  

(3.22) 
T 

lira f f h ,~ (u )a (x , t ,  u,  Vu)VTk(H,~(u)-q~)dxdt= 
o f2 

= ; f a ( x ,  t,  T~(u),  VTM(U))VTk(TM(U) - e f)dxdt  = 
o o 

= [ ~a(x,  t, u,  Vu) V T k ( u - c f ) d x d t .  
o 12 

Similarly we see that Tk(H , (u ) -q~ )  converges to T~(u-q~)  strongly in 
LZ(0, T; Hi( t2))  and weakly-,  in L | so that we deduce 

(3.23) lim ~(q~t, Tk(H~(u) - q~)) dt = ~(cpt, Tk(u - of)) > d t .  
~t----> q- r162 

o o 

Putting together (3.20)-(3.23), using (3.15) and the Lebesgue theorem, we pass to 
the limit in (3.19) as n tends to infinity and find that u is an entropy solution 
of (3.1). m 
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REMARK 3.2. - Both the result of this section and those of Section 2 can be proved in 
exactly the same way for similar divergence form operators which have a growth of or- 
der p with respect to the gradient, on the model of the p-laplacian. For the sake of sim- 
plicity, we have chosen here to set our problems in the space L2(0, T; Hol(tg)) instead 
of LP(0, T; WI'p(D)).  

4. - A t r a c e  r e s u l t .  

Here we are going to give the proof of Theorem 1.1; let us point out that this trace 
result, as far as we know, is new and represents the more natural extension to the L 
framework of the classical theorem which states that if u belongs to L2(a, b; Hol(D)) 
and ut belongs to L2(a, b; H - I ( ~ ) )  then u is in C([a, b]; L2(D)) .  

PROOF OF THEOREM 1.1. - Let u be a function of the space 

V~((a, b)) - {u: Q x [a, b]--->R: uaLP(a,  b; W~'P(~)), 

uteLP'(a,  b; W - I ' P ' ( ~ ) ) +  L1($7 • (a, b))}.  

By classical arguments (for instance the proofs of Lemma 1 and Lemma 2 in Chapter 
XVII, n. 2 of [DaL] can be rewritten for our case in the same way) we have the follow- 
ing things: first, there exists a continuous prolongation operator P from VlP((a, b)) to 
V~(R), so that we can find a function Pu in LP(R; W~'P(~)) with (Pu)t in 
L p' (R; W-I '  p' (D)) + L '  (D x R)  such that Pu = u in [a, b]; in addition, it is possible 
to find a sequence { ~ }  cCc ~ (R; W01'P(tg)) such that ~fln strongly converges to Pu in 
V~ (R), that is 

(4.1) { ys,~---~Pu strongly in LP(R; Wol'P(~)), 

(Ipn)t'-->(Pu)t strongly in LP'(R; W - I ' P ' ( ~ ) )  + L I ( Q  x R ) .  

8 

Let n o w  S 1 ( 8  ) - -  f Tl(t)dt; we have 
0 

t 

t 

- - ~  ~ 
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Since by (4.1) ~0n is a Cauchy sequence in V/~(R), we can write: 

(4.2) f&(v/~-W.O(s)dx<<.w(n,m), V s e R ,  

where w(n, m) denotes a term which goes to zero as n and m go to infinity. On the 
other hand we have: 

f sl(~Pn - ~Pm)(s) dx = f 
{{,p~-,p,~l < 1} 

+ f 
{l~on-,Pm { ~> 1} 

f 
{ l ~ - , / , m  I < 1} 

which yelds, by (4.2), 

f lW.- l(s) dx-- f 
ca {I,p~-,p,~ I < 1} 

~< 

{(~'n-  ~m)(s) {z dx+ 

 om)(s) { 2 
d x +  2 2 

{ I,P,~ - ,P,,, { ~ 1 } 

1 ( ~ -  ~Om)(s) { dx ,  

f {y3n-y3m{(s) dx<~ 
{ I,pn-',Om I ~> 1} 

{ )1/2 
f I~)n--~m{ 2(s) dx If2{i/2+2co(n,m)<~ 

{vn-v,,~i <:1 

~< (2 {f2{co(n, m) ) 1/2 + 2co(n, m).  

Therefore ~0 ~ is a Cauchy sequence in C ~ (R; L 1(~2)) (the space of continuous functions 
from R in L 1 (12) having compact support) equipped with the topology of uniform con- 
vergence, and since the limit of ~p~ in V~(R) is Pu we have that 

~p~---~Pu in C~ L1($2)), 

which implies, since Pu = u in [a, b], that u belongs to C([a, b]; LI( t2)) .  �9 

An immediate application of this trace result is the following one. 

THEOREM 4.1. - Assume that A(x ,  t, s) is a Carathdodory function such that, for 
positive constants a, fl: 

(4.3) O < a < ~ A ( x , t , s ) < . f l ,  V s e R ,  a.e. ( x , t ) e Q  
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and let (3.2)-(3.3) be satisfied together with the following assumption: 

(4.4) 3 L ,  5 > 0: g(x, t, s, ~) sign (s) I> 51 ~j2, 

Vs: Isl>~L>O, V~eRN,a.e.  (x , t )  in Q. 

I f  f is in LI(Q), then there exists a solution u of 

(4.5) 

ut -d iv (A(x ,  t, u ) V u ) + g ( x ,  t, u,  Vu) = f  in Q, 

u = 0  on X ,  

u(x, O) = Uo in Y2 , 

such that u is in L2(0, T; Hl ( tg) ) ,  g(x, t, u, Vu) is in LI(Q) and the equation is sat- 
isfied in distributional sense, i f  and only if  Uo belongs to L l(t~). 

PROOF. - If there exists a distributional solution u in L2(0, T; Ho~(tg)) with 
g(x, t, u, Vu) in LI(Q),  then by Theorem 1.1 u belongs to C([0, T]; L I (Q) ) ,  hence Uo 
must be in L 1 (~r~). On the other hand, the existence of at least one solution of this kind 
has been obtained by approximation in Section 3. It  is enough to observe that  the se- 
quence {Un} of solutions of 

(4.6) 

( u , ) t -  div(A(x, t, Un) Vu~) + g(x, t, u~, Vun) =f~ in Q,  

u~=O on X,  

u~(x, O) = Uo~(X) in tg,  

is bounded in L 2 (0, T; Ho ~ (~9)), so that the limit function, which is a distributional sol- 
ution of (4.5), belongs to L2(0, T; H i ( Q ) )  as well. Indeed, taking TL(Un) as test func- 
tion in (4.6) we get: 

I Sl (un(T) )dx + a [ IVTL(U~)12 dxdt + l g(x, t, u~, Vu~) TL(Un) dxdt <. 
t2 Q Q 

<- LII f~ IIL'(Q) + ~ SL(UOn) dx, 
Q 

where SL(S) denotes, as before, the primitive of TL(S). Since { fn} and {u0~} are bound- 
ed in LI(Q) and in Ll(t~) respectively, using also (4.4) we obtain: 

a ~ IVu, J2dxdt+SL f IVu~J2dxdt<-.Lc, 
{(x, t): lull -<L} {(x, t): lun] >~L} 

which gives the desired estimate. �9 
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