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Nonlinear Hodge Theory on Manifolds with Boundary(*). 

T. IWANIEC - C. SCOTT - B. STROFFOLINI 

Summary. - The intent of this paper is first to provide a comprehensive and unifying develop- 
ment of Sobolev spaces of differential forms on Riemannian manifolds with boundary. Sec- 
ond, is the study of a particular class of nonlinsar, first order, elliptic PDEs called Hodge 
systems. The Hodge systems are far reaching extensions of the Cauchy-Riemann system and 
solutions are referred to as Hodge conjugate fields. We formulate and solve the Dirichlet and 
Neumann boundary value problems for the Hodge systems and establish the s for 
such solutions. Among the many desirable properties of Hodge conjugate fields, we prove, in 
analogy with the case of holomorphic functions on the plane, the compactness principle and 
a strong theorem on the removability of singularities. Finally, some relevant examples and 
applications are indicated. 

1.  - I n t r o d u c t i o n .  

The first six sections are writ ten to serve as a solid introduction to the s  of 
differential forms, although we have tr ied to keep it brief. The forms are defined on a 
regular  open region M of closed C | oriented Riemannian manifold ~ of dimen- 
sion n,  called the reference manifold. The boundary ~M of M is itself a closed (n - 1 )- 
manifold which is empty when M = ~ .  We denote by A t M,  1 = 0, 1, . . . ,  n ,  t he / th -ex -  
ter ior  power of the cotangent bundle. Thus, the sections of A s M,  denoted by ~ A  z M), 
are the / - fo rms  on M.  To denote a particular subspace of F (A  s M), we replace F by an 
appropriate symbol: 

C ~ ( A  s M): smooth /-forms, 

CT ~ (A s M): smooth /-forms with vanishing tangential component on aM,  

C~ (A s M): smooth /-forms with vanishing normal component on ~M. 
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The closures of these spaces in the usual Sobolev norm are respectively denoted 

W1, p (/~l M),  ~d@ P (A t M) and ~d0~q P ( A t M) 

Further, by W e' p ( A t M), ~49~ P ( A t M) and ~?d*, p ( A t M), ~d* ,  p ( A t M), we denote the 
natural domains of the exterior derivative d and its formal adjoint, the coexterior 
derivative d *. Of course, there are more Sobolev spaces of differential forms of interest 
which are relevant to boundary value problems. We have found relations between these 
spaces, identified the duals and established 2P-estimates. For p = 2, the 2P-theory is 
well understood and can be found in [Con56], [Duff52], [DS52], [Gaf54], [Hod33] and 
[Kod49]. In the case p ~ 2, there are some results in Morrey's book [Mor66]. However, 
the theory has yet to be fully developed. Indeed, establishing 2P-estimates for the 
Hodge Decomposition and Poincar~ type inequalities (see Theorems 6.3 and 6.4) de- 
mand greater effort than in the Euclidean case and are handled rather comprehensive- 
ly here for the first time in many instances. Thus, our first six sections expose familiar 
results while filling considerable gaps between textbooks and research papers on non- 
linear potential theory. Perhaps our extension of Gaffney's inequality 

(1.1) IlO.)lll,p ~ Cp(M)(llwll, + Ildoll, + lid* wily) 

for ~o e W~ P(A t M) U ~ P(A t M), is the most fundamental of these estimates since it 
proves critical in establishing the 2P- Hodge decompositions for manifolds with 
boundary 

(1.2) 2P(/kt M) = d ~ I ~ P ( A t - I M ) ~ d * % ~ P ( A t + I M ) ~ : I C P ( A t M )  = 

= d ' ~ l f P ( / k  t - 1 M ) ~ d *  ~4~1' P(A t+l M) ~ :)CT(At M) = 

= d ' ~ l , p ( / k  t -1M)( l~d* '~p~p( /k  t+l M) ~ :)ON(At M) 

where :~(:P(A l M), :)CT(/k I M) and :)CN(A Z M) denote the spaces of 2P-harmonic fields, 
harmonic fields with vanishing tangential part and harmonic fields with vanishing nor- 
real part respectively. These decompositions serve as a guide for the proper formula- 
tion of boundary conditions for the nonlinear PDEs in the sequel. With the thorough 
machinery of Sect. 1 and 6 in place, we make a transition to the study of nonlinear 
PDEs. 

Perhaps the most natural of these PDEs arises in the following classical variational 
problem. Given w e 2P ( A t M), find the nearest, in 2P-norm, exact form q~. That is, find 

satisfying 

(1.3) I Iw-~lP=min{JIw-~lP: ~ed~I'P(AI-1M)} 
M 

Here, we exploit the 2P-Hodge theory of Sect. 5 to verify that such a q~ exists and is 
unique in d ~ I ' p ( A Z - I M ) .  The Lagrange-Euler equation for (1.3) takes the form 

d* I~o - ~ l P - 2 ( o )  - ~0) = 0  
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It can be reformulated as a relation 

Ico- ~1P-2(~o- ~) =4  

between the exact form r and a coclosed form ~p. Of course, in the above minimization 
problem, d ~O 1' p ( A t- 1 M )  may be replaced by other subspaces of interest. Indeed, we 
examine eight natural such subspaces, each of which leads to the study of a pair (q~, y)) 
coupled by 

(1 .4 )  w = ~ (q~, ~),  d~b = d * ~p = 0 

where ~ : A t M • A 1M-o  A t M is a given bundle map. Apparently, this provides for a 
nonlinear decomposition of w. The linear case ~ (~, 4)  = ~ + Y~ gives the familiar 
Hodge decompositions discussed in Sect. 5. 

More surprising is the fact that these PDEs also arise in quasiconformal analysis. 
Indeed, given a quasiregular map f :  M - - ) N  between two oriented Riemannian mani- 
folds of the same dimension n, we fLX a harmonic field ~ on N. In this setting, the un- 
knowns in (1.4) are q~ =f~(~)  and ~0 =fct(~), the pullbacks of ~ via f ;  see Sect. 7. The 
case of n = 21 (i.e. even dimensions) is particularly interesting since for ~ e :)C(A t N), 
the system (1.4) is linear; see [DS89], [IM93] and [Man95]. 

Also, in nonlinear elasticity, the method of differential forms and equations of type 
(1.4) are becoming ever more indispensible (e.g. in the study of null Lagrangians 
[IL93], [RRT88] and [Iwa95]). 

To effectively handle all of these applications as well as any others of this type 
which will likely arise, we introduce the so-called Hodge Systems (Sect. 8). Given a bun- 
dle map ~p: A~M----)AtM satisfying conditions (8.15-8.17), a pair (~, ~f)e~o~ 
( A z M) • ~o~ (A  l M), p + q = pq is called an 9p-(conjugate) couple or Hodge conjugate 
fields in case 

(1.5) ~p=2~p(~), d ~ = 0  and d * ~ p = 0  

In the main body of the text, we also treat the nonhomogeneous case of this equation 
but for purposes of this introduction (1.5) will suffice. 

A central theme of our work are results obtained when the natural exponents p and 
q are replaced by ~p and )~q with ;t i> max { 1/p, 1/q}. Representative of our results in 
this direction is 

THEOREM 1.1 (Regularity Theorem). - There exist numbers a < 1 < b so that each 
~p-couple (~b, 4)  e ~ ( A Z M )  x ~ ( A I M )  actually belongs to ~oPe(A~M) x ~oqe 
( A t M). 

We emphasize here that a and b depend only on the structural constants defining 
the bundle map ~p. To fix these ideas, notice that the simplest Hodge system is 

(1.6) ~p = q~, dq~ = d * ~0 = 0 

which means that q~ is a harmonic field. In fact, when considering (1.6) for 1-forms on 
the complex plane, it is simply the Cauchy- Riemann system. Continuing this analogy 
more deeply, we give 
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THEOREM 1.2 (Compactness Principle). - Let Y2 c ~ be open. Each sequence of  Op- 
couples bounded in  2~P(Attg)•  .~~ contains a subsequence converging in  
~ ( A  ~ t9) x 2 ~ ( A  t ~).  

Of course, the value of this principle goes beyond this mere analogy with the normal 
family theorem for holomorphic functions. Indeed, it plays an essential role in verifying 
existence for the Dirichlet and Neumann problems. 

Guided by the Hodge decompositions, we found proper boundary conditions for 
Hodge systems. These conditions are formulated in terms of the potential of q~ or the 
potential of ~2. Thus, we should assume that either ~ is exact or that ~0 is coexact. Be- 
cause of a duality principle, we need only consider the case when ~ is exact, say r = da.  
The Hodge system can then be written 

(1.7) v2 = ~p(da) ,  d ' v 2  = 0 

for a �9 W d' ~P(A z- 1M) and ~p ~ 2~q(A t M), with some ~ e [a, b]. 
In the Dirichlet Problem, we prescribe the tangential component of a on 8M while 

in the Neumann problem, we prescribe the normal component of ~0 on 3M. 

THEOREM 1.3 (Existence Theorem). - Given a o �9 ~ d ,  ~p ( A t - 1M), a <~ 2 <. b, the 
Dirichlet Problem for  (1.7) has a solution satisfying: a - a o e M ? ~ Z P ( A t - I M )  
and 

Ilall,,zp <~ Cplldaollzp 

Given ~p o �9 ~d*, zq (At M), a <<. ~ <~ b, the N e u m a n n  Problem for  (1.7) has a solution 
satisfying: v2 - v2 o �9 wd*'  ~q( A t M) and 

IJdh, 4, -< c, I1 o N '  

We have reserved for our final result, a dramatic extension of the Painlev~ remov- 
ability theorem and the results of [IM93], [Iwa92]. For the sake of simplicity, we state 
this result for the introduction only in the linear ease which is already both new and 
nontrivial. Thus, we assume that ~:  A I ~ - - ~ A ~  is a linear bundle automor- 
phism. 

THEOREM 1.4 (Removability Theorem). - Let Y2r 5~ be open and E r ~ be closed. 
Consider the Hodge system 

(1.8) d* ~ = gj(d~) in  U = t2 - E 

for  ~ e wd& 2 ( A Z- 1 U) and ~ �9 "9~1d*~ ' 2 ( A l + 1 U). If, moreover, ~ and ~ are bounded then 
they extend to ~J as solutions to (1.8), provided dimE <<. s, where s > n - 2 is a number  
dependent only on the structural constants for  ~ .  

Although we do not pusue the matter here, a few words about connections with the 
second order PDEs are in order. Applying d* to (1.7), one can eliminate ~p from the 
Hodge system to at-rive at the equation 

d* Op(da) = 0 
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for one unknown a E ~d 'ZP(At - IM) .  For 1 = 1 and M an open region of R ~, this com- 
prises the familiar A-harmonic equation 

divA(x, Vu) = 0 

where A: M • R ~--~ R"; a mapping of the trivial bundle A ~ M. We refer the reader to 
[BI83] and [Iwa83] for estimates of A-harmonic functions with applications to quasireg- 
ular mappings and to [HKM93] for a fuller treatment. The advantage in studying the 
first order Hodge systems is particularly evident when one wants to pass to the dual 
equation. For this, it is necessary to write the A-harmonic equation as O(du) = d* v, 
with a 2-form v as an additional unknown. One can now eliminate u to obtain the dual 
equation d~-~(d*v)  = 0 which inevitably involves differential forms. These duality ar- 
guments were successfuly exploited in [Iwa92]. 

2.  - P r e l i m i n a r i e s .  

2.1. Some exterior algebra. - The current section is dedicated not only to an exposi- 
tion of those aspects of exterior algebra essential to our development but more impor- 
tantly to establishing notation for the sometimes cumbersome technical details associ- 
ated with differential forms. The best general reference here is [Car70]. 

We let E denote a real vector space of n-dimensions. An l-linear, alternating func- 
tion ~: E • ... • E - - ) R  will be called an l-form and the space of all such forms will be 
indicated by AtE.  In particular,.A1E = E ', the dual to E.  For technical reasons, we 
set A~  = R and recall the exterior algebra of forms A E -  $~=oAtE.  The familiar 
wedge product of ~e  A tE  and ~e  AaE is given by 

(2.1) (~A ~)(X1, ..., x~+t) -- E s~(x~,, . . . ,  x~,) ~(x~,, ..., xjk), 

where the sum is taken over all permutations {il, ..., it, Jl, ---, Jk } of { 1, ..., k + l} 
satisfying il < ... < it and j l  < ... <Jk, and e is the sign of {il, ..., it,j1, ...,Jk}. Note 
that  ~ A ~ =  ( - 1 ) ~ t ~ A ~ .  

When E is endowed with an inner product ( , )  and an orthonormal basis 
~8 = {el, ..., e~}, an inner product is naturally induced for E '  by 

n 

(2.2) (~, ~ )~  E ~(ei) ~(ei) 
i = l  

and for A t E by 

(2.3) (~, ~) - d e t ( ~ ,  ~j) 

where ~ = ~ 1 A. . .  A ~ l and ~ = ~ 1 A. . .  A ~ t for ~ i, ~j e E ' .  Let's denote the basis dual 
to ~ by :8 '=  {e 1, ..,, e "} (i.e. ei(ej)=Sij). We recall that when ~ is orthonormal, 
(2.10) and (2.11) guarantee that the system 

(2.4) {ei lA. . .  Acid: 1 < i l  < . . .  < i t < n }  
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forms an orthonormal basis for A t E  with dimension (~). We refer t o e - - - e l A  . . . / ~  e n as 

an orientation for E .  Associated with e is the so-called Hodge star  operator. 

(2.5) * : ATE---) A ~ - t E ,  / = 0 ,  1, . . . , n  

uniquely determined by 

(2.6) * l = e  and ( A  * ~ = ( ~ ,  ( ) e  

for all ~, ~e  A t E  and 1 = 0, 1, . . . ,  n .  Here, we observe that  �9 is an isometry and that  
�9 �9 is simply multiplication by ( - 1 )t(n - t) on A t E .  We take a moment now to exploit the 
structure elucidated above to discuss some intrinsic geometric properties of forms as- 
sociated with subspaces of E .  For  this, let V be a subspace of E and let z :  E - *  V denote 
orthogonal projection. Given an arbi trary to e A t E ,  we define the tangential part  of to 
(w.r.t. V) toTe A l E  by 

(2.7) to r (X1 . . . .  , X p  - t o ( z X l ,  . . . ,  z X t )  

for X1, . . . ,  Xt e E .  We observe here that  w T is still an element of A t E but with the 
property that  for X1, . . . ,  Xt e V, we have 

(2.8) to r ( X 1 ,  . . . ,  X p  = to(X1, . . . ,  X p  

This induces to's normal part  oJ N = to - o  T. By A~E (AXE), we indicate the sub- 
space of A t E with to T = 0 (toN = 0). Thus, the / - forms orthogonally decompose accord- 
ing to 

(2.9) A t E  = (AXE)@ (A~TE) 

Often useful is the following 

LEMMA 2.1. - Let { e l ,  . . . ,  en} be an orthonormal basis of  E with { e l ,  . . . ,  ek }(k < n) 
a basis of  the subspace V and let to = ~, to il ..... ~, e il A . . .  A e % where the su m  is taken 
over all ordered 1-tuples 1 <~ il < ... < it <~ n.  Then 

(2.10) WT = ~ toil ..... i~eil A . . .  Ae i~e  A X E  
it <~k 

(2.11) o N  = ~,  toil ..... il eil / k ' ' ' / k e i z e  /~ITE 
iz> k 

For  the remainder of this section, we let 2: E-->F be a linear map between the in- 
ner product spaces (E , ( , )E )  and (F, ( , )F) .  Denote by 2 # :  F ' - - > E '  the map dual to 
(i.e. (2~ ~)(X) - ~(2X) for ~ e F '  and X e  E). The concept of the dual map extends natu- 
rally to/-forms.  This map, still denoted by ~r /kz F - - ) A l E  and called the pullback of 
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2, is defined according to 

(2.12) 2 # ( ~ 1 A  ... A ~ l )  - 2 # ~ 1 A  ... A 2 # ~  

for ~1, ..., ~ F ' .  
Notice that "pulling back" is possessed of many nice properties including 

(2.13) 2#(~A ~) = 2 # ~ A 2 # ~  

(2.14) ( 2 K )  # = :K# 2 # 

(2.15) (2#) -1= (2-1) # 

(2.15) (II2)# = / z 2 # :  AIF---->A~E for , I~R  

When dimE = dimF,  this pullback provides for the general formulation of determi- 
nant of 2, uniquely given by 

(2.17) 2 # f =  (det 2) e 

where e and fa re  the orientation forms for E and F,  respectively. Also, the transpose of 
2, 2t: F---~E is uniquely defined by the rule 

(2.18) <2 t Y, X>E = <Y, 2X>F 

for all X e E and Y e F. The interplay between the operations �9 det, pullback, trans- 
pose, tangential and normal parts is both satisfying and important for the sequel For 
later reference, we give a short list of facts representing this interplay 

(2.19) (2t)# = (2#)t 

(2.20) det 2 t = det 2 

(2.21) (2#) t * = (det 2) �9 (2#) -1 

(2.22) �9 09 N = ( * W ) r  and �9 w T = ( * W)N 

Further, with i: V---~E denoting inclusion, we get 

i#w =i#WT 

Another useful pullback of a linear map 2: E---> F between inner product spaces is de- 
fined by the rule 

(2.23) 2# = ( - 1 )  in-1 * 2 # * : A~F-'*A~E 
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We then have 

(2.24) 

(s  = :X#s 
(.~#)- 1 (~:~- 1)# 

(,~2.)# ,:'~-t2.~: At F----) AI E for all )~�9 

With this notation, the well known Laplace expansion of the determinant reads as 

2~(2~) t=  (det 2) Id: At E--~ AZE 

or  

(2r = (det 2) Id: A1F--~ AIF  

Fixing orthogonal bases for E and F,  dimE = d imF = n,  ~ and ~r are represent- 
ed with respect to the induced orthogonal system by a matrix whose entries are the 
1 x l and (n - l) x (n -/)-minors respectively of the matrix for .r Notice that these 

matrices have size n - l "  

2.2. The Riemannian manifold setting. - For the duration of this paper, M will 
denote a regular open region of a closed (without boundary), oriented, Riemannian 
manifold (~, g) of dimension n ~> 2. We mention now that ~ will play only an auxilliary 
role serving as a reference to various geometric structures on M. For this reason, we 
refer to (t~, g) as a reference manifold. Also, let us recall that a regular open region 
M r ~ is one for which there exists a finite atlas 0~ on the reference manifold ~ consist- 
ing entirely of coordinate charts (U, K) �9 0~ so that ic is a C ~-diffeomorphism onto R n 
and K(U A M) = R~ whenever U meets aM. Observe that the notation 

U~, -- {(•1, . . . ,  xn): Xn > 0} 

is being used here. We refer to such an atlas (~ as a regular atlas and to those (U, K) 
for which U meets aM as coordinate neighborhoods at the boundary. 

For any regular region M, there is a sufficiently small number e > 0 so that there 
emanates, from each point s �9 aM, a unique open geodesic arc y ~ of length 2 e which is 
orthogonal to aM having half of y s in M and half outside of M. These geodesic arcs 
form a 1-dimensional C | of a region, called a collar neighborhood of aM, with 
size e 

s e a M  

To each point a �9 N~ we assign cylindrical coordinates (s, t), where s �9 aM indicates the 
unique geodesic Y8 passing through a and the number t �9 ( - e ,  e) is the geodesic dis- 
tance from a to s which is positive if a �9 M and negative if a is not in M. Of course, the 
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coordinate function t: ~ - - ) R  has no critical points (i.e. dt ~ 0). This gives rise to a 
C ~-diffeomorphism 

(2.25) 4): N~-o 3M • ( - e, e), O(a) = (s, t) 

Using such a collar neighborhood and associated coordinates, it is understood that 
there exists a C | F:  5r x ( - 1, 1 ) --* 8~ of the identity id~: ~ --* ~ with 
the properties 

(2.26) EachFt = F ( . ,  t): ~ -* ~ is a diffeomorphism with F0 = ida 

(2.27) { M c F t ( M ) ,  >O 

Ft(~I)cM,  t < O  

Further, the reflection through 3M in Ar~ 

(2.28) r: N~ ~ N~ 

is an orientation reversing diffeomorphism of 3r with itself given by r(s, t) = (s, - t ) ,  
in cylindrical coordinates. 

We will denote by T ~  the tangent bundle over ~ and if we need to specify precisely 
the fibre over a e 5~, we write TaSk. Each fibre TaSt is furnished with an inner product, 
induced by the tensor g, which we denote by (X, Y), for X, Ye Ta~. Observe that 
in this notation we ignore the dependence of the inner product on the point a e ~ .  
By A t ~ ,  we indicate the l-th exterior power of the cotangent bundle T* St. Precisely, 
we mean that the fibre over a ~  is given by A ~ =  A t ( T ~ ) .  See Subsect. 2.1. 
We use the symbol (~, ~) for the inner product of the l-covectors ~, ~e A~SL The 
Whitney sum A 5~ = @~': o A t t~ will be called the exterior algebra bundle, whose fibre 
A~5~ = wt=0/~m" ^ t ~  is endowed with the inner product defined by letting the spaces 
A~8~, l = 0, 1, ..., n be mutually orthogonal. Since most often we will be considering 
the bundle A t 5~, we abbreviate this notation to A ~ when no confusion is possible. Final- 
ly, we use analogous notation for 3M when we consider it as a manifold rather than sim- 
ply a subset of t~ (e.g. A t ~M = A t (T~M)). 

2.3. Exterior forms. - Let E be a bundle over a manifold N and let Y2 be an arbit- 
rary subset of N. By F(~9, E) we denote the sections o rE  defined on s To simplify this 
a bit, in those cases when t9 = N, we write F(E) for F(N, E). For example, F($M, A t ) 
denotes sections of A t =  A l ~  which are defined on SM while F (At~M)=F(OM,  
A t ~M) and F(A t ) = F(~, A t 5~) denote the 1-forms on the manifolds ~M and ~ re- 
spectively. As one more point of emphasis for these subtle but important distictions we 
give 

F(~9, A t) = F(AL tg) 

when ~9 is an open subset of ~ .  
Notice that the wedge product, Hodge star and inner product discussed in Sub- 

sect. 2.1 extend pointwise to 1-forms. For example, ( , ) :r(~9,  A t ) x F ( t g ,  At) --) 
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---)F(A~ is defined by the rule 

(2.29) (~, ~)(a) = (~(a), ~(a)) 

for 8, ~ ~ F(t?, A t ) and a E/2. Recall that the symbol ( ,)  on the right hand side stands 
for the inner product on A ~ .  Following Subsect. 2.1, we may define tangential and 
normal parts of a form ~ �9 F(M, A t ) pointwise on ~M by 

(2.30) ~T(b)=~(b)r, ~(b)=~(b)N 

for b �9  Notice that ~T and ~N are elements of F(3M, At), and 

(2.31) ~laM = ~T+ ~N 

When we wish to denote particular subspaces of F(~9, A t ), we will use familiar nota- 
tion for the space and (~9, A t ) to indicate the domain as well as the degree of the forms 
under consideration. For example, the arbitrarily differentiable/-forms on the regular 
region M c  3r are denoted by C ~ (M, A t ) = C ~ (A t M), those with compact support by 
Co ~ (A t M) and those which are C ~-smooth up to the boundary by C ~ (M, A t ). Also, 
throughout this work, we let CT ~ (M, A l ) and C~7 (M, A t ) denote the smooth /-forms 
with vanishing tangential and normal parts respectively. 

For a C | f :  X--~ Y between manifolds, we may define the associated pull- 
back of forms f # ,  f#: F(A 1 Y) --) F( A z X) according to 

( f#  w)(a) = [Df(a)] # w(b) 

and 

(f# og)(a) = [Df(a)]# w(b) 

for w �9 F( A t Y) and all a �9 X, b =f(a). Here, Df(a): TAX---> Tb Y denotes the differential 
o f f  and [Df(a)] #, [Df(a)]#: A~ Y---)A~X are the pullbacks of the linear map Df(a) as 
given in Subsect. 2.1. 

Of fundamental concern to us will be the exterior derivative 

(2.32) d: C| M)---)C| I M) 

For which, we have the formula 

d(aAfl)  = d a A f l  + ( - 1 ) t a A d f l  

where I stands for the degree of a.  The formal adjoint of d, also called the Hodge codif- 
ferential, is given by 

(2.33) d* = (--1) n / + l  * d* : C~~176176 

We note the commutation rules f #  d = df # and f# d * = d *f#. Of course, d and d * are 
understood for more general spaces of differential forms but we reserve such discus- 
sion until Sobolev classes are introduced. Finally, we note that the duality between 
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these differential operators is emphasized by the integration by parts  formula 

(2.34) f (du,  v ) -  ~ ( u , d * v ) =  f UTA *VN 
M M ~M 

where u �9 C ~ (M, A t ) and v ~ C ~ (M, At + ~). 

3. - S o b o l e v  c l a s s e s  o f  d i f f e r e n t i a l  f o r m s .  

Here  and subsequently, the measure on t~ will be the one induced by the volume 
form tt = * 1. Differential forms which are equal i.e. will be regarded  as indistinguish- 
able. I t  is customary to omit notation of the measure under  the integral sign and we 
shall follow this custom when it is clear that  no confusion will arise. 

3.1. The Lebesgue spaces. - I f  ~ is a measurable subset of ~ and i ~< p ~< ~ is fixed, 
we denote by 2P(~9, A t) the space of all measurable l-forms w � 9  A t ) for 
which 

(3.1) Hol[,,a = o I '  < cr , for p <  cr 

(3,2) IIo[[ ~ , a  = e s s s u p .  I w I < ~ 

Most of the time we will be dealing with the spaces ~P ( A t M) in which case we omit ref- 
erence to the set Q = M and simply write [[wllp --] lol l ,  M. I f  1 -< p,  q -< ~ is a HSlder 
conjugate pair, then the scalar product of a �9 ~"(~J, A t ) ' ~ d  fl �9 s A t ) is defined by 

~J Q Q 

In the style of previous conventions, we abbreviate (a, fl)M with (a ,  fl). Of course, the 
full s  space is not the only one that  will be of interest  to us. In particular, we will re- 
quire the local spaces 

(3.4) 2~oc(AtM) = {o �9 Ilollp, .  < ~ for each compact Q c M }  

DEFINITION 3.1. - A  differential form w �9 2~oc( A t M) is said to have generalized ex- 
terior derivative in case there exists a locally integrable (l + 1 )-form on M, denoted by 
do,  such that 

(3.5) ( o ,  d *  ~/) = ( d o ,  r/) 

for every test form 17 �9 Co~ (At+IM) .  I f  both o and d~o are integrable on M and (3.5) 
holds for any ~ / � 9  then we urrite O T = O and say that o has vanishing 
tangential part. The notion of generalized exterior coderivative and vanishing nor- 
mal part are defined analogously. Lastly, we refer to 

k e r d  = {w �9 2~oc(At M): dw = 0} 



48 T. IWANIEC - C. SCOTT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 

as the closed l-forms and to 

k e r d *  = { to �9  2~or tM):  d * w  = 0} 

as the eoclosed 1-forms. 

3.2. The Sobolev spaces. - For  k =  1, 2, ... and 1 ~< p <~ oo, Sobolev space 
%~' ~(A ~ M), is defined in the usual fashion by first choosing a finite atlas for  the refer-  
ence manifold ~ ,  say (~ = {(Ui, K0: i -- 1 . . . .  , m}, as well as a C~-part i t ion of unity 
{Z i e Co ~ (Ui): ~ Z i - 1 } subordinate to (~. This allows us to decompose o9 e F( A t M) ac- 
cording to o~ = ~ co ~, where o9 ~ = ~ i o9 and consider the pullback of o9 i via the mapping 
/ ( . ~ -  1 .  Rn__>Ui 

(3.6) og~(x) = E og~(x) dxl , 
I 

xe 'U~= K i ( U i N M ) c R  n 

Here,  the sum is taken over all ordered l-tuples I = (il . . . .  , i~) and dxl = d~i, A . . .  A 
A dxi~. I f  each function o9{ has generalized partial derivatives D"og~e 2P(%ti) for all 
I a I ~< k, then the Sobolev norm of o9 is defined by 

m 

where 

IIo9 11 ,  =-- E EllD og ll,,  
lal .<k I 

I t  is not difficult to see that  the Sobolev spaces corresponding to different atlases and 
partitions of unity are all equivalent. 

An important  feature of ~ '  p (A t M) is that  every  such form is the restriction to M 
of an element of ~47 ~' p ( A t t~). Even better ,  there  is a bounded linear operator,  called an 
extension operator  

(3.7) 

which satisfies ~ IM = O9 for all o9 ~ ~I'p(AIM). To see that  this is the case, let ~ be a 
regular  atlas. I f  Ui r M,  then o9 i = X i o9 can be regarded  as a form of class ~4~ 1' p ( A z ~ )  
equal to zero outside of U~. If, however, Ui meets  ~M, then we recall formula (3.6) and 
extend o9~ to R n by requiring that  eo{(x~ . . . .  , x~) = oJ{(xl, . . . ,  - x O .  We denote this 
extension to R ~ by ~ .  Next, re turn  to the manifold 5~ by pulling back D~ via the map 
Ki: Ui-->R n. In this way, we obtain a form ~ i e ~ 4 ? l ' P ( A t U i ) .  Finally, we put  

Armed with the extension operator,  one can prove basic approximation propert ies  
of the Sobolev Spaces. For  example, using the Meyers  and Serrin approximation theo- 
rem, we obtain 

COROLLARY 3.2. - C~(AIS~) (restricted to M) is dense in W I ' p ( A t M ) ,  for all 
l ~ < p <  r 
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Let us denote by ~r P(A t M), 1 ~< p ~< o~, the space of/-forms on M whose zero ex- 
tension to the reference manifold belongs to ~ '  ~(A t ~). We then have 

COROLLARY 3.3. - C~ ( A  ~ M) is dense in W1, ~(A t M), for  all 1 <~ p < ~ .  

Due to Definition 3.1, we may speak of vanishing tangential and normal parts of 
forms in ~ '  ~(A l M). Accordingly, the spaces of such forms will be denoted by 
~ ~(A t M) and ~ ~(A ~ M). It is immediate that 

~4?ol'P(AIM) = ~4~P(AIM) A ~ ( A t M )  

A very useful tool in dealing with boundary values of differential forms is furnished by 
special coordinate systems {U, ~c= (xl, . . . ,  x.)}, K(U N M) = R~, chosen so that for 
each b �9 ~M n U, the tangent vector ~/~x~ is orthogonal to Tb(~M). The existence of 
such systems is easily established by using cylindrical coordinates. In addition, one can 
require that the vectors ~/gXl, ..., ~/~x~ form a frame which is orthonormal for Tb 5~ at 
a specified point b �9 ~M, but not necessarily at a collection of points clustered about b. 

Suppose that w �9 WT 1' P ( A t M) and X �9 Co ~ (U) is a member of a partition of unity as 
above. The form Xeo splits into tangential and normal parts 

Zeo = ~, a il . . . . .  ~z dxi~ A . . . A d x ~  + ~ f l  ~ ..... it dxi~ A . . . A dxi~ 
l <~il <...  < i t < n  i<~il <...  < i t = n  

Here, the coefficients ail ..... iz belong to Wo 1' P(U A M) while the coefficients fl~l ..... i~ 
only belong to W 1' P(U N M). We then see that ail ..... it and fl i1 ..... i~ can be approximat- 
ed by functions of class Co ~ (U A M) and Co ~ (U) respectively. Thus, there exists a se- 
quence of l-forms in Co ~ ( A t U) with vanishing tangential part on 3M which converges 
to Xo in the Sobolev class W ~ ' P ( U N M ,  At). Using a partition of unity, we then 
obtain 

COROLLARY 3.4. - The space C~ (M, A 1 ) is dense in W~' P(A t M). Also, in view of 
Hodge star duality, C~ (M, A t ) is dense in W~' P(A l M), for all 1 <<. p < oo. 

3.3. Partly Sobolev classes of f irst  order. - One special feature of the differential 
equations we shall discuss is that the partial differentiation occurs only via the opera- 
tors d and/or d *. Therefore, the natural spaces of differential forms in which to look for 
solutions will not require that all partials exist. Such spaces, called partly Sobolev 
classes, have a place of central importance in this paper. In this section we define and 
summarize briefly the basic properties of such classes. 

For the space ~d .  p (At M), we require only that both a form and its generalized ex- 
terior derivative (see Definition 3.1) are 2P-integrable 

(3.8) ~d 'p(AZM) = {w �9 2P(At M): dw �9 2P(AZ+IM)} 

This space is equipped with the norm 

(3.9) IlWlld, p = IlWllp + Ildwllp 
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Similarly, we define 

(3.10) ~ * ' ~ ( A t  M) = {w �9 2~(A~M): d*w �9 2P(At -~M)}  

which is provided the norm 

(3.11) Ilwll~*,~ = I1~o11~ + lid* wll~ 

REMARK 3.5. - It is a straightforward consequence of Definition 3.1 that for 
�9 ~d ,  p (At M), 1 <~ p <~ ~ ,  the form dw has generalized exterior derivative equal to 

zero (i.e. ddw = 0). Moreover, i f  w ~ = O, then (dW)T = 0 as well. Similar considerations 
apply to the exterior coderivative. 

Note that both -~d, p(A t M) and ~d*, p(A t M) are modules over the ring C ~ (M), 
since for each X �9 C ~ (M), we have 

(3.12) d(xw) = x d w + d x A c o � 9  if w � 9  ~d '~ (A~M)  

and 

(3.13) d*(xw) = x d * w -  ( -1 )  nl+n * ( d z A  *w) �9  if w � 9  ~d* 'p (A tM)  

For f :  X--* Y a C ~-diffeomorphism of compact Riemannian manifolds (with or without 
boundary), we recall the formula d ( f # w ) = f # ( d w ) .  Because of this, the pullback 
operation 

(3.14) f # :  ~d ,P(At  Y) --, ~d ,P(At  X) 

is a Banach space isomorphism. This observation is the key to seeing that the exten- 
sion operator - ,  originally defined in (3.7) for ~4~I'p(AtM), is actually acting on 
~d ,  p(/kZ M) as a bounded linear operator with values in ~47 d' P(A t ~). 

A slight change in the proof of Corollary 3.2 gives 

COROLLARY 3.6. - C ~(A t fie) is dense in ~ ,  P(A t M), for all 1 ~ p < ~ .  

PROOF. - As before, we cho~e a finite atlas for 5~, say (~ = {(Ui, Ki): Ki: Ui--) R ~ } 
and a partition of unity {Z ~ �9 Co ( U~): ~ 9/i = 1 }. Fix w �9 ~ '  p ( A t M) and let ~ denote 
its extension to 8~ so that D e ~d ,  p(At ~). We then consider the pullback of g i~  to R n 
via K~-I: Rn-->Ui. This pullback, denoted ~ ,  has compact support and belongs to 
~d ,  p ( Al Rn). Using the fact that in R ~, the differential operator d has constant coeffi- 
cients, we see that the convolution of ~ with standard mollifiers provides us with a C ~ 
approximation of ~ .  We now return to the manifold ~ by pulling back via the map 
Ki: Ui--->Rn. The details are left to the reader. �9 

Using the Hodge stars * : F(A~-tY)--~F(At  Y) and *: F( A1X) ---* F( A n- t X), we 
may introduce another pullback operation, denoted by f#: F(A t Y) -o/7(A Z X) and given by 

(3.15) f#(w) = ( - 1 )  nl-t * f # (  * w) 
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for w e F ( A  t Y). We leave it to the reader to verify that f# commutes with codifferentia- 
tion 

(3.16) f#  (d * w) = d * (f# w) 

As before, we see that 

(3.17) f#: ~ d  *, p (/~l y )  ...._) ~0d *, p (/~l X)  

is a Banach space isomorphism. We now have a corollary dual to Corollary 3.6. 

COROLLARY 3.7. - C ~(A t ~R) is dense in %kgd*, p(A t M), for  all 1 <<. p < r162 

A proper subspace of Wd, p (A t M) (~4~ d*, P (A t M), respectively), well adapted to our 
boundary value problems, is the class ~ P ( A t M) ( "49 d*' p ( A t M)) of differential forms 
with vanishing tangential (normal) part on ~M. The following corollary provides a nat- 
ural and intrinsic characterization of ~ P(A t M) and ~d*,  p(At M) for all 1 ~< p <  ~ .  

COROLLARY 3 . 8 . -  A differential form belongs to ~4?~P(AtM) (~6~d*'p(AtM), re- 
spectively) i f  and only i f  its zero extension to the reference manifold belongs to 
"9~ d' P ( A t :R), ( %~d*, p ( At 5~)). The space C~* ( A t M) is dense in both "9~ p ( A t M) and 
W~*' p (A  t M). 

PROOF. - We only give proof for the case of ~ P(A t M) and comment that the 
%~d*, p (At M) case is Hodge star dual. It follows from Definition 3.1 that the zero exten- 
sion of w belongs to ~d ,  p (A t ~ )  with dw = 0 outside of M. 

We shall have established the converse if we prove that Co ~ (A t M) is dense in 
M9~ P(A t M). Suppose that ~o E ~r p(At ~ )  vanishes outside of M. To make its support 
slightly smaller, we recall the perturbation of identity Ft: ~ --* ~ ,  0 < t < 1 as given by 
(2.26) and (2.27). Since M c Ft (M), pulling back via the diffeomorphism Ft, we obtain a 
form F ~ ( w ) e  ~4?d'P(AttR) which is supported in a compact subset of M. We also 
have 

l i m F ~ ( w ) = F ~ ( w ) = w  in ~4~d' P(AI ~ )  
t--)0 

In view of these observations, we only need to approximate each Ft~(w) by forms of 
class Co ~ (A t M). This is done the same way as in the proof of Corollary 3.6. The only 
point remaining to be mentioned is that by using mollifiers, we have actually obtained 
forms supported in a slightly larger set than that of Ft~(o), but still in M. �9 

DEFINITION 3.9. - Let dT and d~ denote the closures of the differential operators 

d: C~ (At M ) c  ~P(At M)---~ ~P(AI+ i M) 

and 

d*: C d * ( A t M ) c 2 2 ( A t M ) - - > 2 2 ( A l - 1 M ) ,  1 <.p< r 

respectively. 

Corollary (3.8) simply means that the domains of these operators are ~ e  P(A l M) 
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and ~')4N*' P(A t M), respectively. Formula (2.34) shows that  dT: ~ "  P(A t M) --> 2P 
( At+ 1 M) is the Banach space adjoint of d * : ~d*,  q ( /~ l  + 1 M )  ---) .~q ( A l i ) .  Similarly, 
d~ is the Banach space adjoint of d: ~d ,  q ( A l -  1 M )  --'> , ~ q ( A  l M), 1 < p,  q < ~ ,  p + q = 
= pq. 

3.4. Harmonic fields. - A  form h e ~o~(A t M) which is both closed and co-closed 
(i.e. dh = d * h = 0) will be called a harmonic field of degree I. We denote by :)C( A t M) 
the space of all harmonic fields on M and regard it as well known that  such forms are 
C U-smooth. Notice that  $C(A z M) serves as a natural extension of holomorphic func- 
tions to Riemannian manifolds. Indeed, a 1-form h = u(x,  y) dx + v(x, y) dy on R 2 is a 
harmonic field if and only if the complex function f = u - iv is holomorphic. The three 
basic Banach spaces of harmonic fields of concern to us are 

(3.18) :~CP(At M) = "9~I'p(At M) A :}C(At M) 

(3.19) ~ ( A  t M) = {h e :hTP(A t M): hT = 0 } 

(3.20) ~ v ( A t  M ) =  { h e  N;P(AtM): hN = 0} 

where 1 <~ p ~< or Clearly, the Hodge star operator preserves harmonic fields. Precise- 
ly, we have �9 :~:(AtM) = :~C(A'-tM) and * :~7~(AtM) = :hT~v(An-tM). 

3.5. Partly Sobolev classes of second order. - A form ~ e ~ 1 ,  p ( At  M) is said to be- 
long to 22, p ( A t M) if d~ e ~O 1' p ( At + 1 M) and d * ~ e ~01' p ( A t - 1M). The norm for this 
space is given by 

(3,21) 11~/l12, p ~- II~/lll, p ~- IId~lll, p + lid* ~/111, p 

REMARK 3.10. - We should point out that ~2, p(A l M) is a proper complete subspace 
of ~ 2 ' P ( A t M ) .  For example, harmonic fields of class WI'P(A1M) are members of 
22 'P(AIM),  but need not belong to x&v2'P(AIM). 

The following closed subspaces of ~2'P(Az M) will be useful 

[ ~ e ~ P ( A t / )  = {~ e ~ 2 , p ( A t / ) :  ~,T = (d*~)T=  0} 
| 

(3.22) ~2~qP(AtM) { y e 2 2 , P ( A t M ) :  ~]N = (dy)N--0 } 
12~ , p ( A t M) = { 7 e 2 2, p (A t M): (dT) N ---- (d * }')r = 0 } 

Density of smooth forms in these spaces is a delicate problem. A characterization of 
higher order Sobolev spaces via the exterior and coexterior derivatives is pursued 
in [BS96]. 

4. - Gaffney type inequalit ies .  

The inequalities we study in this section represent critical estimates for the opera- 
tors d and d*.  
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4.1. Gradient estimates in R~.  - We prepare  for the more general results (i.e. on 
manifolds) by presenting a variant in Euclidean space. At this point, we deviate slightly 
from the res t  of the text  by using A t to denote A t R n. This convention is only in force 
for this subsection and thereaf ter  we re turn  to A t = A 18~. 

P R O P O S I T I O N  4 . 1 .  - There exists a constant C = C(p, n), 1 < p < 
a e CT ~ (R~, A t ) with compact support, we have 

(4.1) IlVallp <~ C(n, p)(lldall p + lid* alIp) 

In the s ta tement  of this proposition, we are using 

~ a  

where 
~xi 

, so that for  any 

S x l  ' 

- E  saI 
I ~ dxI" F o r  the proof, when a = Y~ aldxi and f l =  ~ f l J d x j  are 

l-forms in a domain of R ~ whose partials exist, we write 

i = 1 ~ X  i ' ~ X  i 

~a I ~ I  

~.i ~xi ~xi 

Our arguments  are based on certain identities and 2P-estimates for the Riesz trans- 
forms in R ~. We have divided the proof into a sequence of lemmas. 

LEMMA 4.2. - We have the following identity 

(4.2) (da, d f l ) + ( d * a , d * f l )  (Va,  Vfl) ~, +,  i ~,J ~ y - = - ( a 1 - j p j - i  -- a j - l • i - j )  
# ( I N  J) = l - 1 

Here  and subsequently, f i _ j  stands for the partial derivative 9f/3xi, where 
{i} = I - J .  The signs in the summation depend on I and J but  we do not specify them 
because they will play no role in the sequel. 

PROOF OF LEMMA 4.2. - Le t  us denote by ~B(a, fl) the bilinear form in the left hand 
side of 4.2. Because of bilinearity, it is sufficient to verify formula 4.2 for the 
forms 

a = A dx l ,  fl = B dxj  

where A and B are differentiable functions. We then have 

* a = A * d x l ,  . f i  = B ,  dxj  

da = Ai dxi A dxl , dfl = Bj dxj A dxz 

Hereafter ,  Ai stands for the partial derivative 3A/~xi and we use the Einstein summa- 
tion convention. Notice also that  

d * a = A~ dxi A * dx i ,  d * fl = Bj dxj A * dxj  



54 T. IWANIEC - C. SCOTT - B. STROFFOLINI: N o n l i n e a r  Hodge theory, etc. 

Hence 

(da, dfl) =A~.Bj(dxiAdx,, dxiAdxj} :=X 

(d* a, d* fl)= A~Bi(dxiA * dxl, dx iA * dxj) :=X* 

(Va, Vfl) = AkBk(dxl, dxj) :=Y 

It  is clear that  if # ( I  ('1 J )  < 1 - 1 then each of the expressions X, X* and Y vanish. 
Thus, (4.2) holds trivially. Now, two cases are possible. Ei ther  # ( I N  J ) =  1 or 
# ( I A J )  = l - 1 .  In the first case, we see that  I = J .  Hence, X =  ~, AkB~, X * =  

kctI 

= ~ AcBk and Y =  ~ AcBk. Thus ~8(a, fl) = 0, as desired. In the second case, I = 
keI  k=l  

= {p} U K and J = {q} U K for some multiindex K = I A J with # K  = 1 - 1, p r q and p,  
q ~t K.  This gives 

X = AqBp(dxq A dxl, dxp A dxj) 

X* = AvBq(dxpA * dxl, dxqA * dxj) 
(no summation) 

and Y = 0. By elementary combinatorial arguments, we find that  

(dxpA * dxl, dxqA * dxj) = - ( d x q A  dxl, dXpA dXj) := e = +-1 

In all, we obtain 

~8(a, fl) = e(ApBq - AqBp) = e(A1_jBj_r  - A j - I B I - j )  

as claimed. �9 

REMARK 4.3. - Our proof reveals that (dx j_ iAdXh dxl_ + A dx+) is the sign in (4.2). 

Le t  us rewrite identity 4.2 as 

(4.3) ~ ( a , / ~ )  E + - [ ( a ~ - j / ~ J b - 1  i J = - ( a j - d ~ ) l - J ]  
# ( I n J ) = l - 1  

We denote by 21'P(R~+ ) (.~I'P(Rn), respectively) the space of locally integrable func- 
tions on R~, (R ") whose distributional gradient belongs to 2P(R~ ,  R ~) (2P(R ~, Rn), re- 
spectively), 1 <~p~< ~ .  Let  2~ 'P(R~)  denote the space of functions from 21 'p (R~)  
whose zero extension to R ~ belongs to 21'p(R~). 

LEMMA 4.4. - I f  a ~ C~ (R'~_, A l) has compact support and f l e  21' q(Al R~_ ) with 
fl T = 0 and q >I 1, then 

(4.4) ~ 53(a, fl) = 0 
R~ 
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PROOF. - In view of (4.2), it suffices to show that  

( a s _ 1 f l ) 1 - +  = 0 (4.5) f ' 

for all l-tuples I and J with # ( I  r J )  = l - 1. Fi rs t  notice that  both integrands in (4.5) 
belong to W1, P(R~ ). Fur thermore ,  for each k = 1, 2, . . . ,  n and any ~ �9 %~1, q(R~ ), Fu-  
bini's theorem yields 

(;) 
where a = 0 if k = n and a = - oo otherwise. In particular, (4.5) holds if J - I ~ {n} ;~ 
;~ I - J .  In the case {n} = I - J ,  flz is a coefficient of the tangential par t  of ft. Thus, flJ �9 
�9 ~491' q(R~, ) and (4.5) follows by applying (4.6). Moving to the case when {n )  = J - I ,  we 
see that  a t is a coefficient of the tangential par t  of a .  Consequently, a~vanishes  on 
8R~ = R ~- 1. Since {n} ~ I -  J ,  the partial derivative a ~ - z  vanishes on R ' - 1  as well. 
Identi ty (4.6) once again implies (4.5). �9 

LEMMA 4.5. - For each f � 9  (,~I'P(R~)), there exists ge~'q(Rn+) 
( , ~ i ' q ( R n ) ) ,  1 < p ,  q <  oo, p + q = p q ,  such that 

(4.6) []Vf[[vllVg]] q ~< C(n, q)(Vf, Vg) 

where the constant C(n, p) depends only on q and the dimension. The norms and the 
scalar product are in Rn+. 

PROOF. - Denote by 5 the reflection of x = (xl,  . . . ,  x~) �9 R ~ through 8R'~ = R n-1.  
That  is, ~ = (xl . . . .  , x~_ 1, - x . ) .  Using this reflection map, we e x t e n d f t o  R ~ by requir- 
ing that  

(4.7) f (5 )  = - f ( x )  in case f e ~o 1' P (R?~) 

(4.8) f ( ~ ) = f ( x )  in case f e  ~ I ' p ( R ~ )  

The extended function (still denoted b y ] )  belongs to s We now consider the 
case of f e  21 'p (R~)  and comment only that the case f e  s  follows similarly. 

Fi rs t  notice that  the gradient of the extended function satisfies Vf(~) = - Vf(x). 
Observe that  the vector  field F =  [Vf[P-2Vf  = (F1, . . . ,  Fn): R'*--*R n satisfies [F[ q= 
= [Vf[ p and so F e  s  ~, R~). We also have 

(4.9) F(5) = - F(x)  
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Now we define g: R ~--* R as the Riesz potential of F .  Precisely, 

(4.1o) g(x) = c, f (x - y ,  F(y)}  dy 
I -yl 

The gradient of g can then be expressed using the Riesz transforms in R " according to 

[ \ j = l  i = 1  . . . . .  

This yields the estimate 

IIVgllq, R" = IIGllq, a" <<- C(n, q)lIrllq, a. = C(n, q) l Iv f  ll~.~. 

Thus g a s q(R"). 
Using familiar identities for the Riesz transforms, we obtain 

(Vf, Vg) = - (Vf ,  R ( R ,  F))R. = - ( R ( R ,  Vf), F)R. = (Vf, F)r(-= Ilvf II~;i.Ilvf lip, R- 

Combining this with the previous estimate for Vg, gives 

(4.11) IlVfllp, R,i]Vgllq, R N <. C(n, q)(Vf, Vg)R~ 

In order to reduce this estimate to R~, we observe that 

(4.12) g(-2) = - g ( x )  , 

which follows from (4.9) and an easy change of variables in the integral (4.10). We now 
see that G ( 5 ) = - G ( x )  which in turn reveals [IVgllq, a~=21/ql]VgIIq, ItVfIIp, R ~= 
= 21/p II Vf lip and (Vf, Vg)a~ = 2(Vf, Vg). Therefore, inequality (4.11) is equivalent to (4.6). 
Finally, relation (4.12) gives that g restricted to R~ belongs to ~49~, q(R~ ). �9 

REMARK 4.6. -Essent ia l ly  the same proof  applies when f and g are funct ions  on R~+ 
with values in a f ini te  dimensional  inner  product space. I n  particular, for  differen- 
tial f o rms  f ,  g: R~+ --~ A t R n. 

PROOF OF PROPOSITION 4.1. - It will be convenient to regard a as a function on R~ 

with values in the (~)-dimensional inner product space A ~= A t R ~. Recall the orthogo- 

hal decomposition (2.9), A t =  (A~R~)(~(AtNR~), with respect to R ~ -1=  a R ~ c R  n. 
Accordingly, a = u + v where u: R~ --) A~T R n and v: ~++ --* A~N R ~ are orthogonal point- 
wise, u e CT ~ (R--~-+, A t ) and ~ v �9 C~ (Ri+, A t ). This, in view of VT = a T -- UT = 0, yields v �9 
�9 s  A~NR ~) while u � 9  s  AtTR~). 

By Lemma 4.5, there exist forms u �9 21' q(R?~, AtTR ~) and v �9 21' q(R?~, AtNR~), 
p + q = pq, such that 

]]VulJp C(n, q)(Vu, Vu) 

(4.14) IlVvlip ~ C(n, q)(Vv, Vv) 
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Here we have assumed that  ]]Vu]]q = ]]VVllq = 1. This introduces no loss in gener- 
alilty since we may normalize u and v. These are orthogonal components of an / - fo rm 
fl = u + v �9 ~49~ q (A t R~ ). Therefore 

IlVall, Ilvull  + Ilvvll, -< C(n, q)[(Vu, Vu) + (Vv, Vv)] = C(n, q)(Va, Vfl) 

On the other hand, by Lemma 4.4 we have 

(Va, Vfl) = (da, dfl) + ( d ' a ,  d* fl) <. 

<~ C(n)llVflllq(lldallp + lid* all,) <<- 2C(n)(lldallp + lid* allp) " 

4.2. Gaffney's inequality for  .~1, p ( A t M). - Before stating the global result, we use 
the groundwork just  developed to give the following 

LEMMA 4.7. - For each point a �9 M there exists a constant C = C(a) such that 

(4.15) 110)111, p, M ~< C(llwllp, M + t[dwllp, M + lid* wllp, M) 

for  all w �9 C~ (M) vanishing outside a suffi__ciently small neighborhood of  a. This 
neighborhood may  depend on the point a �9 M, but not on ~ .  

PROOF.- For a e 3 M ,  choose a coordinate system {U, K= (xl, . . . ,  xn)}, K ( U N M ) =  
= R~ so that  the tangent  vector ~/3x~ is orthogonal to Tb(~M) at every point be  
�9 ~M A U. In addition, we may assume that  K(a) = 0 and that  the components of the 
metric tensor (w.r.t. K) satisfy gij(O) = 5 ij. The latter condition is always guaranteed by 
requiring that  the tangent  vectors ~/~xl, ..... , ~/~Xn are orthonormal at the point 
a � 9  

Next, let a = ~ at(x)  dxl denote the pullback of w via the mapping K-l :  R~+---~UNM. 

Obviously, a �9 CT ~ (~++, A t ) and has compact support. Of course, pulling back dw gives 
da. However, since d * w  involves the Hodge star, its pullback is 

(4.16) 
~a I 

~ A ~ 1 ( x )  ~ dxz+ ~ , B f ( x )  a ~ dxj  

where A J i and B f  are C ~ functions on ~++ whose explicit nature depends on the repre- 
sentation of the metric tensor g (i.e. on K). Further ,  our choice of coordinate system K 
guarantees that  at 0 e R ~, the first term of (4.16) is d* a .  Thus we see that  inequality 
(4.15) can be rephrased, equivalently, as 

(4.17) Ilalll,p <~ C,~(lla]lp + Ildallp + II$allp) 

in R~,  where t~ = t~(x, D) is a first order linear differential operator with C| - 
cients for which 

(4.18) fi~(0, D) = d* 



58 T. IWANIEC - C .  SCOTT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 

Now, to prove (4.15), we use Proposition 4.1 and the triangle inequality to obtain 

Ilall~,~ ~ C(n, P)(llall~ + Ildall~ + lid* all~) 

<~ C(n, P)(llallp + Ildall~ + IItPaH~ + II(tP-d*) all~) 

Next observe that  for given ~ > 0 and when a is supported in a sufficiently small neigh- 
borhood of 0 e R ~, we have the pointwise estimate 

These two estimates apparently imply (4.17). 
If  a is an interior point of M,  we may repeat  these arguments  with R ~ in place 

of R~ .  �9 

THEOREM 4.8. - There exists a constant Cp = Cp(M) such that 

(4.19) Ilwll,,p ~ Cp(llWllp + Ildwllp + lid* wllp) 

for every to ~ " ~  p (A  t M) t2 ~1~ p ( A t M), 1 < p < ~ .  

PROOF. - We will be concerned only with to e ~ P(A t M)  which, in view of Corol- 
lary 3.4, we may assume to be in CT ~ (M, A t ). For  each point a e M, choose a neighbor- 
hood according to Lemma 4.7. 

Since M is compact, we can select finitely many of these neighborhoods to cover M, 
say {tgi: i =  1, ... ,  m}. Let  {Zie  Co~(t-2i): ~ =  1} be a partition of unity subordi- 
nate to this covering. To each tgi there corresponds a constant C~ so that  (4.15) holds 
with oJ i = ~ ~ w in place of w. Now w = ~ ~ i o~ and since d o  i = Z i do~ + dz i A w and 
d * w i = x ~ d * w - ( - 1 ) ~ + ' * ( d x i A  , w ) ,  we may conclude with the desired esti- 
mate 

m 

IIwlll, p-< Z Ll  ll,,p 
i = 1  

m 

<~ ~'. Ci(llw illp + H de~ illp + lid* w illp) ~< C(llwllp + Ildwllp + lid* wllp) 
i = 1  

REMARK 4.9. - Gaffney's inequality quickly implies that both : ~ ( A t M )  and 
: ~ ( A  t M) are finite dimensional. 

Indeed, inequality (4.19) applied to h e :~C~(A z M)  U 9C~v( A t M), 1 ~< p ~< r162 reads as 
Ilhlll, p ~< Cp Ilhllp. By  compactness of the imbedding %~l,p ( AZ M) --* 2P (A  t M), it follows 
that the unit ball of the subspace : )C~(AIM)c ~ P ( A I M )  is relatively compact. Thus, 
dim 9C~(AZM) < oo. Similarly, dim :~C~v(At M)  < ~ .  

I t  is a consequence of the regularity theory of C.B. Morrey that 
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REMARK 4.10. - Harmonic  f ields wi th  vanishing tangential  or normal  component 
are actually C ~-smooth up to the boundary. That is 

(4.20) :)~PT( A t M)  r C~ (M, A t ) and 2CPN( A t M)  r C~ (M, ) 

For this reason, we shall omit the superscript p in the notation for these two spaces. 
LP-bounds of a harmonic field in terms of its tangential and normal part can be found 
in [IMS95]. 

We will find estimates for a form w exclusively in terms of the p-norms of do  and 
d * w to be very useful. Our next theorem is dedicated to demonstrating one such 
result. 

Before stating this result, notice that given ~ �9 s  the orthogonal projec- 
tions of w to ~T(A t M) or :)Clv(AtM) are well defined. Recall that both are finite di- 
mensional subspaces of C | (M, A t ) r s  M). Thus, if hi, ..., h~ is an orthonormal 
basis for ~T(AIM), then the projection HT: ~I(A/M)---> ~CT(A t M)  is defined by 

(4.21) HT(W) = ~ cihi ,  ci = (o), hi)M 
i = l  

Analogously defined is the projection HN: -l~l(A t M) ----> ~}~N( /~  l M). We denote by 
9c~er(A l M) and ;%'~r(A1M), the subspaces of s  M) consisting of forms which are 
orthogonal to :)(:T(A t M) and :)CN(A t M) respectively. 

THEOREM 4.11. - For each 1 < p  < r162 and w � 9  ~?~P(/ktM) n ~c~er(AtM) or o) �9  
�9 ~49~P(A t M) N :)(:~r(/~t M), we have 

(4.22) Ilwlil,p <~ Cp(M)(Hdwiip + lid* Wllp) 

PROOF. - Suppose to the contrary that (4.22) fails. This means that for each positive 
integer k, one can find w k e ~ P(A t M) which is orthogonal to :gCT(A l M) satisfying 
the inequality 

1 
Ildwkllp + lid* wkllp <<- -~ ]]wklll,p 

Because of homogeneity, there is no loss of generality in assuming that Ilo~ lip = 1. 
Combining these observations with Gaffney's Inequality (4.19) yields 

]](-Ok]ll,p ~ - -  ~ 2  k-Cp 

and 

+ lid* o kiip-< Cpii kii  _< _2 
k - C a  k 
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for k > 2Cp. The first estimate implies that there exists a subsequence of (ok},  con- 
verging weakly to some w �9 ~4~ P(A t M). As such, w is also orthogonal to :~T(A t M). 
By compactness of the imbedding ~47~ P(/k t M) r  2P(A t i ) ,  we see that tie o lip = 1. On 
the other hand, the second estimate above shows that o is actually a harmonic field of 
class : ~ (  A t M) r CT ~ (M, A t ) r 22(~ ,  At ) and as such, it is orthogonal to itself. Hence, 
o = 0. This disagreement invalidates our assumption that (4.22) fails. �9 

We shall see that Theorem 4.11 is part of a more general spectrum of results con- 
cerning Poincar~ type inequalities. All of which will be formulated after the Hodge de- 
compositions have been established. 

5. - H o d g e  d e c o m p o s i t i o n s .  

Decompositions of a differential form into exact, coexact and harmonic components 
play an essential role in the potential theory on Riemannian manifolds. In fact, our pa- 
per systematically exploits these decompositions. For smooth forms, Hodge decomposi- 
tions were motivated by the theory of deRham cohomology. However, we will not devel- 
op this point here. As a consequence of our study of nonlinear PDEs, it became clear 
that Hodge decompositions for 2P-forms are a major prerequisite. It is apparent, how- 
ever, that the extremely rich literature on this subject, does not cover all required 
details. 

In this section, we formulate basic decompositions in Sobolev classes and outline 
the proofs which are necessary for completeness of the arguments in the sequel. 

5.1. A brief historical account. - It is the essence of linear Hodge theory that each 
smooth form w �9 C ~(AtS~) on a closed manifold 5~ splits according to 

(5.1) w = da + d* fl + h 

where a �9 C ~ (A t- 1 ~ ) ,  • �9 C ~ ( /~l  + 1 ~ )  and h �9 :~( A t ~). The forms da,  d * fl and h are 
unique and mutually orthogonal with respect to the inner product (,) on s At 5~). This 
yields the following orthogonal direct sum decompostion 

(5.2) C ~ (At 3~) = d C | 1 7 6 1 7 6  

where dC ~ (A t- 1 Fr and d * C | ( A l + 1 ~)  are the spaces of exact and coexact 1-forms on 
~ ,  respectively. 

Historically, this decomposition has been used to conclude that each deRham coho- 
mology class of ~ is uniquely represented by a harmonic field. Indeed, d * fl = 0 when w 
is closed and consequently, decomposition (5.1) reduces to 

w = d a + h  
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Concerning a regular open region M e  ~ ,  we have three types of Hodge decomposi- 
tion 

(5.3) 
[ C~ (~7/, A t) =dC~(M, AI-1)~d*CI~(~7~, At+ 1) ~ :)C(:~/, A t) 

A/) = dC~(M, AI-I)(~d*CffG~7~, At+ 1)~  :)CN(:~/, A t) 

We trust that all of the notation used above is self explanatory. The summands occuring 
in the right hand side of these formulas are mutually orthogonal. 

Applications of these decompositions pertain largely to the relative deRham coho- 
mology of a manifold with boundary. This idea goes back at least as far as the work of 
A. W. Tucker [Tuc41] and G. F. D. Duff and D. C. Spencer [DS52]. 

Let us rephrase the decompositions (5.13) as follows. Given ~ �9 C ~ (M, At), there 
exists aeC~(M., At-l) ,  fieC~(M, A t+l) and h e  :~(M, A s) such that 

(5.4) ~b = da + d * fi + h 

where the boundary conditions for a,  fi and h are described by (5.3). Because of orthog- 
onality, the terms da, d * fi and h are uniquely determined. However, the forms a and fi 
are not unique. Using the decompositions (5.3), but with a and fi in place of w, it follows 
that we can also require one of the following sets of conditions be satisfied 

(5 .5)  aT=O, fiN=O, aed*C~(M,  A t) and fiedC| A t ) 

(5.6) a T = 0 ,  hT=O, aed*C~(M,  A t) and fiedC~(M., A t) 

(5.7) fiN=O, hN=O, aed*Cff(M., A t) and f iedC~(M, A t) 

Under any one of these sets of conditions, the forms a and fi are uniquely determined. 
We may now express each co e C ~(AtM) uniquely as 

(5.8) oJ = r + 

where ~ and ~ are subject to one of the following constraints 

~edCT~(At-IM) and d*~p=O 

~)EdC| and d*v2=O, 

d~=O and v2~d*C~(Al+l~I) 

dCp=O and ~ e d * C ~ ( A t + l M ) ,  

~PN=0 

~ r = O  

Of course, the latter 
these examples as 
equations. 

two constraints are Hodge star dual to the first two. We shall use 
a guide to formulate boundary value problems for nonlinear 

REMARK 5.1. - Forms a and fi as in (5.5), (5.6) and (5.7) are orthogonal to their cor- 
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responding spaces of harmonic fields. In  particular, using Theorem4.11, we ob- 
tain 

(5.9) Ilalll,p ~ Cp(M)lldall p and Ilfllll,p <~ Cp(M)lld* flllp 

Abstract boundary value problems for differential forms are discussed by P. E. 
Conner [Con56]. In Subsect. 5.3, we will touch on a few aspects of Conner's approach to 
these problems. For more theory, we refer the reader to the work of M. Gaffney 
(e.g. [Gaf54]). 

The crucial step in generalizing decompositions (5.3) to Sobolev classes is due to J. 
Eells and C. B. Morrey [Mor66] who proved the differentiability and 2P-integrability of 
L 2-decompositions. Our formualtion of the Hodge decompositions rely on these results 
of Morrey. 

5.2. The spaces of exact and coexact forms. - In connection with the formulas of 
(5.3), we introduce the following subspaces of 2P(AtM),  1 ~< p ~< r162 

d ~ I ' P ( A  l-~ M) = {da: a ~ %~1, p(Al-1M)} 

d~4?~P(A t - l M )  = {da: a � 9  ~ P ( A  t -~M)} 

Analogously defined are the spaces of coexact forms; 

d*~l ,P( /k l+l  M) --- { d ' a :  a e  ~I 'p(AI+ I M)} 

d*~l~p(Al+ i i )  = { d ' a :  a � 9  ~ P ( A I +  I M)} 

It is an immediate consequence of Corollaries 3.7 and 3.8 that the above spaces are 
completions of the corresponding classes of smooth exact and coexact/-forms occuring 
in (5.3). However, it is far from being evident that 

COROLLARY 5.2. - For 1 < p < :r all four  of  these classes are complete subspaces of 
2P(AlM).  

PROOF. - Suppose d ~ o j - ~  in 2P(AZM) for s o m e  o ) j � 9  ( ~ P  
( A t - I M ) ,  respectively), j = 1, 2, .... Our goal is to show that q~ = dw for some 
w � 9  ~4~I'P(AI-IM) (~pl~P(At- IM)) .  Using Corollary 3.2, we may certainly assume 
that wj �9 C ~ (M, A l- 1) (CT ~ (~,  At-1), respectively). We need to modify the forms wj 
so that the sequence {oJ/} will stay bounded in the Sobolev norm. For this, we decom- 
pose each o)j according to (5.4) 

wj = daj  + d* flj + hj 

We then replace o)j by coexact forms w~ = d * • j  = O)j  - -  daj - hi. Clearly, d * w I = O and 
deg~ -- dwj--->~) in 2P(At M). In case of no boundary constraints for wj, we only require 
that By �9 C5~ ( i ,  Al) �9 This guarantees that w I e C~7 (M, A l- 1) ;7 ~ r (  A1 - 1 M) and so 
by Theorem 4.11 we obtain the estimate 

IIw ~111, p <~ Cp (M)lldw j llp <- C 



T. IWANIEC - C. SCOTT - B. STROFFOLINI: Nonl inear  Hodge theory, etc. 63 

In case 09jeC~(M.,  At- l ) ,  we take a j � 9  A z-2) and hie  :)CT(At- 1M) which im- 
plies that-~o~ �9 CT~ (M, A / - 1 )  N : ) c ~ e r ( } ~ / - 1  M) so again the estimate above holds. 

We are now in position to define 09 �9 ~4~ 1' ~ (A t-  ~ M) ( ~ p ( A t-  1 i ) )  as the weak 
limit of a subsequence of {wj } in W ~' ~(A t-  ~ M). Thus d09 = q~, as desired. The coexact 
cases are handled analogously. �9 

As a consequence of the Hodge decompositions, we obtain 

C O R O L L A R Y  5 . 3 .  - For 1 < p < ~ , we have 

d~4~l'P(/k t - l M )  = d~4?d'p(A t-1 M)  

d ~ P ( A  Z-1M)  = d ~ P ( A  t - l M )  

d * ~4pl, p( /kl + l M )  = d * ~9~d*, p( /kl + l M)  

d* ~4?l~p(/kZ + l M )  = d* ~d* ,p (  /k t - l  M )  

The proof is similar to that  of Corollary 5.2. 
To shorten notation, we write 09 �9 im dT o r  09 �9 im d~ if, for some 1 ~< p < or 09 be- 

longs to d ~4~ p or d* ~ P, respectively. In view of Remark 3.5, we see that  

d ~ P c  { 0 9 e d ~ l ' P :  O)T=O } -- ( d ~ l , P ) T  

Equality in this inclusion does not occur in general and the quotient space 
( d ' 9 ~ i ' p ) T / d ~ P  becomes an interesting cohomological object in its own right (e.g. 
Consider an annulus in the plane. Then a smooth radial function can represent  a nonze- 
ro element of this space). Of course, the Hodge star dual spaces (d* ~4~ 1' P)N/d* ~ p 
are not necessarily trivial either. 

The Hodge decompositions (5.3) may now be formulated precisely for the 
2P-space. 

THEOREM 5.7. - For 1 < p < r we have the fol lowing direct s u m  decomposi- 
tions 

(5.10) 2P(/kt M) = d ~ P ( / k I - I M ) ( ~ d * ~ I ~ P ( A t + I M ) ~ : ) C P ( A t M )  

(5.11) s M) = d ~ ? I ~ p ( A t - I M ) ~ d * ~ 4 ? I ' P ( A I + I M ) $ : ) C T ( A t M )  

(5.12) s M) = d ~ I ' P ( A I - 1 M ) ( ~ d * ' q ~ I ~ p ( A I + I M ) ( ~ : W ~ N ( A t M )  

Moreover, i f  a differential f o r m  09 e 2 P ( A  L M )  is wri t ten 09 = da + d* fl + h in accor- 
dance with  one of  the above three decompositions, then 

(5.13) Ildallp + IId* flllp + Ilhllp <- Cp(M)l10911p 

We restrain ourselves to only a few comments about the proof of this theorem. The 
L2-decompositions are ra ther  special and follow by variational principles. The case 
p t> 2 was thoroughly examined by C. B. Morrey. We then notice that  the uniform esti- 
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mate (5.13) follows from the closed graph theorem. Further, Morrey's results can be 
extended to 1 < p < 2 by duality arguments as demonstrated in [Sco95]. 

Associated with the Hodge decompositions are the following orthogonal projections 
onto respective subspaces: 

Harmonic Projections 

H ,  HT, /IN: 22(A~M)---):)C2(AIM), H ~ ( A t M ) ,  :~v (AtM)  

Exact Projections 

E ,  ET:22(AtM)-->d%~I'2(At-IM),  d % ~ 2 ( A l - l M )  

Coexact Projections 

E * ,  E~:s d * ~ 2 ( A t + I M )  

PROPOSITION 5.5. - The harmonic, exact and coexact projections extend to bounded 
linear operators of 2P(A  Z M), 1 < p < r162 onto the corresponding spaces with Sobolev 
exponent p in place of 2. 

Although it is certainly possible to present verification of this result via the 
CalderSn-Zygmund theory, we simply observe that this fact is equivalent with Theo- 
rem 5.4, with Cp(M) serving as an upper bound for the norms of these operators. Let us 
denote by I: 2P (A z M)--* 2P (A t M) the identity operator, 1 < p < ~ .  Theorem 5.4 can 
be rephrased as 

(5.14) 
i = ET + E~ + H 

= ET+ E* + HT 

= E + E~ + HN 

Repeated application of Theorem 5.4 enables us to write 

COROLLARY 5.6. - Each w e 2P(A t M), 1 < p < ~ ,  decomposes according to 

w = da + d * fl + h 

with one of the following sets of boundary conditions 

(5.15) 
[ i  ~ "~  P(A t-1 M) r~ d*'~l,p(AlM) 

"~,9~p(A~+ ~ M) n-d-,~i, p(At M) 
~CP(AtM) 
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(5.16) 

a e  ~l~P(/kt-1 M) A d * ~ I ' P ( A t M )  

f i e  ~ I ' p ( A I + I M )  ~ d W ~  P(AtM) 

h �9 :}C~(A t M) 

a �9 ,~1, p( /~l-  1 M) N d~ "~ 01' P(/~t M) 

(5.17) ~fl �9 ~ P( A t + 1 M) N d ~1 ,  p( At M) 

[ h  �9 t M) 

Under these conditions, the fo rms  a and fl are uniquely determined and satisfy 

(5.18) Ilall~,p "~- flflll ,p ~ C,(M)llwII,  

PROOF. - We need only establish inequality (5.18). For this, we observe that both a 
and fl are orthogonal to corresponding spaces of harmonic fields. In particular, Theo- 
rem 4.11 applies to a and fl giving Ilalll,p ~ CIIdatlp and Ilflll,p ~ CIId*fllp. This, com- 
bined with (5.13) gives (5.18). �9 

5.3. Green's operators. - Hodge decompositions are closely linked with the study of 
the Laplace-Beltrami operator (Laplacian) 

(5.19) A = d d * + d * d :  C| At)- - )C~(M,  A ~) 

It  is not difficult to see that the second order Sobolev spaces, as introduced in Sub- 
sect. 3.5, are the domains of the following closures of the Laplacian 

i = d ~ d  + dTd*: 2 ~ ' P ( A t / ) - - >  2 P ( A ' / )  
(5.20) r = d * dr  + dT d * : 2 ~  p ( A t M )  --* .eP ( A Z M )  

y = d~ d + dd~ : 22o' P( A t M )  ~ 2P( A t M)  

These operators, in view of Corollary 5.6, give rise to three types of Green's operators 
defined on ~P( /k  t M); 

I G: 2P(At M) --) 22o' P ( A t M )  

(5.21) [ I  = A o G + H 

I GT: ~P(A Z M) ~ 2 ~  P(A t M) 

(5.22) [ I  = A T GT + HT 

I GN: ~P ( A t M )  ~ 2 ~  p ( A  t M)  

(5.23) [ I  = A N GN + HN 

These are the strongest possible forms of the Hodge decompositions. The projections 
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are simply expressed by means of Green's operators as 

(5.24) 
ET -= dTd * G ,  E~v = d~ dG 

E = dd~  GN E * = d * d T GT 

However, for the purposes of this paper, Green's operators will play no essential role. 
Consequently, we do not take the space here to prove them. The boundedness of the ex- 
act and coexact projections into ~P(AZM) will suffice. Finally, we would like to com- 
ment that in the case p = 2, the Laplace operators z] o,/I T and A N are positive and self- 
adjoint. This is of fundamental importance in developing an abstract 2~-potential the- 
ory on manifolds with boundary; see [Con56]. 

5.4. D u a l s  a n d  or thogonal  c o m p l e m e n t s .  - In the sections to follow, we will ad- 
dress the classical questions of existence, uniqueness and regularity of solutions to a 
wide class of nonlinear PDEs on manifolds. To deal with the nonlinear character of 
these equations, we will apply Browder's theory of monotone operators to the existence 
question. This being the case, we need to select a critical list of spaces of/-forms de- 
fined in the previous sections and carefully identify their corresponding duals. Fur- 
ther, in deriving the Euler-Lagrange equations for the 2P-projections, we will need the 
orthogonal complements of these spaces as well. In this regard, we give the following 
Theorem. 

THEOREM 5.7. - D r a w i n g  on the n o t a t i o n  developed i n  the  p r e v i o u s  sect ions,  we  
have  

Space Dual space Identification Orthogonal complement 

d ~  I'p d~r l'q dd~ G N .~q n kerd~ 
d , "~j~l, p d . ~C~l, q d * dTG T .I~q O ker  dT 
d ~  p d ~  q dTd* G ~q n kerd* 
d * ~ p d* ~?~ q d~ dG ~q N kerd 
2P n ker d 2q n ker d dd * GN + HN d * ~ q 
~P n kerd* ~q n kerd* d* dGT + HT d ~  q 
2P A ker dT .~q n ker d T dd * G + H d * ~ '  q 
s n kerd~ 2 q n kerd~ d*dG + H d ~  1' q 

Before proceeding to the proof of this theorem, perhaps a few comments about 
how to read the table are in order. The first two entries, d %~01, p and d %~1' q, indicate 
that under the familiar Riesz integral representation of ,i~P-duals, d ~4~ 1' q is dual to 
d ~471' P. More accurately, given w e d ~471' q, the representation (~o, a) = f ( w ,  a} for all 

a e d ~1 ,  p, is a Banach space isomorphism between d W1, q as a subspace of 2q and the 
dual to d %~1, p when d ~1,  p is considered as a subspace of 2P. The operator T = dd~  GN 
is defined on all 2q with image equal to d ~471' q. Thus, if R : 2  p--* 2q denotes the usual 
Riesz identification, then T R  is a natural way to uniquely identify an element of d ~ '  p 
with an element in its dual. The space 2q n kerd~ is the subspace consisting of all 
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a �9 2q which are orthogonal to d ' ~  I'p in the sense that  0 = (w, a) =~(~o, a) for every 

�9 d ~47 ~' ~. Of course, this discussion applies analogously to the other rows of the table 
above. 

PROOF OF T H E O R E M  5 .7 .  - Since verification of each row follows similar reasoning via 
different ~e~-Hodge decompositions, we deal only with the first row. Let  

~ :  d ~47~, ~(/kt- 1M) --) R 

be an element from the dual of d ~ '  ~ (A l - ~ M). Since ~b is bounded linear on d ~ ol '  p as 
a subspace of 2~, we may apply the Hahn-Banach Theorem to extend 4) continuously to 
all of ~P(A~M). In this setting, there is ~o�9 representing ~ according to 

�9 (a) = (~ ,  a) 

for all a �9 2P(AtM) .  Decomposing w according to (5.23) gives 

o) = Z NGN(O) + HN(O) = dd~ G~(w) + d~r dGN(W) + HN(w) 

Integration by parts then reveals 

q)(a) = (dd~v GN(o), a) 

for all a �9 d ~  01' P(A t-  1M). Of course, dd~ GN(W) �9 d'~,~ 1' q as desired. 
To see that  such a representation is unique, suppose that  y �9 d ~  1' q satisfies 

(r], a) = 0 for all a � 9  1-1M). We will argue that  r] = 0. Le t  v be an arbi trary 1- 
form of class 2q. Decompose v according to (5.17) and apply integration by parts to get  
(y, 3) = 0. This is enough to conclude that  ~] = 0. 

Notice that  in the course of proving that  d ~471' q is dual to d ~?~' P, we have observed 
that  d ~ 1 ,  q = dd~ GN2 q. 

Next, let's uncover the orthogonal complement of d ~ '  P. For  this, suppose w �9 
d ~471' p and q~ �9 .eq N ker d~.  Thus co = dfl and according to Definition 3.9, there is a se- 

quence {q~k}r ~ with q~k--~q~ and d * ~ - - - > d * ~ = O  in 2q. We can now estimate 
(~,  q~) with 

I( w, 0) 1 ~< I( w, q~- q~k) l + I( w, q~k) l = I( ~ ,  ~ -  ~Ok) l + I(fl, d*~Ok) l 

<~ Ilcollpll~ - O~llq + Ilfltlplld* q~kllq--~0 as k--* cr 

The equality here follows from the compact support of the smooth forms q~ k and inte- 
gration by parts. Thus w belongs to the orthogonal complement of ~eq A ker d~.  For  the 
reverse inclusion, let q~ �9 2q be orthogonal to all of d%~ I'p. Decomposition (5.12) says 
that  ~O may be expressed as 

q ~ = d * f l + h ,  f l N = h N = 0  

Since 0 N = d * fl N + hN = 0, we have q~ �9 "r p with d * ~ = 0. According to the com- 
ments following Definition 3.9, we may conclude that  q~ �9 k e r d ~ ,  �9 
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6. - P o i n c a r ~  inequa l i t i e s  for  part ly  S o b o l e v  c lasses .  

Having disposed of Gaffney's Inequality and the Hodge decompositions, we can now 
establish new estimates and relations between the Sobolev spaces. 

6.1. Intersections of partly Sobolev classes. - For 1 < p < ~ ,  we introduce the 
space 2~'~(AtM) = x@a'~(AtM) A "~a*'~(AtM) and equip it with the norm 

(6 .1)  = I1 ,11 , M + ll ll , M + l id*  11,, M 

Before continuing, we give a characterization of the subspaces of .~1, p( At M) with van- 
ishing tangential and normal parts. 

THEOREM 6.1. - For each 1 < p < ~ , we have 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

2 1 , p ( A t ~  ) = WI,P(At ~ )  

.~l'P(/kt M) c ~o'cP(/kt M) 

~ o  1' P (A t M) = "x~ p (A t M) ;7 ~d*, p ( At M) 

~k')~ P(AtM) = ~?~ P(A~M) ~ ~d* ,P(AtM ) 

~ P ( A t M )  = "~.~d,p(At M) ~ ~4?dN*'~(At M) 

PROOF. - We begin by proving (6.2). Let a~ be an arbitrary element of ~ 1, p (At ~).  As 
usual, using a partition of unity, we may assume that w is supported in a coordinate 
neighborhood, say (U, K: U--->Rn). Let w ~ denote the pullback of co via the map 
K-l: R~--~ U. Obviously, w ~ belongs to 2P(A t R ~) and has compact support. Moreover, 
the hypothesis that dw and d*w are 2P-integrable on ~ can be stated equivalently as 

~'Pw~e2V(At+lR ~) and ~o)#e~P(Al-lRn) 

where ~P(x, D): F(At R~)-->F(At+IR ~) and ~ x ,  D): F(AtR~)- ->F(At - IR  ~) are f'n, st 
order differential operators on R ~ with C0~-coefficients. We then apply Friedrichs 
theory on the equivalence of weak and strong extensions of a first order differential 
operator [Fri44] (see also [Hor41]). Accordingly, there exists a sequence of forms, say 
w~ e Co~(A'R ~) such that eot/-->w #, ~Pw~/--->tPw r and ~w~--~ ~w* in 2 p. 

Pulling back the w~'s t o the  reference manifold via the map K: U---)R n, we obtain 
a sequence, denoted wjeCo (At U), such that eoj--*w in 2P(AtS~), dwj--~dw in 2 p 
(At+l 8~) and d*a,y--*d*w in 2P(At -  18~). Finally, with the aid of Gaffney's Inequality, 
we conclude that {a~j} actually converges to w in the norm of %91'P(AtS~), prov- 
ing (6.2). 

Now, (6.4) is straightforward because the zero extension of a form from %~9~ P 
(ARM) N ~d* 'p (AtM)  belongs to ~a 'P(AtSt )  N "v~?a*'P(At 8~). 

Similar reasoning applies to the inclusion (6.3). For this, we simply notice that )Co e 
~ d ' p ( A t ~ )  N ~d* 'P(Az~)  whenever )r C~(M) and w e s  

Unfortunately, Friedrichs theory does not apply to (6.5) and (6.6). The trouble is 
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that the boundary constraints make the problem of approximation by smooth forms 
more delicate. From what has already been proven, it follows that each w e ~4~ p 
(A t M) A %~9 ~*' p (A t M) has generalized first order derivatives which are locally 2P-in- 
tegrable on M. The task is now to prove the 2P-integrability of these derivatives near 
an arbitrary boundary point, say b e aM. 

Let (U, K= (Xl, ..., x.): U- - )R  ~) be a coordinate neighborhood at b so that the 
vectors a/~x~ are orthogonal to ~M at each point of U A ~M. In addition, we require 
that { ~/~xl, ..., ~/ax~ } form an orthonormal basis for Tb ~ .  Using this coordinate sys- 
tem in U, we write 

(6.7) (o -- ~ wIdxi 
I 

where the ~o I are functions on U A M of class %9~g~ (U N M). We notice that the l-forms 
dxl = dxil A. . .  A dxi~ give an orthonormal basis for A t (Tb tg) but they are not necessari- 
ly orthogonal at other points. Next, we consider the partials ~w/~xi ~ 2ro~(U N M, A t) 
defined by 

(6.8) &o _ y~ 3~/  3xi --~xi dXl , i=1 ,  ..., n 

and recall the formulas 

(6.9) 

do  = ~ ae~ i,I ~ dxiAdxl 

d( * w) ~, awl i,I ~ dxiA *dx~+ ~,wld( *dxl) 

We look at (6.9) as a linear system of equations with awl/~xn as unknowns. At the point 
b, this system takes the form 

(6.10) 

~o) Z 

do = ~ ~xn 

d(*w)  = Y~ 3 ~  
ne l  ~r 

dx~ A dx, + E E dxi A dx, 
i = l  I 

n - 1 ~ ( D I  

dx,~A *dx1+ ~, ~, dxiA *dx1+ ~ w I d (  *dxl) 
i=1 1 

This purely algebraic calculation does not involve any assumptions about the regularity 
of ~wl/axi. It shows, in particular, that at b the variables &oI/~x~ depend linearly on co, 
deo, d* w and ~w/~xi with i = 1, 2, ..., n - 1. 

By the implicit function theorem, the system (6.9) is solvable for ~w/ax~ near the 
point b. More precisely 

8w 3w ) 
~w _ r to, , ..., ~ , dw, d * w 

where 5 ~is a linear form in the indicated variables whose coefficients depend only on 
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the coordinate system K =  (xl, . . . ,  x . )  and are C~-smooth. This gives us a pointwise 
estimate 

j ol, ) 
(6.11) ~x~ ~<C~ [w[+ + . . . +  + l d w l + l d * w  I 

Thus, the p-norm of ~w/3Xn (near the point b) is controlled by the p-norms of w, do,  
d *(o and 3w/~xi with i = 1, 2, . . . ,  n -  1. We are, therefore, reduced to showing that  
aw/~xi e 2P(AIV)  for i = 1, 2, . . . ,  n -  1, where Vr U N M is a regular open region 
whose boundary coincides with 3M near the point b. Poincar~s lemma guarantees that  
having chosen V small and regular enough, we may assume that  :)CT( A t V) = 0. A final 
convenient assumption we are allowed to make is that  w vanishes outside a small neigh- 
borhood of the point b e 8/14. For, if necessary, we replace w by Zw, where X is a suitable 
C ~-function on ~ equal to 1 in a neighborhood of b. 

Since w was assumed to have vanishing tangential part  on ~M, we obtain eo T = 0 on 
8V. We also have 

(6.12) (w, dt]) = ( d ' w ,  t]) 

for all t]e C | (V, A t-  1) with r]T = 0 on OM. Compare this with formula (2.34). 
We shall have established the 2P-integrability of 8w/Oxi if we prove that  

(6.13) -~xi ' ~ <<- ~lwllz',,(M)llOIIq, P + q= Pq 

for every test  form ~ e Co ~ ( A t V) and i = 1, 2, . . . ,  n - 1, where C depends only on the 
coordinate system K= (xl, . . . ,  x~): U- - )R ~ and the region V. Integration by parts  
reveals 

(6.14) +v 
where ~8 is a billnear form 
that  

(6.15) 

with C ~ (V)-coefficients. In particular, we only need to show 

( eo, --~x i ~ C]I~olI A~I' p(M) II~IIq 

for i = 1, 2, . . . ,  n - 1. With all of this in mind, we proceed as follows. First,  we split 0 
on V according to Hodge decompositions (5.6) and (5.9). 

(6.16) r  aT= hT= O 

where aed*C~(Wd, Al), f l edC~(V,  At), and h e  :XJT(A~V). The latter implies h= O. 
By Corollary 5.6, we have 

(6.17) Ilalll, q + Ilflll~, q <~ Cq llO llq 

It is crucial to observe that the partials 8a/axi have vanishing tangential part on 8M for 
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all i = 1, . . . ,  n - 1. To see this, we write 

(6.18) a= ~ aI dx1+ ~ aI dxl 
nctl nel 

Since a/~x~ was orthogonal to the vectors  ~/~Xl, ..., ~/3x~ _ 1, the condition a T = 0 is the 
same as a ~ = 0 on a M  whenever  n ~ I .  The la t ter  is obviously p rese rved  under  the par-  
tial differentiations 3/~Xl . . . .  , ~/axn_ ~. Thus the tangential  pa r t  of 8a/axi vanishes on 
8M as well. 

We write 

+ - - +  a +  -- 
axi ~xi axi ~ - d ~ ~ d * d * - -  axi 8x~ ~xi 

where the commutators  in parentheses  are first  order  differential operators  with C =- 
coefficients in U. In  part icular  

a d  d a ) a q  (6.20) ~xi 9xi 

Since w T = 0 on aV, we have 

(6.21) (w, d* -~xi ) 

Similarly, 

(6.22) 

a d * - d *  a ) q ~X i ~X----~ ~ ~C(llOttll'q"~ll~lli'q) 

= -<lld ll,llZlll,, 

( 
because (3a/~Xi)T=O on aM.  Finally, combining (6.19), (6.20), (6.21) and (6.22) 
yields 

w, ~x/  ~< c(llo)ll, + Ildwll, + lid* wll,)(llalll, q + Ilfllll.q) <- cIIo)ll2,.,(M)ll~tl, 

which completes the proof  of (6.5). The dual identi ty (6.6) holds as well. �9 

We can now s t rengthen formulas (3.19) and (3.20) with 

LEMMA 6.2. - I f  o) ~ ~eP( A t M), 1 < p < ~ , is both closed and coclosed, then ~o is in 
:)CT( /kt M) or 3CN(AtM) i f  and only i f  wT = 0 or O N  = 0 respectively. 

6.2. Poincard inequalities. - For  the purpose  of s tudying Sobolev spaces of differ- 
ential forms in g rea te r  detail, es t imates  of Poincar~ type are  often useful. The following 
result  can be regarded  as a ref inement  of Theorem 4.11. 

THEOREM 6.3. - Given o) e .e 1' p ( A  t M), 1 < p < :r there exists a harmonic field 
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h e  :)CP(AtM) such that 09 - h e  ~ l ' P ( / k t M )  and 

(6.33) 1109 -- h l l l ,p  ~ Cp(M)(lld0911p + lid* 0911p) 

Moreover, i f  09 T = 0 or 09 N = O, then hr---0 or hl~--0 respectively. 

THEOREM 6.4. - Given 09�9 ~ d ' p ( A ~ M ) ,  1 < p <  ~ ,  (09e ~d* 'p(A~M),  respect- 
ively) there exists a closed (coclosed) f o r m  09oe 2P(AtM) such that 09-090 �9  "9~ I'p 
(ARM) and 

(6.24) 1109 -09olll,p<- Cp(M)lld0911p (Cp(M)lld* 0911p) 

Moreover, i f  09 T = 0 (09 N = 0, respectively), then (09 o)r = 0 (((o o)N = 0). 

The proofs of these theorems are based on the Hodge decompositions for Sobolev 
spaces and Theorem 6.1. 

PROOF OF THEOREM 6.3. - We split 09 �9 21 'P (AtM)  into parts 09 = da + d* f l  + h ac- 
cording to decomposition (5.10). Note that  both da and d*f l  are members of the class 
21, p (AtM)  because d * ( d a )  = d*  09 �9 2 P ( A  t- 1 M) and d(d*f l )  = d09 �9 2 P ( A  ~+ 1M). 
Moreover, (da)T = 0 and (d*fl)N = 0 (see Remark 3.5). By Theorem 6.1, these forms ac- 
tually belong to %~91, p(A t M). They are also orthogonal to all harmonic fields of class 
:~Cl(AtM) as is easily confu-med. Theorem4.11 yields inequality (6.23) as follows 

(6.25) 1109-hlll,p<-.lldalll,p+lld*fllll,p 

<~ Cp(M)(IId* dallp + Ildd* flllp) = Cp(M)(lldwllp + lid* wHp) 

Moreover, if w T = 0, then we split 09 according to decomposition (5.11). In this case, we 
obtain h �9 ~h~T(AIM), da �9 ~ P(AlM) and d * f l � 9  %O~ P(A1M). Although da is orthog- 
onal to all :)()(AIM), the form d* f l  is only orthogonal to 3CT(A~M), which is still suffi- 
cient to apply Theorem 4.11. It  follows that  (6.23) holds in this case as well. The case of 
09 N = 0 is handled similarly by using decomposition (5.12). �9 

PROOF OF THEOREM 6.4. - For  09 �9 ~j~d. p(/kt M), 1 < p < ~ ,  and using the same de- 
compositions as in the previous proof, we define the closed form 09 o = da + h. W e  then 
notice that  09-09 0 = d*f l  �9 ~47 1' P(A t M) and the required estimate follows as before. 
The details are left to the reader. �9 

REMARK 6.5. - Our proof  shows that 09-09 o belongs to 

~&vl'P(/~IM) N d * ~ P ( / k t + l M ) ,  i f  09 �9 "9~d'P(/klM) 

~4~ P(At M) A d * ~ I ' P ( A t + I M ) ,  i f  09 �9 %~' P(At M) 
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7. - S o m e  n o n l i n e a r  p r o b l e m s .  

This section is intended to motivate our future investigation of a particular class of 
nonlinear PDEs for differential forms on Riemannian manifolds (Hodge systems). The 
first subsection touches on a few nonlinear aspects of the Hodge decomposition and is 
closely linked with Poincar~ type estimates. 

7.1. 2P-Project ions.  - Throughout this subsection, %9 = %gP(A t M) stands for one of 
the following subspaces of 2P(A t M), 1 < p < oo : 

d ~1 ,  p (A t- 1 M) or d " ~  p ( A l - 1 M) (Exact forms) 

d * ~ I ' P ( A t + I M )  or d * W ~ P ( A t + I M )  (Coexact forms) 

2P(AIM)  N kerd  or s  N kerdT (Closed forms) 

2 P ( A t M ) A k e r d  * or 2P(AtM)Nkerd~?  (Closed forms) 

Note that all of these spaces are complete. In order to obtain a precise approximation of 
a given form 09 e 2P (A t M) by an element from %9P ( A t M ) ,  it is natural to examine the 
nonlinear projection 

(7.1) H = / / p :  ~P(At M) ---) %gP(At M) 

which carries 09 e 2P (A t M) to the nearest element of %9 as measured by the 2P-metric. 
This image is called the s of 09 into %9. The existence and uniqueness of 
such a projection is easily established by convexity arguments. The element/-/09 just 
defined solves the minimization problem 

(7.2) 1109 - F10911~ = min~ 109 - ~11 p 
M 

subject to all test forms ~1 e %9P(A t M). In this way, we obtain what is known as the inte- 
gral form of the Euler-Lagrange equation 

(7.3) I(r], 109 -/-/091P-2( 09 -/709)) = 0 
i 

for all r] e %9(A t M). Given ~, an element of a normed linear space, we will make fre- 
quent use of its s power, s >/0, 

(7.4) ~ s  I ~ l s - l ~ ,  0s~_0 

Clearly, ( 0 9 -  II09) p-1 belongs to the dual space ~2q(AtM), p + q = p q .  Moreover, 
equation (7.3) says that this form is orthogonal to %9 = %9P (A t M). Because of its geo- 
metric meaning, the 2P-projection is obviously a bounded operator. Namely, 

(7.5) I Io)- I lpwl lp<~l lwl lp  Hence, ]]//p09]lp ~< 2 ]]o~Hp 

For nonlinear operators such as /Tp, p ;~ 2, this estimate does not necessarily imply 
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J ' ( l ~ l+  
M 

continuity. However, with the aid of the Euler-Lagrange equation, we can prove conti- 
nuity of /7p and give a uniform estimate for the modulus of continuity of /7 .  

PROPOSITION 7.1. - For each 1 < p < ~ , there exists a constant C a such that 

(7.6) 11/Ta-/Tie I1,, ~ c ,  (llall,, + II~ll,~)i-'lla-,811~ 
for  all a,  fl ~ ~YP ( A  t M), where t = 1 I( 1 + I P - 21 ). 

PROOF. - Set ~ = a -  Ha  and ~ = f l -  17 8.  The Euler-Lagrange equation reads 
( ~ p - l _  ~p-i,  ~7)= O, for all rle ~9. Applying this to ~7 = / T f l - l l a ,  yields 

(~p-l__ ~p-1, ~__ ~) __-- (~p-l__ ~p-1, a - - ~ )  

Hence. by HSlder's inequality 

(7.7) (~ f f - ,  -- ~-p- 1, ~ _ ~) ~ - , : ,> -  l l l q l l a  - sTIIp 

The following two inequalities, which hold in an arbitrary inner product space, will be 
useful both here and in the future. 

(7.8) (1~1 + I~1) "-~ I x -  ~1 ~ -<A(~. ' -  ~ - ' ,  ~ -  r 

(7.9) IZ : . - '  - ~'P-I I ~ B(I~:I + I~;17 -~> Ix - ~1 

whre A = A(p)  and B = B(p). For notational convenience, we introduce the exponent 
a = (1/2) min(p, q) ~< 1. Combining (7.7), (7.8), (7.9) and HSlder's inequality gives 

~l )P-'~ I~  - ~l  <' ~< A l l ~  p -1  _ ~.p-~ llq l la -filly 

[j ]o p 

Hence, 

( 7 . 1 0 )  f ( l ~ l  + I~1) ' -2  I ~ -  ~l 2 ~< (ABIla - ~ll,)'/(q ~ + I1~11,) (p-a~)/(q-~ 
M 

On the other hand, using HSlder's inequality again, we see that 

(7.11) "~-- ~"p ~ [ j  (i~, + ,~,)aP-2a i~-- ~,2a(,~, + ,~ , ) ' -~ ' ]  lip 
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which combined with (7.10) yields 

II ~ -- ~llp ~ ( A S  II a - ~ lip )(aq - a)/(q - a)(11 ~ lip + II ~llp )(q - qa)/(q - a) 

where ( a q -  a ) / ( q -  a) = t, as is easily verified. For the final conclusion, we observe 
II F l a  - Hf l l lp  <-I1~ - ~llp + II a - f l l lp.  By (7.5), we also have II~llp + II~llp ~< llall  + II llp To- 
gether, these give the desired estimate 

IIn  - , u # l l ,  [1 + (AB) ](IlalI, + I I# l lp)  - #11  " 

As we have seen, the orthogonal projections extend continuously from 22(At M) to 
s for 1 < s < ~ .  It is of interest to know whether or not one can extend the 
nonlinear opera tors / /p :  2P(A l M) --) ~?P(A l M) to s  t M) for s different from the 
natural exponent p. One of our primary results in this direction is 

THEOREM 7.2. - For 1 < p <. s < ~ ,  there exists C~ = C8 (p, M) such that 

(7.12) II//p(ol18 ~< Csllwll8 

for all w �9 2~(AtM).  

We shall prove this theorem only for s sufficiently close to p, see Remark 9.6. 
Analysis similar to that in [Iwa83] shows that estimate (7.12) holds for all s I> p. Critical 
to this proof is the Ca-regularity theorem of K. Uhlenbeck [Uh77] (see also [Ham92]) 
and the L P-theory of the sharp maximal operator as developed by C. Fefferman and E. 
Stein [FS72]. It would exceed the scope of this paper to discuss all of these advances 
here (see [Str 99]). It is worth mentioning, however, that (7.12) is also valid for s slight- 
ly smaller than the natural exponent p. We put off discussing these estimates below the 
natural exponent until Subsect. 9.3, where such estimates will be treated in greater 
generality; see Theorem 9.5 and Remark 9.6. Precisely how small the exponent s can be 
is not known. However, there are enough arguments to safely conjecture that the oper- 

p l s 1 ator //p: 2P(AtM)--*  ~ (A M) extends as a bounded operator / /p:  2 (A M)--> 
__~ Ws (/kz M) for all s > max{ 1, p - 1 }. It is also of interest to know whether / /p  is a con- 
tinuous operator in 2s (AIM),  as it is for the natural exponent s = p. 

We now examine the Euler-Lagrange equation (7.3). For this, recall the orthogonal 
complements of ~P(/k t M) as listed in Theorem 5.7. Our goal is to show that all eight 
cases for the space ~ ( A  l M) reduce equivalently to the same type of first order differ- 
ential equation. Namely, 

(7.13) ~ = ~ (~) 

for ~ e d ~1 .  p(/kl- 1 M) and ~ e ~q(A l M) • ker d *, where 

(7.14) 9~: AZM---~AtM 

is a given bundle map. Thus, ~l also acts on sections F(A t M) with values in F(A Z M). 
Concerning boundary conditions, we will have either 

(7.15) q~ �9 im d T (the Dirichlet boundary condition) 
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o r  

(7.16) ~0 �9 ker d~ (the Neumann boundary condition) 

Let us illustrate the situation in case of the projection l l : 2 P ( A I M ) - - - * d ~  I'p 
(/~/-1M). Thus "~ Oper-- ~q(/~lM)Akerd~ and the Euler-Lagrange equation reads 

(7.17) ( w  _ ~ ) p -  1 .~_ ~) 

or equivalently 

(7.18) w = r + Fq-1 

where ~ = IIo~ ~ d ~ I ' P ( A  l-1 M) and ~ ~ ~q(AlM)  f~ ker d~. If  one projects ~o to ~ = 
d %~9~ p (A t- 1 M), then ~P~ = 2 q ( A  t M) N ker d *, so the equation remains the same but 
the new boundary condition is ~ e im dT, while F �9 ker d * 

Other cases lead to equations similar to (7.18), in which 1 may possibly be replaced 
by n - l and the exponent p by its HSlder conjugate q. It is worth noting that equation 
(7.18) gives exactly the s176 decomposition when p = q = 2. See formula (5.8) and 
the boundary constraints which follow it. 

7.2. Quasiregular mappings on Riemannian manifolds. - Let M and N be arbit- 
rary C | oriented Riemannian manifolds of dimension n. We shall consider 
mappings f :  M--~N of Sobolev class ~49~gr N), 1 ~< s ~< ~ .  The differential 
Df(x): T~ M--* TyN, y =f(x) ,  is defined at almost every point x e M. We assume that 
the Jacobian determinant J ( x , f ) =  detDf(x) is non-negative ( f  preserves orienta- 
tion). 

DEFINITION 7.3. - An orientation preserving mapping f e ~ e  ~ (M, N) is said to 
have finite dilatation i f  

(7.19) max IDf(x) ~1 = ~(x)  min IDf(x) ~1 a.e. x e M  
I~Yl = : I ~ l = l  

where 1 <~ ~(x)  < ~ is called the scalar dilatation at x. I f  ~ ~ ~ ~ (M), we introduce 
the maximal dilatation K =  II ~(x)ll~ and call such f, K-quasiregular. Finally, a 
homeomorphism of class W~ge'(M, N) which is K-quasiregular is called K-quasicon- 
formal. 

Of course, in formula (7.19), the norm of the tangent vectors ~ is the one given 
by the inner product on TxM while the norm of Df(x)~ is from TyN, where 
y =f(x). 

The theory of quasiregular mappings successfully extends both geometric and ana- 
lytic aspects of holomorphic functions of one complex variable. In the plane, these as- 
pects are well understood due to the work of L. Ahlfors, A. Beurling, B. Bojarski, I. N. 
Vekua and many others. See for instance, [AB50], [Ah166], [Boj55], and [Vek62]. Large- 
ly as a consequence of these studies, the theory has been greatly expanded to higher 
dimensions whose fundamental principles were set in the pioneering work of F. W. 
Gehring, J. V~is~il~, Y. Reshetniak, O. Martio and S. Rickman. See [Geh62], [Res69] 
and [MRV69, MRV70, MRV71]. For a thorough treatment of analytic properties of 
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quasiregular mappings, we refer the reader to [Res89], [BI83] and [Ric93]. A Quasicon- 
formal mapping f :  M-->N is, in fact, conformal with respect to a new metric on M, 
called the dilatation tensor offl  In general, this tensor is only measurable but still uni- 
formly elliptic with respect to the original metric on M. Continuing the analogy with 
the complex case, we shall sketch how the conceptual foundations of quasiregular map- 
pings lead to the governing PDEs. In many respects, these equations generalize the fa- 
miliar Cauchy-Riemann system. We shall discuss here just a few of these equations. 
See [IM93] and [Iwa92] for the Euclidean case. 

Let us begin with a linear mapping .lY: E---*F between inner product spaces. It fol- 
lows from Definition 7.3 that 2 is K-quasiconformal in case det 2 > 0 and the following 
dilatation condition holds 

(7.20) 12~IF ~< KI 2 elF 

for all unit vectors ~, ~ �9 E.  We then define a symmetric positive definite mapping 
G: E---)E 

(7.21) ~2t2 = (det ,~)2/~ G 

Observe that det G = 1 and 

(7.22) 2 K -2 I ll, <- (G~, ~>E<<.K 2 I~1~ 

Indeed, if 0 < 2~ ~< ... ~< 22 denote the eigenvalues of G, then inequality (7.20) means 
that 

;t~ = max(G~, ~)E <~ K2min (G~, ~)E = K2;t~ 

- n  n Since ) ~ 1 ~ . 2 . . . ~ n = 1 ,  w e  obtain 2~<K~2'~<<.Kn).I...2~=K'~ and 2~>~K 2,~ 
>I K -~2~.. .  ;t 1 = K - "  which is really just (7.22). 

Of course, G defines a new inner product on the space E so that the mapping 
~: E-- )F becomes conformal with respect to this new metric. Note that G is simply a 
scalar multiple of the pullback via 2 of the metric on F .  

It will be convenient to introduce the symmetric square root of G 

(7.28) L = h/~: E--) E ,  L o L = G,  det L = 1 

The eigenvalues of L are 0 < 21 ~< ..- ~< 2 ~ and inequality (7.22) reads 

(7.24) K- '  I~:l:-< IL~I~-< KI~I~ 

for all ~ e E. 
We now recall the l-th exterior powers G#: A t E--* A t E and L#: A t E--* AtE 

where we observe L~ o L# = G~. The eigenvalues of L~ are the products 2 ~1"" ;t i. corre- 
sponding to all ordered l-tuples 1 ~< il < ... < it ~< n. For unit l-covectors ~ e A ~ E, we 
then obtain 

1 2  1 2  ~ T, T - 2 1  (a~, ~, ~')A'E = IL,~ ~I~,'E >~,,1 . . . ^ ~  ~ ,,- 
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and 

Hence 

or equivalently, 

for all ~ �9 A t E.  

I L ,  Z/I :E =< _ .~f .n . . .+~n_l+l  
... 

~< K 2~ 

K-~ I~IA~E <~ IL*~IA~E <~K~ I~1 ~:E 

We now return to the general K-quasiregular mapping f :  M-->N. Its differential 
Df(x): T~ M--+ Tf(~)N is defined at almost every point x ~ M and is a linear K-quasicon- 
formal transformation. The first differential equation of particular relevance is the so- 
called Beltrami system 

(7.25) D tf(x) Df(x) = J(x,  f)2/n G(x), x �9 M 

where D t f  stands for the transpose of Df. As we have previously remarked, the bundle 
map G: TM ~ TM is symmetric with determinant equal to 1 and, more importantly, is 
uniformly elliptic 

(7.26) K-21~12 ~< ( a s ,  ~) ~< K 2 ]~]2 
for all vector fields ~ �9 F(TM). G is a measurable section of the endomorphism bundle 
End(TM). The essence of our approach is to regard G as a new metric tensor on M, 
conformally equivalent to the pullback via f of the metric on N. For this reason, we call 
G the dilatation tensor. It is a tautology that f is conformal with respect to this 
metric. 

Not much is known about Riemannian measurable structures in dimensions greater 
than 2. No doubt this is due to the difficulty in defining the curvature tensor of G. On 
the other hand, intrinsic topological properties of quasiregular mappings can be ob- 
served only in the presence of measurable dilatation. It is fortunate that certain results 
of smooth conformal geometry can be carried over to measurable Riemannian struc- 
tures without the necessity of differentiating the metric tensor. 

Fix an arbitrary harmonic field on N, say 

(7.27) ~ �9 :~( A ~ N) ,  d~ = d* ~ = 0 

It should be noted that on some manifolds, harmonic fields must necessarily vanish at 
some points. However, because of the local nature of the equations in question, we may 
confine ourselves (if necessary) to a small region of N so that we may always 
assume 

(7.28) 0 < inf ] ~] <~ sup ] ~1 < ~ 

This assumption is essential for ellipticity of the forthcoming equations. See (7.42) and 
(7.48). The unknowns of our equations will be the pullbacks of ~ via the mapping 
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f :  M----~ N.  Namely, 

(7.29) q~ =f~(~)  e F ( A t M )  and y~ =fct(~) e F ( A  tM) 

From here on, we assume that the Sobolev exponent for f satisfies s ~  > max{l,  
n - 1 } .  This makes it legitimate to apply exterior differentiation. Accordingly, 
d~ = f ~ ( d ~ ) = 0  and d*~2 = f # ( d * ~ ) = 0 .  We then observe that 

(7.30) 
{ q~ e s176 M) and I ~2 e 2 ~ ( A t M )  

d ~ = 0  [ d * ~ = 0  

where p = n/l, q = n / ( n -  l) and )~ = s/n. It has been recognized in quasiconformal 
analysis that the most natural Sobolev exponent s in which to consider quasiregular 
mappings is the dimension of the manifolds. In which case, we have )~ = 1. 

Our immediate goal is to show that the forms q~ and ~ are coupled by equations 
similar to (7.13). Before stating these equations, we need to recall the linear map 
2:E---*F, its l-th exterior power 2#:  A t F - - ~ A t E  and the Hodge star operator 
* : AtE--->A~-tE.  

LEMMA 7.4. - For a given 1-covector ~e AtF, define ~ = 2r E A t E  and ~2 = 
.~# (~) e A t E.  Then, 

(7.31) 
n 

= 1 ~ 1 2 - q ( ~ ,  ~ ) ( p - 2 ) / ~ G ~ ,  p =  - l 

or equivalently 

(7.32) 
n 

~0 = I~l~-q(G#y,, y,)(q-~)/2G~ y,, q -  
n - l  

REMARK 7.5. - Using L = V ~ ,  formulas (7.31) and (7.32) can be given the more 
symmetric form 

(7.33) [ I~1 [ ~  ] 

PROOF. - First notice that equation (7.31) is invariant under multiplication of both 
~e  AZF and =6 e Horn(E, F) by a scalar. Therefore, there is no loss of generality in as- 
suming that I~l = 1 and det =6 = 1. Applying formulas from Subsect. 2.1, we obtain 

(7.34) G = ~ t ~ ,  G~ = s  t and G # = ~#(~#) t  

Hence, again following Subsect. 2.1, G# q~ = 2 # ( 2 # ) t 2 # ~  = 2#  ~ = yj, which is equiva- 
lent to G~yJ = q~. Next, we compute (G#q~, ~b) = (G~y~, ~) = (~, yJ) = (0~#~, ~#~)  = 
( ( 2 r  These identities imply (7.31) and (7.32) at 
once. �9 
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We remark  that  in the conformal case we have G~ = id and therefore  our  formulas 
are concisely expressed as 

(7.35) * ~ #  = (det ~ ) ( ~ - 2 1 ) / ~ .  : A t F - - )  A ~-t  E 

In particular, in even dimensions, say n = 21, the Hodge s tar  commutes with the pull- 
backs on /-forms 

(7.36) * ~ #  = 2 #  * and �9 ~ = ~ * 

This commutation law substantially simplifies equations for conformal mappings in 
even dimensions; see [DS89] for l = 2 and [IM93] for a rb i t rary  1. 

PROPOSITION 7.6. - The differential forms ~ and ~fl defined in (7.29) are coupled by 
the nonlinear equation 

(7.37) ~2 = 2 p ( ~ ) ,  d~=d*~p=O 

where ~ p: A t M--> ArM is a bundle map defined by 

(7.38) 
n 

2p(~)  = 1~I2-P(~, Gct~)(P-2)/2G~ , p = -- 
l 

In this equation, we understand that the norm I~1 is evaluated at y =f(x),  making 
I ~1 a positive function on M. 

F or  the conformal case, G is the identity, so equation (7.37) takes the form 

(7.39) ~ = 1~12-P~b p-1 

Or, equivalently 

Of special interest  in even dimensions is the case 1 = n/2, since it leads to a linear 
system. More precisely, p = q = 2 and we only need to assume that  f e  ~ e  z (M, N)  to 
obtain 

(7.40) ~ = G# @ or equivalently ~b = G # 

where d@ = d*~p = 0. Fur ther ,  when G = id, we obtain Cauchy-Riemann type equa- 
tions 

(7.41) @ = 4 ,  d@ = d* ~p = 0 

Clearly, q~ and ~p are harmonic fields and consequently C ~-smooth. Forms  in a pair of 
this kind will be called harmonic conjugate fields. I t  is worth noting that  equations 
(7.40) and (7.41) do not contain ~ and, therefore,  are elliptic even if ~ vanishes at  some 
points of N .  

Applying exterior differentiation (in the distributional sense), we eliminate ~ from 
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(7.37) to obtain second order equations for q~ and y~ 

(7.42) d*[ I~J2-P(r G~)(P-2) /2G#~]  = 0 

Similarly, we have 

(7.43) d[  I~J2-q0p, G*~P)(q-2)/2G# ~] = 0 

These equations are easily recognized as Euler-Lagrange equations for the variational 
integrals: 

(7.44) f JL, C, JP [~12-p 
M 

and 

(7.45) f ]L#~pl q I~12-q 
M 

Our next section deals with examples of nonvariational type equations. 

7.3. A nonl inear Hodge decomposition. - Another kind of nonlinear problem in- 
volving differential forms concerns generalizations of the Hodge decompositions. 

Given a bundle map :8: A r M •  AtM--->AIM, we wish to express each w e 2  p 
(AtM), l < p < o o ,  as 

(7.46) w = ~(~b, ~p), dq~ = d * ~p = 0 

Via the linear case, tS(q~, 4 )  = q~ + ~0, the Hodge decompositions suggest each of the 
following four sets of boundary constraints 

(7.47) 
2P(At M) n kerdT 

d ~ I ' P ( A  t-1 M )  

2P(A  t M) r kerd  

and ~ e 2 P ( A  tM) A k e r d *  

and ~2 e d* %91'p(AI+l M) 

and F e 2 P ( A  ZM) N k e r d ~  

and ~o ~ d* ~ t P ( A l + l  M) 

Under these conditions, the decomposition w = q~ + y~ exists and is unique. We will 
impose similar boundary constraints for the nonlinear case. For example, for w e 
�9 2P( A l M), we may consider a closed form q~ which is obtained as the 2P-projection of 
w into the corresponding space as listed in the first column of formulas (7.47). This 
leads to a nonlinear decomposition 

(7.48) w = ~ + ~ p  q-1 , ~ e 2P(AZM) A k e r d ,  y J e 2 q ( A 1 M ) N k e r d  * 

with p + q = pq. 
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Another example, which does not come from a variational problem, is the nonlinear 
decomposition 

1 
(7.49) oJ = ~ ~ + ~2 b, a, b > -- 

P 

with q)e 2~P(AIM), ~ e 2bP(A~M), d~b = d*~2 = 0 and a set of boundary conditions 
from (7.47). In this case, however, the Sobolev exponents for @ and ? must be replaced 
by ap and bp, respectively. The problem which must be overcome is that variational 
principles no longer apply to (7.49), except for the cases (a, b) = (1, 1/(p - 1)) and 
(a, b) = (1/(p - 1), 1). Instead, we shall use the Browder-Minty theory of monotone 
operators. For reasons which will be clear in the proof of Corollary 8.7, this method re- 
quires that p = 1/a + 1/b. From here on, we assume that this relation holds. We first 
eliminate ~0 from equation (7.49) 

(7.50) d * ( ~  ~ - w) lib = 0 

For w e 2P ( A t M) fixed, we define a nonlinear mapping A: F( A z M) --* F( A t M) by the 
rule 

A t  = ( ~  - ~o) 1/b , ~ e F(A~M) 

We impose a final condition on the numbers a and b in order to insure the following 
monotonicity property of the mapping A. 

PROPOSITION 7.7. - I f  a and b satisfy 

K : =  min{a 2, a -2} + min{b 2, b-2} > 1 (7.51) 

then 

(7.52) ( K -  1 ) [ ~ -  ~1 IA~-A~[  < <~-  ~, A~-A~> 

f o r  all ~, ~ e 1( A t M) .  

PROOF. - We give only the main idea of the proof which consists of three steps. 

Step 1. For each exponent 0 < a < oo there exists a constant )~ a such that 

1 ~>)~a~ > min{a,  a -1} 

and the following inequality 

(7.53) <~a- ~ ,  ~ -  ~> >IA~ ] ~ -  ~ ] ] ~ -  ~1 

holds for vectors ~, ~ from an inner product space. 

REMARK 7.8. - F r o m  here on, we assume that A a denotes the largest constant  f o r  
which (7.53) remains  valid. Clearly, ~ ~ = A b i f  ab = 1 and A 1 = 1. 

To see (7.53), we note that by the remark just given, we may assume that a I> 1. In 
view of homogeneity, we may also assume that Ill = 1 >1~1 = x > 0. Therefore, 
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( t ,  ~) = t x  for  some  - 1 ~< t ~< 1. Af t e r  squar ing ,  inequal i ty  (7.53) t akes  the  fo rm 

a2[1  + x ~ +1 - t x (1  + x ~ -  1)] 2 I> (1 + X 2 a  - -  2 t x a ) ( 1  + x 2 - 2 t x )  

F o r  this inequali ty,  it suffices to show t h a t  

l + x a + l - - t x ( l  +Xa-1) 1 
( 7 . 5 4 )  I>  - -  

1 + x 2 - 2 t x  a 

and 

l + x a + l - - t x ( l  +xa-1)  1 
(7.55) ~> --  

1 + x 2a - 2 t x  a a 

We look a t  t hese  express ions  as funct ions (homograph ies )  wi th  r e s p e c t  to t .  Clear ly ,  
the i r  e x t r e m a l  values  a re  a t ta ined  a t  one of  the  endpoin t s  t = 1 or  t = - 1. To comple te  
the  ver i f icat ion of (7.53), we  need  only p rove  t h a t  

1 I + X  a 1--X a 
(7.56) - - ~ < ~ ~ < ~ ~ < a  

a l + x  1 - x  

The  inequal i ty  in the middle  follows f rom x I> x a while those  on the lef t  and r igh t  a re  
equiva len t  to ax  ~ - x < a - 1 and x a - ax  ~< a - 1, respect ive ly .  Both  funct ions a re  con- 
vex, thus  the i r  m a x i m u m  occurs  a t  e i ther  x = 0 or  x = 1, which is obviously less than  
a -  1. This  comple tes  the  p roof  of  (7.53). 

S t e p  2. The  s h a r p  cons tan t  for  inequal i ty  (7.52) in place  of  K -  1 is g iven b y  

(7.57) i t(a,  b) = it ~it b -- 1~ /~ -~ - -  22~ ~r -- it ~ 

With  the  aid of  a rotat ion,  we  need  only consider  vec to r s  t ,  ~ and  w f rom a t h r e e  d imen-  
sional space,  say  the  Euc l idean  space  R 3. Deno te  by  X t  = t ~ - w and 

(Xt  - X,;', t - 
= c o s a  ~ > i t a ,  0 ~< a < - -  

IXt-X l I t -  2 

( A t  - A ~ ,  X t  - X ~ )  

IA -A I IX - 
= itb, 0 <fl< - 

2 

(A~ - A~,  ~ - ~) 
= c o s y ,  0 ~< y < J r  

B y  an e l e m e n t a r y  geomet r i c  a r g u m e n t ,  we  find t h a t  y ~< a + ft. Thus,  

cos y I> cos ( a  + fl) = cos a cosf l  - s i n  a s i n f l  ~ it ait b -- V ~ -  it~ ~ / 1  -- it~ 

We see t ha t  our  e s t ima te  is s h a r p  since equal i ty  m a y  occur.  

S t e p  3. Us ing  the  e s t ima te  it a I> rain {a ,  a - 1  }, we  w a n t  to know u n d e r  w h a t  condi- 
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tions for a and b the constant ;t(a, b) is positive. This happens if the constant K defined 
by (7.51) is greater  than 1. In fact, for K > 1 we have )~(a, b) I> K - 1. �9 

8. - H o d g e  s y s t e m s .  

In Section 7, we looked at examples of nonlinear problems and related differential 
equations. There are, of course, more equations for differential forms on manifolds 
which play an important role in mathematics and physics. In this section, we describe a 
general setting in which the equations (7.17), (7.37), (7.40), (7.41) and (7.49) occur natu- 
rally as particular cases of the so called Hodge system. 

Suppose we are given a bundle map 9/ :  A t M--~ A t M.  By a solution for 9/ ,  we 
mean a pair (q~, ~0) � 9  x F(AtM) of 1-forms on M which are coupled by the 
equations 

(8.1) ~2 = 9 / (~) ,  d ~ = 0 ,  d*~p=O 

Without getting into the technicalities of the definition, let us assume in advance that  
9/ is a homeomorphism on each fibre A~ M,  x �9 M.  We then refer to such equations as a 
Hodge system. A more rigorous definition will follow shortly. 

System (8.1) is still underdetermined. As it was confirmed by the Hodge decomposi- 
tions and well exemplified by the s one may look for q~ to be an exact form 
or for yJ to be a coexact form. However, the system would be overdetermined if one re- 
quired that  both of these conditions hold simultaneously. 

Next observe that  it suffices to examine only the case 

(8.2) ~ = da,  ~ �9 ker d* 

Since, if q~ � 9  and ~p = d*fl, we simply replace equation (8.1) by its Hodge dual 
equation 

(8.3) 4 "  = 9 /*(~*)  

where 

9 / ,  = ( -  1)t(~-z) , 9/-1 , : A~-t  M___) A n - t M  

with 9/-1 denoting the inverse of 9/ .  The new unknowns are expressed in terms of q~ 
and W by the rules 

(8.4) ~ * = ( - 1)z(~- t ) ,  ~0 �9 i m  d 

(8.5) ~0 * = ( - 1 )t(~- ~), @ �9 ker d * 

The question now arises as to how we should formulate the boundary conditions for the 
Hodge system (8.1)-(8.2). Of course, we are only entitled to formulate such conditions in 
terms of the tangential part  of a or the normal part  of ~ on aM. However, a more care- 
ful analysis reveals that, just  as with holomorphic functions, where one can prescribe 
the real or imaginary part  on the boundary, one can prescribe a T or V2 N on OM, but not 
both. Without too much detail, we are now in a position to state two well posed homoge- 
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neous boundary value problems for the Hodge system 

(8.6) ~ = ~ (~) 

Specifically, the Dirichlet Problem: 

(8.7) ~b �9 im dT 

and the Neumann Problem: 

(8.8) q~ e im d and ~p e ker d~ 

and yJ �9 ker d * 

8.1. Homogeneous systems and Hodge conjugate fields. - Obviously, the natural 
exponent of the Lebesgue space in which to consider the solutions of (8.6) will depend 
on the growth of the bundle map ~ : ARM--* A l M. We shall first discuss homoge- 
neous systems of linear growth, for which the 2Z-space is most natural. Suppose we are 
given a bundle map 

(8.9) ~ : A t M --) A t M 

satisfying the Lipschitz Condition: 

(8.10) l~8- ~ l  <KI~- ~l 

the Monotonicity Condition: 

(8.11) ( ~ -  ~, t ~ -  ~ )  ~>K -1 [ ~ -  ~1 z 

and the Homogeneity Condition: 

(8.12) ~(t~) = t~ 

for all ~, ~ �9 F(A t M), t �9 R, where K 1> 1 is a constant. Notice that conditions (8.10) and 
(8.11) can be concisely rephrased 

I t -  ~- 9~+ 9~1 <kl~- ~+ ~ -  ~1 

where 0 ~< k < 1 depends only on K I> 1. 
In general, ~ need not be linear except when K = l(k = 0). In which case, ~ is the 

identity on A t M. The Hodge system is then particularly simple 

(8.13) ~ = ~p, ~ �9 ker d ,  ~p �9 ker d* 

Now a harmonic field can be viewed as a pair (~b, ~p) �9 s (A l M) • s A ~ M) of sol-  
utions to the system (8.13). 

In analogy with harmonic conjugate functions on the complex plane, we refer to a 
pair (q~, ~2)e 2~o~(A 1M) x s162 of solutions to the homogeneous system 

(8.14) y~ = ~ (r dq~ = 0,  d* ~p = 0 

as ~-conjugate fields, or simply an ~-couple. 
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Following the lead of the familiar p-harmonic operator, 1 < p < ~ ,  we now consider 
a bundle map 

such that 

(8.15) 

(8.16) 

(8.17) 

~ :  A t M ---) A t M 

I~P~- ~ l  -< K(l~l + I~1) ~-2 I~-  ~1 

( ~ -  ~ ,  ~ -  ~> >~ K-I(I~I + I~1) ~-~ I~ -  ~1 ~ 

~p(t~) = t l t lP-  2 ~)p(~) 

for all ~, ~ A t M )  and t e R ,  where K ~  > 1 is a constant. 
This apparent generality is easily managed in view of the fact that for every such 

~p, there is a unique bundle map (8.9), so that 

(8.18) 9p ~ = (~, ~ ) ( p -  2)/2 ~ 

Indeed, (8.18) defines a bijection between the class of Hodge systems of linear growth 
and the class of Hodge systems of p-th power growth. It is inverted according to the 
formula 

(8.19) ~ = ( ~ ,  ~ p  ~)(2 - p)/p ~p 

Hence, ~ satisfies conditions (8.10), (8.11) and (8.12), as is easily verified. 
The dual to 9~ is defined by ~q = ( - 1 )in - t .  ~)~ 1 . : An - t M--* A ~ - t M. It is impor- 

tant to note that 9q satisfies conditions similar to (8.15), (8.16) and (8.17) but with the 
HSlder conjugate exponent q in place of p. 

DEFINITION 8.1. - A pair (~), ~f) e ~o~(At M) )< s M), 1/p + 1/q = 1 is called 
an ~-conjugate couple in case 

(8.20) ~ =  ~)~(q~), d ~ = 0  and d * ~ = O  

REMARK 8.2. - The Hodge systems will also be studied for pairs (~, ~p) of class 
2~oPc(At M) x 2r M) with some ~ >t max{l /p ,  1/q} and such pairs will be called 
~p-couples as well. 

8.2. Nonhomogeneous systems. - The study of Hodge systems under homogeneous 
boundary conditions (8.7) and (8.8) involves no loss of generality as long as we do not 
require the bundle map ~l : A t M - ~  A t M in (8.6) be homogeneous. For this reason, we 
focus our attention on nonhomogeneous Hodge systems of the form 

(8.21) ~P + ~f o = ~ p ( ~  + q~ 0) 

where (~o, ~o) is a given pair from 2P(AtM)  • 2q(AtM),  while the unknown pair 
(@, ~) satisfies either the conditions of the Dirichlet Problem: 

(8.22) q~ e d ~ P ( A t  M) and ~ p e ~ q ( A t M )  N k e r d  * 



T. IWANIEC - C. SCOTT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 87 

or those of the Neumann  Problem: 

(8.28) ~b e d ~4~ d' p ( A t M) and e s  t M) rl kerd~ 

REMARK 8.3. - Note that dW I'p = d W  fl' p and d W  d' p = d W  d' P. See Corollary 5.3. 

The existence and uniqueness of such solutions will be established by the method of 
monotone operators. Ultimately, we will examine the nonhomogeneous equation (8.21) 
with both the data (q~ o, ~P 0) and the solution (~, ~o) belonging to 2~P(A t M ) x  ,J~xq(AtM). 
However, for )~ ~ 1, the monotone operators argument breaks down. 

We begin with some estimates for the case of the natural exponents p and q (i.e. 
4 = 1 ) .  

THEOREM 8.4. - For each data (qSo, ~0o)e2P(AtM)•  there exists a 
unique solution (~O, ~fl)e oeP(AtM)x 2q(AtM)  to (8.21) subject to one of the condi- 
tions (8.22) or (8.23). In  either case, we have a uniform estimate 

(8.24) I(Iq~l p+ I~ol q) ~< Cp(K)f( l~o I p+ I~o I q) 
M M 

In this way, we are led to two nonlinear operators 

(8.25) ~ ,  ~ : .eP( A t M)  x 2q( A t M)  ---> ~eP( A t M)  x oeq( A t M)  

defined by the rule (~O o, ~00)---) (q~, ~0), with Dirichlet condition (8.22) for the operator 
and the Neumann condition (8.23) for ~ .  These operators will play the same role in 

our nonlinear theory as the Riesz transforms do in the more familiar linear case. Our 
goal is to extend the Calder6n-Zygmund theory of singular integrals to the operators 

and ~ .  Their natural space is, of course, s A t M) x ~q(A t M) in which the bound- 
edness of ~ and ~ is ensured by inequality (8.24). Notice that the constant Cp(K), 
as might be expected, is independent of the manifold M. However, because of non- 
linearity, boundedness does not necessarily mean continuity. Our next estimate is 
similar to (7.6) and establishes continuity of ~ and ~ in their natural space s 
s 

THEOREM 8.5. - Under the hypothesis of Theorem 8.4, i f  moreover, a o, a e ~eP(A t M) 
and flo, f l e  ~ q ( A  t M) solve the equation 2jp(a + ao) =fl  + flo and (a, fl) verifies the 
same boundary conditions as (~, ~0), then 

(8.26) f(}r  + l~p-fllq) 
M 

(lepolp+laolP+l polq+lbol q) 

where t = 1/(1 + I P - 2 I). 

o - a o  I p + I Oo-Zo Iq)] t 

The proof of Theorem 8.5 involves lengthy but rather elementary estimates. The es- 
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sential technical details are the same as in the proof of Proposition 7.1, so we leave them to 
the reader. 

PROOF OF THEOREM 8.4. - We give the proof only for the case of Dirichlet boundary 
conditions (8.22). The Neuraann problem is similar. 

We begin by recalling the exact projection 

ET: .~q(/~ M) --*d%0~ q(A I-1 M), 
1 1 
- - + - = 1  
P q 

See Proposition 5.5 and formula (524). It follows from the Hodge decomposition that the 
kernel of ET consists of coclosed forms. More precisely, 

(8.27) kerET = .t~q(A t M) n kerd* 

Accordingly, equation (8.21) is equivalent to 

(8.28) ET[Op(q~ + ~ o)] = ET[~ 0] 

Next, we define a nonlinear operator 

~i: dW~ v(At- 1 M) ---) d ~4~e q(A t- x M) 

according to 

(8.29) 

for ~ d ~ 4 9 } ~ P ( / ~ / - 1 M ) .  

~ = Er[~p(~ + q~ 0)] 

It is important to observe that ~ maps d ~ v ( A ~ - I M )  into its dual space 
dEg~q(A t-~ M) (see Theorem5.7), which makes it legitimate to apply the Browder- 
Minty theory of monotone operators. In this light, our proof falls naturally into three 
parts. 

(i) ~ / s  continuous Indeed, by Proposition 5.5, ET is a continuous operator with 

norm ~< Cq(M). See (5.13) 

I 1 ~ -  ~11~ <~ Cq(M)I1~(~ + ~o) - ~ ( ~  + ~o)I1~ 

~KCq(M) I[(I~ + ~o } + 1r + ~o lY -z I ~ -  glll~ 

~KCq(M)[J(I~+~oI+I~+~oI)p-II~-~I] x/q 

<~ KCq(M)([[~llp + II~llv + 2 [[q~o [[p)(P- 1)/q [[~ _ ~ll~/q 

(ii) ~ is strictly monotone For ~, ~ e d ~ P ( A t - l M )  we identify ~ - ~ e  
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d W~ q(A t- 1 M) with a linear functional on d ~4~e ~ (A t- ~ M) (see Subsect. 5.4). I t  follows 
that 

( ~  - ~ ) ( ~  - ~) = 

= f(ET[Op(~ + +o) - Op(~ + ~bo)], ~ - ~) = f(~p(~ + q~o) - �9162 + ~o), ~ - ~) 
M M 

The latter equality follows from the observation that E T = I - E * - H T :  ~q(/ktM) ---> 
-* 2q (A  t M) and the form ~ - ~, being a member of d ~  P(A t-  1M), is orthogonal to the 
range of both E*  and H T. Now, thanks to monotonicity condition (8.16), we obtain 

(8.30) ( ~ - -  ~ ) ( ~ - -  ~) I> K-lJ'(]~ + ~o I + [~ + (~o l) p-2 [ ~ -  ~[2 >I 0 
M 

Equality occurs if and only if ~ = ~ a.e. 

(iii) ~ is coerciw Indeed, letting ~ = -q~ 0 in (8.30) gives 

( ~ ) ( ~ +  ~o) I>K -1 f I~ + q~0 ] p 
M 

since 5 ( - r  0. In particular, ((~)~)/[]~llp goes to infinity as H~Hp---> o o .  

Having verified these three conditions, we may apply the Browder-Minty theorem 
[Bro63] to see that the mapping 

(8.31) ~: d ~ P ( / k  ~ - 1 M ) - - > d ~  q(A t-1 M) 

is both one to one and surjective. I t  follows that equation (8.28) is uniquely solvable for 
~ e d ~ P ( A  l-1M).  Finally, we define ~ e  s  L-1 M) to satisfy (8.21). Equation (8.28) 
clearly forces ETU2 = 0 and consequently d'v2 = 0, as desired. Estimate (824) is then es- 
tablished by applying Theorem 8.5 to a = fl = a o = fl o = 0. �9 

REMARK 8.6. - It is important to observe that in the proof of Theorem 8.4, we did not 
use the homogeneity hypothesis (8.17). Indeed, we used only that ~p( O ) = O, which guar- 
antees that 9p maps 2P(AIM) into ,l~q(Al M). 

We are now in a position to prove the existence and uniqueness of decomposi- 
tion (7.49). 

COROLLARY 8.7. - For  1 < p <  ~ and a, b satisfying both 1/a + 1 /b=p and 
min(a 2, a-Z) + min(b 2, b -2) > 1 ,  we have that each w e  2P(AtM)  can be uniqely de- 
composed according to 

(8.32) w = ~b a + ~p b 
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where ~p �9 ~ P ( A  z M) and ~ ~ 2t~( A t M) are subject to one of the following boundary 
constraints 

(i) ~b E im dT and ~pEkerd* 

(ii) q~ �9 im d and ~0 �9 ker dA? 

(iii) ~ �9 ker d and ~0 �9 im d~? 

(iv) ~ e ker dr and ~p �9 im d* 

PROOF. - It  suffices to establish existence and uniqueness of the decomposition under 
one of the constraints (i) or (ii), since the remaining cases are Hodge star dual to these. 

Let  us first compute y) from (8.32) 

~3 ---- (0 )  - -  ~) a )l/b 

Recall the bundle map A: A t M - - - ) A t M  given by A t  = (~a_  o~)l/b (see (7.50)). Hence, 

A ~ )  Jr o) 1/b = - ~2 "Jr CO 1/b 

We may express this as a Hodge system 

~ , ~  = -W + W0 

where s = 1 + a/b = ap and the bundle map ~ :  2~ (AtM)- - -~2 r (An- tM) ,  1Is + l / r =  1 
is defined by 

~8~ = A t  + (o lib 

Here, the given form ~0 = ~ol/b belongs to 2 r ( A  t M) while the unknown form q~ belongs 
to 2 s ( A t M ) .  We use Proposition 7.7 to verify that  ~ satisfies hypothesis (8.15) and 
(8.16) with s in place of p. Finally it is clear that  ~ ( 0 )  = 0 and so Corollary 8.7 follows 
quickly from Theorem 8.4 and Remark (8.6). " 

8.3. Estimates beyond the natural exponent. - Up to now, we have considered the 
Hodge system (8.21) only in its natural space 2P(/~z M) • s  t M). This led us to a 
definition of two nonlinear operators ~ and 92 corresponding to the Dirichlet and Neu- 
mann boundary conditions, see (8.25). In order to provide a baseline for the analysis of 
these operators, we first look at the nonhomogeneous Cauchy-Riemann system on M.  
That is, 9p = Id: A t M ~ A t M. 

(8.33) ~fl + W o = q~ + ~ o 

The solutions of the corresponding boundary value problems are easily found from de- 
compositions (5.14) by means of singular integrals. Precisely, 

(8.34) q~ = E T 0 f o -  0o) ,  ~ = (E* +HT)(dp -- ~flo) 

for the Dirichlet problem, and 

(8.35) ~ = E(~p 0 - ~) o), ~f = (E~ + H~)(q~ - ~p o) 

for the Neumann problem. In either case, due to the boundedness of the above projec- 
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tions in 22x(AtM), we have 

(8.36) 
1 

M M ' 2 

Now, one may ask whether the nonlinear operators ~ and ~ ,  originally defined on 
2 P ( A t M ) •  by (8.25), actually extend to 2 P ' ( A I M ) •  with 
some p '  and q'  different from p and q. Because of the homogeneity hypothesis (8.17), 
the correct spaces in which such extensions might take place are of the type 
2xP(AtM) • 2Xq(AtM) for )~ > max{l /p ,  1/q}. Naturally, the factor ;t =p '/p = q'/q 
will depend on the ellipticity constant K. 

We come now to the central estimate for Hodge systems. 

THEOREM 8.8. - Given any nonhomogeneous Hodge system (8.21), there exist posi- 
tive numbers 

(8.37) ap (M, K) < 1 < bp (M, K) 

and a constant Cp(M, K) such that i f  (~b0, ~Po) and (~b, ~p) belong to 2~P(/kZM) • 
2~q(A t M) with 

(8.38) ap (M, K) ~< A < b, (M, K) 

and solve either the Dirichlet or Neumann problem for (8.21), then 

(8.39) I (I~blP + IFIq)~ < Cp(M, K) I (Iq~~ Ip + 1~2~ Iq)~ 
M M 

The following retrospective comments about inequality (8.39) are in order. One well 
known approach to estimates above the natural exponent for nonlinear PDEs 0~ > 1 in 
our case) is to use Gehring's Lemma [Geh73] on reverse Holder inequalities. We shall 
not follow this idea here since it fails for )~ < 1. Another interesting method, this time 
for estimating ,,very weak solutions,, (;t < 1) of nonlinear PDEs has been proposed by 
J. Lewis [Lew93]. His method involves looking at maximal functions of the gradient. In 
our case, however, the partials of q~ and F are involved only via dq~ and d * F.  Thus, we 
have no control of the full gradient of ~ and ~.  The methods most useful for such equa- 
tions have been developed in [Iwa92] and [IS93]; see also [Str95]. It  is our intent to 
demonstrate these ideas here. 

PROOF. - Suppose q~o, q~e2~P(A zM) and Y~o, lfle,~q(/k IM) verify the Hodge 
system 

(8.40) #p(~ + q~0) = ~p + ~p0, d ~ = d * ~ = 0  

where ~ is subject to the Dirichlet type boundary condition 

(8.41) q~ e d W ~  ~P(/k ~- 1 M) 

We may argue similarly for the Neumann problem. Although the precise values of the 
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numbers %(M, K) and bp(M, K) will be specified later, we assume in advance that  

1 { 1  1 }  
- <. max , <~ ap(M, K) < 1 < b~(M, K) <~ 2 
2 

If ~ = 1, one can compute the inner product of both sides of (8.40) with the form ~. 
Since g'~0~ P ( A t - 1 M) is orthogonal to .e~ ( A t M) ~ kerd *, we obtain 

(8.42) (q~, @~(~) + 0o))  = (q~, V2o) 

This, in view of conditions (8.15) and (8.16) leads immediately to estimate (8.39) with 
;t = 1. Disappointingly, for 2 ~ 1, this simple argument no longer works. In order to ar- 

rive at integrals of the type f [City and f [~f[xq, we multiply (8.40) by the form 
M M 

[~)[2p-p ~) ~ ~,~q/(2q- l)( /~t M)  

Unfortunately, integrating over M will not annihilate the unknown form 4 .  An easy 
computation leads to the following pointwise inequality 

2K 
- C(p, K)Ir  I ~v ~< (t0p(~b + ~bo), [q~IXP-P~) = 

= (40, ]~lxP-P~b) + 0P, ]~b[~P-P~) ~< C(p, K)]~flo ]~q+ [~b[~----~p + (~P, [~b]~P-P~). 
4K 

Hence, integrating over M yields 

(8.43) [[~[[i~<~4KC(p,K)([]Cpo[ii~+[]~o[[lqq)+4K(~,, [q~ [xp-pr 

Notice that the last term was not present in the 2 = 1 ease because r and ~ were or- 
thogonal. Fortunately, we do not actually need this term to vanish. As we shall see, this 
term will be absorbed by the left hand side if )l is sufficiently close to 1. The key is the 
following inequality 

(8.44) (4, IdPl "~p-p r <- Cp(M)1~, - 1111q ll   -,+'ll lI q 
which holds for arbitrary forms ~edX~T'XP(A ;M) and ~fle,l~Xq(/~ l M)•kerd* .  Having 
this inequality, we proeede as follows. From (8.40) and conditions (8.15) and (8.16), we es- 
timate [[~[[~q in terms of ~Po, ~b and q~o. This, combined with (8.43) and (8.44) yields 

(8.45) f (Ir  ~ 
M M M 

We shall have established inequality (8.39) if we set the numbers ap(M, K ) <  1 < 
bp(M, K) close enough to 1 so that 

(8.46) [)l - 1 [C(p, K, M) < 1 

for all )~ ~ [ap(M, K), bp(M, K)]. 
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Thus, we are left only with the task of proving (8.44). Note that HSlder's inequality 
gives only the rough estimate 

(8.47) (~ ,  IOl ~ - ~  o)  -< IIo11~-~+111~11~ 

regardless of the assumptions that 0 � 9  dr and ~p �9 ker d *. However, for 2 = 1 these 
assumptions ensure that (~,  0) = 0, proving (8.44). As might be expected, the general 
case will follow by an interpolation between (8.47) and (~, 0)  = 0. To this effect, we 
decompose 

(8.48) IOI~P-PO=da+~, ae ~l'~q/(~q-1)(Al-lM), d ' y = 0  

where da=ET( IOI~P-PO)  and y =  (E*+HT)( IOIxP-PO);  see decomposition (5.14). 
For abbreviation we introduce a bounded linear operator 

(8.49) T = E *  + HT: s  M) --~ s  t M) A kerd*  

where r can be any number greater than 1. It is important to notice that 

(8.50) T0 = 0 ,  (since 0 �9 d ~49~ xp with ;tp > 1 ) 

Another useful observation is that 

0p, da) = 0 ,  ( s i n c e ~ f l ~ s  * a n d a � 9  

(~r), [ 0 [2~P-P O ) : ( ~2, ~) ~ II~)ll~qll~ll~q/(2q_ 1 ) :  II~)ll2q II T( [ O 12P-P O ) II,~q/(~q- 1) 

(8.51) 

Hence, 

(8.52) 

It is a simple matter of boundedness of the operator T : ~ ( A t M ) - - - ~ 2 ~ ( A t M ) ,  
r = ~q/(2q - 1), that 

liT( IOI ~p-p 0 )  II~q/(~q-1) <~ Cp(M) IIOII~ -p+ ~ 

But this estimate is not sufficient to prove inequality (8.39). We need to improve the 
constant to show that 

(8.53) IIT(IOI~P-~O)IIx~(x~-,~ IA 1 ]C(p, M)IIOIIf~ -~+1 

for )~ sufficiently close to 1. This refined estimate holds only when T0 = 0 and can 
be obtained by using the following stability property of the kernel of the opera- 
tor T. 

PROPOSITION 8.9. - Suppose T: 2~ ( A t M ) - - ) ~ (  A l M )  is a bounded linear operator 
for  all 1 < r < ~ .  Denote its norm by IITItr. Then for  every 0 e 2S(At M) wi th  T 0 = O, 
we have 

(8.54) lIT( 10 I~0)IIs/(l+g) ~ I ~ I cIl~ll~ +~ 
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where  

2s (b  - a)  
C = (lITlla + IITIIb) 

(S - a)(b - s) 

prov ided  1 < a < s < b and  s/b - 1 < E < s/a - 1. 

This result is a reformulation of Proposition 1 from [IS93] in terms of differential 
forms. The idea of the proof is based on complex interpolation and can be traced back to 
[RW83]. We set e = 01-  1)p, s = 2 p ,  a =  (p + 3)/4 and b = sp,  where 

1 1 
1 - - - < t < l + - -  

4pq 4pq  

A trivial verification shows that s - a > (p - 1 )/2, b - s > 1 and s/b - 1 < s < s/a - 1. 
This yields inequality (8.53) and completes the proof of Theorem 8.8. �9 

8.4. Caccioppoli  es t imate .  - In nonlinear PDE theory, the interior estimates of Cac- 
cioppoli type are critical for proving regularity properties of the solutions. We will also 
find them useful in proving the removability of singularities for Hodge conjugate 
fields; see Subsect. 9.3. 

The Sobolev exponents in our estimates will be independent of the open set on 
which we choose to consider a local solution. To keep this clear, we introduce the 
following 

DEFINITION 8.10. - Given  1 < p < ~ and  K >I 1, we denote by 

a = ap (~ ,  K ) ,  b = bp(~ ,  K )  

where ap(~,  K)  andf l  bp(~,  K)  are those de termined  by Theorem 8.8 With M set to ~ .  

Let ~ be an arbitrary open subset of ~ .  We shall examine the nonhomogeneous 
Hodge system 

(8.55) ~p(~b + q~o) = V + ~00, d ~ = d * V = O  

where both pairs (~o, Vo) and (~, V) belong to 2~oPe(//t ~)  x 2~s l ~2) with 

(8.56) a ~< )l ~< b 

The bundle map 9p: A ~ ~---~ Al~2 verifies conditions (8.15), (8.16) and (8.17). 
In order to formulate Caccioppoli's inequality, it is necessary to express ~ and ~ in 

terms of their potential forms ~ and ~, respectively. This means 

(8.57) q~ = d~, ~ • ~ldo,elp ( A l - 1 ~ )  

(8.58) ~ = d * ~ 5 ,  ~e Wloc~"d*'~P/̂ ~+l~ \ ~)  

This introduces no loss of generality as long as Q is chosen to be cohomologically trivial 
(e.g. a coordinate neighborhood of a point of ~). 



T. IWANIEC - C. SCOTT - B. STROFFOLINI: Nonl inear  Hodge theory, etc. 95 

THEOREM 8.11 (Caccioppoli Type Estimate). - Under the definit ions above, we 
have 

(8.59) f(IZqd~lP+lxPd*~lq)~<<.Cp(K)f(I)~qdpolP+lZPFolq+l~Adzql~+l*~AdzPlq) ~ 

for  all nonnegative test funct ions  X ~ C~ ( t~) 

It is worth pointing out that the constant Cp(K) is independent of ~9 and )~. 

PROOF. - We begin by multiplying the Hodge system by X ~. In view of the homo- 
geneity property of top, see (8.17), we obtain 

~ p ( z q d ~  + z q  ~) o) --  Z pd* ~ + ~/P ~fl o 

This in turn can be viewed as a system on the reference manifold t~. 

(8.60) 

where 

top(~ + ~0) = ~ + v20 

~) -= d(z  q ~) �9 d'~47 d' xP ( A l-  1 t~) 

= d * ( Z q ~ )  ~ d*'~d*,;~q(/k  1+1 ~.~) 
(8.61) 

~)0 = zq ~ o -- d z  q A ~ �9 ds ~ ~ )  

5o = zP~Po - ( - 1 )  n(n-~) * [dzP A * ~] � 9  l ~ )  

It is immaterial which extension ~p: A ~ - - ) A Z ~  of the map top: Al~9--* Al~9 we 
choose as long as top satisfies the same conditions (8.15), (8.16) and (8.17). For instance, 
see formula (9.3). Applying Theorem 8.8, we obtain 

(8.61) f ( l~l  p + I~,lq)~<~ C(p, K) ~(1~o I p + 1~2o Iq) ~ 
8~ t~ 

The only issue which remains is that of replacing the tilde forms by ~, ~, q~ o and ~f 0 as 
shown in (8.61). The rest of the calculation is straightforward. �9 

9. - Regularity theorems for Hodge systems. 

Roughly speaking, our goal in this section is to show that the solution (q~, y3) of the 
Hodge system 

(9.1) top(~b + q~o) = yJ + ~o ,  d ~ = d * y ~ = 0  

enjoys the same degree of integrability as does the data (q~0, ~o)- The system will be 
studied on various open regions 12r 5~ of the reference manifold ~ .  However, the 
range of the integrability exponents will be independent of t~. To keep things clear, we 
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shall use, for the rest of this chapter, only the characteristic numbers for the reference 
manifold t~. That is 

(9.2) a = ap (~, K) < 1 < bp (~, K) = b 

as given in Definition 8.10. In particular, these numbers depend only on the structural 
constants of the Hodge system (9.1) but not on the region O. Neither the hypothes- 
is nor the conclusions of our theorems will be affected by extending ~p: F(A ~ O)--)  
--~F(A ~ O) to sections over ~ as long as the conditions (8.15), (8.16) and (8.17) remain 
valid for the extension. 

One such extension is given by 

(9.3) Xo ~p(~) + (1 - s  ~ ~ F(A~ 8~) 

where 9r o stands for the characteristic function of the region O. In Subsect. 9.2, we 
shall discuss other possible extensions; see formula (9.39). For notational convenience, 
we simply assume that ~p is already defined on ~ and satisfies the conditions (8.15), 
(8.16) and (8.17) therein. 

9.1. Interior regularity. - Let $9 be an open subset of ~ .  We begin with the follow- 
ing preliminary result which illustrates the integrability improvement property for lo- 
cal solutions of a Hodge system. Recall a and b from Definition 8.10. 

THEOREM 9.1. - Given (~b, ~p) e 2~o~(A Z O) x . I ~ ( A  ~ O) which solves the nonhomo- 
geneous Hodge system (9.39) with data (q~o, ~Po) e .~oPc(A ~ O) • .l~qc(A Z O) for  some 

~ [a, b], we have 

(~,  ~p) e s ( A  l O) x 2~ r  t Q) 

Before trying to solve this problem, it may be helpful to reduce it to special cases. 
First notice that it introduces no loss of generality to assume that 

(9.4) ~ = d ~  for some ~e  ~I ' aP(A~-I  O) 

and 

(9.5) v 2 = d * ~  for some ~e  ~4?l'~q(Al+lO) 

Indeed, since the result is local, we may take s to be a regular region of trivial coho- 
mology (i.e. the relative cohomology groups :)CT(A t O) and :)CN(A ~ ~2) are zero. We 
then use the Hodge decomposition (5.17) 

(9.6) ~ = da + d* fl + h ,  hN = fl N = 0 

where a e ~491' aP(At- 1 ~9) and we recall that ap > 1. Since ~b was closed, we find at once 
that d*fl + h is a harmonic field with normal part vanishing on 3 0 .  Accordingly, @ = 
= da,  as desired. We argue similarly for (9.6). In particular, by the Sobolev Imbedding 
Theorem, we obtain 

2a 'q~A~+lo)  (9.7) ~e2~o~(A~- lO)  and ~e  loc 
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for all a ' >  a sufficiently close to a. One further assumption we can make is that 

(9.8) ~, ~, q~ o and yJ o are compactly supported in t9 

For, if not, we take an arbitrary test function 0 ~<yeC0 ~ (tg) and consider new equations 

~p(d~ + dpo) = d* ~ + ~Po 

for ~ = Xq~ and ~ = Z p ~, where (~ 0, 5)  can be considered as new data which is given by 
formulas similar to (8.61) 

~ o = ~q ~ o - d~q A ~ e "~a'P( Al ~s 

5o = t/P~00 - ( - 1 )  ~-nt * [drip A * ~] �9 s  ~ )  

The new Hodge system can be viewed as a system on the entire reference manifold ~ .  
Thus, the Caccioppoli inequality applies for )~ = a. Let X be an arbitrary nonnegative 
function of class Co ~ (~2). Inequality (8.59) yields 

( 9 .9 )  ~(ZP+qidfllP+zP+qlg) iq)a~Cp(K,,.,q~) fO(,P+qld2oiP+zP+ql~olq)a 
.(2 # 

+C,(K, IVzl* Ix- o I + z  p IVzl I z -  Co ~ 
# 

This inequality holds for arbitrary t o e  2~P(A z # ' )  A kerd  and ~o �9  ~ q ( A  t # ' )  A 
N ker d *, where tg' is any open set containing the support of the test function Z. From 
now on, we no longer need to appeal to the Hodge system. Inequality (9.9) alone will 
imply the desired higher integrability. Namely, 

(9.10) (~b, ~2) �9 .~a'p(]~l ~-~) X ,~a'q( /~l ~ )  

for some a '  > a. For this, we need to reduce the problem to the Euclidean space R *. 
Without loss of generality, we may think of ~ as a coordinate neighborhood in ~ .  Let 
f :  R ' - - )  # be a diffeomorphism from R * onto t~. We then pullback the forms in (9.9) to 
R * by the rules 

= f # ( ~ ) ,  ~---0 =f#(q~o),  $ = f # ( ~ ) ,  -~o =f#(~o)  

=f#(YJ), ~P--oo =f#(~Po), ~ =f#(~), -~o =f#(~o) 

See Sect. 2 for the definition of the pullback operations f # ,  f#: F( A ~9)--)F( A R n). In 
view of the commutation formulas d o f  # = f #  o d and d* of# =f~ o d*, inequality (9.9) 
reduces to a similar one on R n for the forms defmed above. Of course, the constant 
Cp(K, 5r will change. It will depend o n f a n d  the support of the forms involved there, 
but will not depend on the test function X- Instead of introducing new symbols, we sim- 
ply assume that t9 = R ~. 

PROOF OF T H E O R E M  9 .1 .  - Our proof is divided into four steps. 

Step 1 (Reverse Hhlder Inequality). 

Fix an arbitrary cube Q r R ~. We denote by 2 Q the cube with the same center as Q 
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but dilated to twice Q's size. Then there is a nonnegative function Z e C0~(2Q) such 
that 

(9.11) IZ < 1 (with equality on Q) 

t IVxI <~ C(n) IQI -1/~ (everywhere) 

We refer to ;~ as a cutoff function for the cubes Qc2Q.  Now estimate (9.9) yields 

(9.12) f ( l r  ~(Idpo]P+lFolq) ~ 
Q 2Q 

+C(n, p, K) f (IQI -P/~ I~ - ~o I p + IQI -q/~ I~ - ~o Iq)  a 
2Q 

Here, we are still free to choose the forms ~0 and ~o on the cube 2Q, as long as 

~oe 2aP(At-12Q) A kerd and ~oe 2~q(AL+12Q) A kerd * 

Many of the estimates for differential forms on Euclidean space are classical. However, 
some of them are not well known. For the convenience of the reader, we rephrase 
Corollary 4.2 from [IL93]. 

LEMMA 9.2 (Poincare-Sobolev Lemma). - Let (D be a cube in R ~. Suppose 
~e ~ l ' r ( A t - l ( D )  and ~e ~ l ' s ( A / + l ( J 0 ) ,  where 1 < r ,  s < n .  Then there exist ~oe 
2 r ( A  t-1 (D) A kerd and ~oe ,~s(/~l+l(~) N kerd* such that 

(9.13) II - C( r ,  n)IId ll  

(9.14) H~ - ~o II,~,(~-8)~< C(s, n)lid* ~H8 

It is important to notice that the constants C(r, n) and C(s, n) are independent of 
the cube (D. Let us set 

1 a 
(9.15) m = 1 - -- + -- rain {p, q} 

n n 

Hence, 

1 < m < min { ap, aq } 

We shall apply the lemma to the cube (D = 2Q and with exponents r = ap/m and 
s = aq/m. By H51der's inequality, we obtain 

o 
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Similarly, 

Combining this with (9.12) leads to the estimate 

(9.16) + ]wlq) o< - C(n, p, K)  (1r I; + ]q)~ 
Q 2Q 

+ C ( n , p , K )  ([q~ iv + [~p [q)~/m 
2Q 

Here and in the sequel, we use the symbol+f = 1/[ 60 [J for  the integral mean over a 

cube 6)c  R ~. Finally, it will be convenient to set 

(9.17) F =  (IqJIP + l~21q) "/m, Fo=(Iq~o lP + l~po lq) ~ 

Then, (9.16) yields the so-called reverse HSlder inequalities 

(9.18) 

for all cubes Q r R ~ with the constants A and B independent of the cube Q. Note that 
F e s and F0 e ~k(Rn) for all k > m sufficiently close to m (k = a 'm/a)  and both 
F and F0 are compactly supported. Usually, in estimates like (9.18), the constant A is 
greater than 1. However, the case A < 1 is worth discussing as well. By the Lebesgue 
Differentiation Theorem, one may pass to the limit as Q shrinks to a point. This leads to 
a pointwise estimate F ~< A F + B Fo. Hence, F ~ (B/( 1 - A ) ) F o .  In particular, F is in- 
tegrable with the same power as F0. This argument obviously fails when A >t 1. Never- 
theless, it turns out that up to a certain degree, the power of integrability of F remains 
as large as that of Fo. Our next step considers this case. We shall present a new ap- 
proach to Gehring's Lemma [Geh73] by carefully examining the constants involved in 
the familiar maximal inequalities. 

Step 2 (Maximal Inequalities). 

For F e s m I> 1, its Hardy-Littlewood maximal function is defined by 

�9 i~F(x)  = sup IFI m : x e Q r  

where the supremum is taken over all cubes Q with edges parallel to the coordinate 
axes of R ~ and containing the point x. We abbreviate ~ = ~ .  
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PROPOSITION 9.3. - For each k > m >I 1 and f e 2k(Rn), we have 

(9.19) 3~2kk f IF[ k 

R n R n 

2n(k - m) 
(9.20) jFj  .< f i ji 

k 
R n R n 

These refinements of the classical maximal inequalities are proven in [BI83]. Note 
in particular the more detailed information concerning the bounding constants for 
these operators. As a corollary, we obtain 

L E M M A  9 . 4 .  - Suppose two functions f and fo are coupled by the inequality 

(9.21) ~J~mf ~ n ~ f  + B~i~.~fo, m > 1 

Let k > m be close enough to m to satisfy 

(9.22) 6~4k k - m Ak <~ 1 
k - 1  

Then~ 

( 9 . 2 3 )  ~ Ifl k~6n2k+lBk ~ IfO I k 
R n R n 

provided that both f and fo belong to ,l~k(R'~). 

PROOF. - Applying (9.19), (9.20) and (9.21) yields i  .(2nkm)i  ( ) 
k II~mfllk~<2 ~ k - m  1/k - - - ~  [Al l~ f  Ilk + Bll~mfo Ilk] 

(2km)i/ ( (km)l ( 
3.2k k A[[f[[~+ 2 ~ 3~2k k B[[f0[l~ 

k k - 1  k k - 1  

Ilfll  
+ (6"2)1/kBll fo Ilk 

2 

which implies (9.2). �9 

We would now like to combine Lemma 9.4 with estimate (9.18). Unfortunately, a 
technical difficulty arises since we do not know a priori that F belongs to 2k(Rn) for 
any k > m. Our next step resolves this concern. 

Step 3 (An Approximation Argument). 

One can approximate F and F0 by functions of class C0(R n) in such a way that in- 
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equality (9.18) is preserved. Indeed, let y be an arbitrary nonnegative functions of class 
Co~(R ~) such that f y ( y ) d y  = 1. We refer to such ~ as mollifiers. The approximations 
are defined by 

F ~ = ~ . F  and F~=(r] .F~)  1/m 

where �9 stands for convolution. Thus, F"  and F~ are continuous functions with compact 
support. Using Minkowski's inequality for integrals, we obtain . 

R n 2Q R n 2Q 

2Q R 2Q 2Q 2Q 

as desired. 
We now pass to the supremum over all cubes Q c R ~ containing a given point x e R ~. 

This leads to a pointwise inequality for maximal functions 

~ ( F  ~) <<.A~i~(F") + B ~ ( F o  ~) 

Next, let k > m be chosen close enough to m to satisfy condition (9.22). This, combined 
with (9.23) yields 

(9.24) f IF"  I~ < 6n2k+lB k j" iFo', I '< 

for all mollifiers ~. Recall that the function Fo belongs to ~k(R~) for some k > m. Let- 
ting y approach the Dirac measure, we conclude that F also belongs to s  ~) and as a 
limit case of (9.24), we find 

~ Fk <~ 6n2k + l Bk ~ Fok 
R ~ R ~ 

Finally, we return to the definition of the functions F and Fo, see (9.17). Setting a ' =  
= ka/m > a, we obtain 

J (l<pl" + I'q"lq)"' ~ 6n2k +'Bk I (I'P~ IP + I~~ I~)<" 
R ~ R n 

Unfortunately, this proof gives no information about how large a '  can be. We overcome 
this weakness in our final step. 

Step 4 (A continuous induction). 

Let T denote the set of all numbers t from [a, b] so that the solution pair (q~, ~) be- 
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longs to s162 ~ ~9) x 2~oq~(A ~ ~ )  whenever the data is also chosen from this space. We 
seek to show that T = [a, b]. 

Our hypothesis guarantees that there is some nonempty largest subinterval con- 
rained in T r~ [a, b] and containing a. Thanks to the arguments above, we see that this 
subinterval is relatively open. Thus, to conclude that T = [a, b], we need only argue 
that this subinterval is relatively closed as well. To this end, suppose 

(9.25) (,~, ~)  �9 , ~ ( A  ~ ~ )  x , ~ & ( A  t .Q) 

for all t � 9  y) with a<v<~b. 
Suppose that the data pair (q~0, ~P0) belongs to 

s ~ Q) x s Z ~9) 

We need to show that the solution pair (~, ~p) also belongs to this space. As in (9.4) and 
(9.5), the problem reduces to the case when 

~b = d~  a n d  ~p = d * 

where ~ � 9  ~91'tp(AZ-1 t~) and ~e ~l'tq(Al+l Y2) for all t < y. By the Sobolev Imbed- 
ding Theorem, (~, ~) e 2]'~(A Z ~2) x 2i '~(A t t~). We may assume that all of the forms ~, 
~, q~0 and Y;0 are compactly supported in ~9 and are coupled by the Hodge 
system 

t~p(d~ + ~bo) = ~fo + d*~ 

on the whole manifold ~ .  For, if not, we replace them by tilde forms as in Subsect. 8.4; 
see formulas (8.61). These observations make it legitimate to use Theorem8.8. 
Accordingly, 

(9.26) f( l~l p + Iv21q)t<~ Cp(K, ~)  f ( l~o I p + I~flo Iq) t for all t < y 

Of course, the fact that the constant Cp(K, ~) does not depend on the parameter t is of 
critical importance here. We then see, that as a limit case, (9.26) holds with t = y. 
Therefore, y e T and the proof of Theorem 9.1 is complete. �9 

9.2. Extending the Hodge system across the boundary. - The estimates we derived 
in the previous section provide no information about higher integrability properties of 
solutions near 8114. One practical way to answer such questions is by extending the sys- 
tem and its solutions beyond the region M. This procedure is both effective for our pur- 
poses and has a broad range of applications. Therefore, we shall discuss it in 
detail. 

We begin by recalling the collar neighborhood ~ r ~ of 8M and the reflection 
r: ~'~--~ 3~, see (2.28). This mapping is an orientation reversing diffeomorphism of ~'~ 
with itself which keeps the points of 3M fLxed. Furthermore, through each point s e 8/14 
there passes a unique geodesic arc y ~ r N~ which is orthogonal to 8M and the map r re- 
stricted to ~ ~ is an isometry of y ~ onto itself. This property of r will be crucial in con- 
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structing so called regular extensions of forms of class % ~  p ( A t-  1 M) and s (A t M) r~ 
kerd~ out of the boundary. This will be done with the aid of the pullbacks r~ :  
F( At ~ ) --e F( At N~ ) and r ~ =  ( - 1 )  t(n-t) . r  # * : F( A~ N~ ) --e F( At J1"~). Thus, . r ~ =  
r # * .  Recall also that  r # commutes with exterior differentiation while r~ commutes 
with d*. We shall often use the formula r# (a  Aft) = r # a  A r # f l .  Obviously, r # o r  # = 
r~ o r~ = id. The following uniform bounds follow by a compactness argument  

1 
(9.27) -~ Ifll ~ Ir~ fll ~ 2 Ifll 

(9.28) 1 

for all f l e  F (A t Ar~) and 1 = 0, 1, . . . ,  n ,  provided e is sufficiently small. Indeed, if r was 
an isometry, we would have ]fl I = ] r ~ fl I = I r~ fl I. When restricted to a sufficiently nar- 
row collar neighborhood N~ of the boundary, the reflection r:  ~--~JV~ becomes arbi- 
trarily close to an isometry. Note too that  the Jacobian determinant, J(x,  r) = r~ (1), is 
negative. Hence (9.28), for 1 = 0, reduces to 

1 
(9.29) - ~ - J ( x ,  r) < 2 on J1"~ 

2 

At each point a e ~M the differential Dr(a): T ~ - *  T~5~ acts as identity on the tangent  
subspace T~(~M) and as minus the identity on the normal subspace Na(aM). I t  then fol- 
lows from the definition of the pullback that  

(9.30) (r# W)T = CO T and (r# w)N = --ON on aM 

for all w E C ~ ( A 3r 
Let  $9 r N~ be an arbitrary open connected set which is symmetric about 3M (i.e. 

r($9) = $9). Denote $9 § = $9 A M and $9 - = $9 - M. Thus, r($9 - ) = $9 +. We shall con- 
sider a nonhomogeneous Hodge system on $9 + 

(9.31) ~ (q) + q)o) =YJ + F o ,  ~)=d~ and d * ~ 2 = 0  

The aim is to reflect these equations across 3M to $9-.  As always, we will work under  
the assumptions (8.15), (8.16) and (8.17) for the bundle map ~ : A z $9 + --* A l $9 +. The 
data pair (q~o, Y)o) belongs to ~ ~  $9 +) x ~ 0 q ( A t  $9 +), min{2op, 20q} > 1, while 
the solution pair (~, ~f) belongs to s $9 +) x 2~q(At $9 + ), min{~p, ;tq} > 1. The 
reflection will work only if we impose one of two standing constraints on aM. 

Dirichlet constraint 

(9.32) ~T = 0 on ~M 

Neumann constraint 

(9.33) ~ N = 0 on 3M 
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These constraints are understood in the sense of distributions. That is, in the case of 
Dirichlet's constraint, we have 

(9.34) 

for all test 
have 

~e ~d'aP(At-1 if2 + ) 

forms a e C ~ ( A n - t  D), 

and I d ~ A a = ( - 1 ) ~ + ~ I ~ A d a  
~ +  t~ + 

and in the case of Neumann's constraint, we 

t 
(9.35)  ~ dfl A * ~2 = 0 

for all f le  Co ~ (A t- ~ ~).  In other words, an integration by parts produces no integrals 
along a M . .  

In order to extend system (9.31) to ~ - ,  we first reflect the bundle map D~ : A t ~ + 
/k ~ ~ + via the pullbacks 

by the rule 

r ~ :  At ~9- --. At y2 + a n d  rg:  A t t9 + - ~  A t $9 - 

(9.36) Op =-raOpra:  AID----> A ; D -  

This mapping satisfies conditions (8.15), (8.16) and (8.17) with possibly a new constant 
(independant of M) in place of K. Indeed, let's take the time to verify at least the mono- 
tonicity condition (8.16). The other two are easily checked using estimates (9.27) and 
(9.28). To this end, we will exploit the following identity for X e F(Att9 +) and 
Y~ F(At Y2 - ) 

(taX, Y)= * ( Y A  *raX) = * ( Y A r  a , X )  = 

= * r # ( r a Y A  *X) = , r  a �9 (X, raY) =J(x, r)(X, r#Y) 

Now take arbitrary ~, ~ e F(A Z ~9 - ). By virtue of the monotonicity condition (8.16) for 
the map 0~ and estimates (9.27), (9.28) and (9.29), we compute 

( ~  (~) - ~ ;  (~), ~ - ~) = - ( r a [ ~ ;  (r  # ~) - ~ ;  (r  ~ ~)], ~ - ~) 

= _ j ( x , r ) ( ~ ( r a ~ ) _  + a r a ~p(r ~ ) , r a t -  ~) 

>~ - J ( x ,  r)K -1 (Iraqi + [ragl) p-~ [ra(~- g ) [~  1 
K2PT-i-(l~[ + I~[) p-e [ ~ -  ~1 e 

as desired. From the way in which s ~  was defined, we know that 

(9.37) ~ (raq~ + r a ~ o )  = - r  a ~p - ra~Po 

or equivalently, 

(9.38) 5) 7 ( - raq~ - raq~ o) = ra~ fl + ra~fo 
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It may be more or less clear at this point that our intent in extending the Hodge system 
is to define 

(9.39) 
I ~  (~) if ~ �9 A ~ @ + 

~(~) = [ ~ ( ~ )  if ~�9 N ~ -  

In case of the Dirichlet constraint, we extend ~ and ~ by the rules 

I~ = d~ on ~ + { 
(9.40) ~= [r*q)=dr#~ or, ~2- ~ =  ~p-r#~p on on Q-Q+ 

Accordingly defined are the extensions ~ o and ~2 0. In case of the Neumann constraint, 
we put 

(9.41) ~ = Ir on ~2 + { 
[-r#Cp = -drr on ~- 5= r~ w W Onon ~§ 

and ~ 0, ~ 0 are defined analogously. In either case, we have 

(9.42) t0p(~ + ~o) = ~ + ~2o 

Note that the degree of integrability of the pairs (@, y~) and (~bo, Fo) remains un- 
changed. In fact, by virtue of (9.27), (9.28) and (9.29), we easily arrive at the uniform 
bounds 

(9.43) 
[2- Q+ D+ 

(9.44) f (l~olX~247176 <21+*~ f [~ol ~~247176 f t~ol *~ 
/2- Q+ Q+ 

The only issue remaining is the behavior of ~ and ~ near 0M. We shall have established 
the extension of the Hodge system if we prove that ~ �9 d ~4~ d' xP(~) and d* ~ = 0 on ~ .  
As might be expected, we are going to show that 

( 9 . 4 5 )  = 

where ~ � 9  ~d'~P(~2) is defined by the rule 

(9.46) ~ = {  ~ ~  and ~=  [~ ~  

in case of the Dirichlet and Neumann constraints, respectively. 
In order to prove formula (9.45), we fix an arbitrary test form co �9 Co ~ ( A ~- l ~ )  and 
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f~A 
D 

compute the integral  

f~A09= f d~A09• f r*(d~Ar~09) 
Y2 D + D -  

Hereaf ter ,  the signs + and - correspond to the Dirichlet and Neumann  constraints,  
respectively. Changing variables in the last  integral  via the mapping  r :  t9 + --*~2- 
yields 

f~A09= f d~A(09+r'095= f d~Aa 
D D+ D§  

where a = co-+ r#09 �9 C0~(A ~-Z tg). Hence, in case of the Dirichlet constraint,  we may  
use (9.34) to wri te  

fT.A09=(-1)'+'f~Ada 
D D+ 

This formula also holds under  the Neumann  constraint  because in this case we have 
a = 09 - r#09 �9 CT ~ ($3 + ), see (9.30). 

Continuing in this fashion, we obtain 

09= (-1)z+' f ~A (d09+-dr" co)= (-1)z+1 f ~Ad09-+ (-1)z+lf r*(r*~Ad09) 
.Q+ D + D + 

=(-1)z+lf(~+_r*~)Ad~=(-1)l+lf~Ad09 
D D 

Which means  that  r = d~ in the distributional sense. 
In  order  to prove that  d* 5 = 0, we proceed analogously. Take any tes t  form 

r] �9 Co ~ ( A  t -  1 f~) and compute the integral  

fd~iX *5= f d,A , ~ .  f d~A , r ,~  
D t~+ D -  

I n  contrast  with the previous proof, this t ime the sings - and + correspond to 
the Dirichlet and Neumann  constraints,  respectively. Using the commutat ion rule, 
�9 r# = r # � 9  we find tha t  

fd.~A .5= f d, A , ~  f dr#Ar'*~p 
~9 D+ D -  

= f d . l A * ~  f r'[dr#rlA*~] = f VA*~ 
D + D -  D + 

where fl = y ~ r ~ y �9 Co ~ ( A t -  1 Q). Now, in case of the Neumann  constraint,  thanks to 
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identity (9.35), we have 

I d B A * ~ = O  

D+ 

In case of the Dirichlet constraint, we have fl = ~ / -  r e ~/e CT ~ ( A t -  1 ~r~ + ) while d * ~ = 0 
on ~ § and so this integral still vanishes. In ei ther case then, we arrive at the 
equation 

Id~/A . ~ = 0  
f~ 

which shows that  d*  ~2 = 0 on ~ .  

9.3. Regularity up to the boundary. - Recall a and b from Definition 8.10 and f'Lx an 
arb i t rary  )~ e [a,  b]. 

T H E O R E M  9.5. - Given a nonhomogeneous system 

(9.47) ~p(q~ + ~o)  = ~ + ~o 

with (~0, ~P0)e 2~P(A tM)  x 2aq(AtM),  suppose that the solution pair (~b, ~p) satis- 
fies either the Dirichlet conditions 

~ ) e d ' ~ a p ( A l - l M ) ,  ~p e 2~q(At M) A k e r d  * 

or the Neumann conditions 

~ d ~ d ,  ap(At-lM),  ~ e 2~q(At M) r] k e r d ~  

Then, (~, ~p) e 2XP(At M) x 2qXq(At M). 

PROOF. - First,  extend the equations beyond aM as in Subsect. 9.2, say to an open  
set M r  •.  Then the assertion is a s traight  forward consequence of Theorem 
9.1. �9 

REMARK 9.6. - When ~p ( ~) = I ~1 p -2~, Theorem 9.5 deals with the projection opera- 
tot Ilp defined in Subsect. 7.1. Combining this result with Theorem 8.8 implies 
Proposition 7.1. 

10. - Hodge  conjugate  fields. 

We re turn  now to the study of homogeneous systems and their  solutions. That  is, 
pairs (q~, ~ )  of 1-forms on M which are coupled by the equations 

(10.1) ~ = ~(q~) , dq~ = d*  ~ = 0 

Recall the numbers a = ap (K) < 1 < bp (K) = b from Definition 8 and the inequalities 
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ap>  1, aq> 1. Notice then that for each open s162 any ~)p-couple (q~, ~0)eoC ~ 
(A t D) x s176 f2) actually belongs to ~ooc(A t D) x 2~:~(A t ~3). 

10.1. A compactness principle. - Our first result is an extension of the familiar nor- 
mal family property of holomorphic functions. 

THEOREM 10.1. - A  fami ly  of ~p-couples which is bounded in 2ap(At ~2)x s 
(A t Q) is compact in 2bP(AtF)x  2bq ( At F)  for  each compact subset F e D .  

PROOF. - Consider a sequence (q~ i, ~p i) of ~)p-couples satisfying 

(10.2) I1~ ilia,, a + flu2 ill,q, a ~< Ca 

for i = 1, 2, ..., with Ca independent of j .  Using Theorem 9.1, we see that ( ~ ,  ~ )  e 
J ~ ( A  t s x Z~ t D). Unfortunately, this theorem does not say anything about the 
bounds for the bp-norms of ~ i or the bq-norms of ~0 i on compact subsets of D. To obtain 
such bounds, we fix a point x ~ F .  Now, there is a (small) neighborhood U about x such 
that ~ i = d~ i and ~p = d * ~ i. Furthermore, with the aid of Poincare inequality (6.24), we 
can always take ~ e  W'~'bP(A t-1 U) and ~ je  wl 'bq(At+ lU)  such that 

{ I1  11 , o, -< c,(u)lle,llop 
(10.3) Ila, -< Cp(S)I1  Cu 

Then, by the Sobolev Imbedding theorem, there exists a ' >  a such that 

(10.4) II~i Ila'p "}- II~i Ila' q ~ CU 

with possibly new constant Cu independent of i = 1, 2, .... Applying Caccioppoli in- 
equality (8.59), with 2 = a '  yields a uniform bound for ~bi and yJ~ 

II~) illa,p, U, -t- II~ illa' q, U' ~ CU' 

where U '  is a new, possibly smaller, neighborhood of the point x. It is now clear that by 
repeating these arguments several times, we will arrive at the estimate 

(10.5) II~ ~llb,, v +  Ilvg~llbq, v<~ Cv 

for some neighborhood V about x. Because of the compactness of the imbeddings: 

WI' P(At- 1 V) c J2P(At- 1 V) and "9~1' q(At + 1V) c ~q(At + 1 V) 

we may assume that {~i} and {~/} are Cauchy sequences in s176 and 
o~q(/~l + 1 V), respectively. If  not, we could restrict ourselves to a subsequence. Next, we 
multiply the equations ~0i = 0p(q~i) by Z ~, where xeC0~(V) is a fixed, nonnegative 
function equal to 1 in a neighborhood V'  about x. 

This can be viewed as a nonhomogeneous Hodge system of the form 

~p[ d(z q ~ i) - dz q A ~ i] = d * (Z p ~ i) - ( - 1)~- ~t , ( dzp A* ~i) 
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Applying (8.26) yields 

Ip + ] 
V '  (j )i(j ) 
Hence { q~ i } and { yJ i } are Cauchy sequences in ~ (A t V' ) and s (A ~ V' ), respectively. 
This, combined with the uniform bounds (10.5), implies that { ~i} and { ~i}  are actually 
Cauchy sequences in s (A t V' ) and 2 ~  ( A t V' ). Finally, the set F can be covered by a 
finite number of neighborhoods such as V'.  Therefore, { q~ i } and { ~p i } are Cauchy se- 
quences in s F) and ~q (AtF ) ,  respectively. �9 

10.2. Boundary value problems for Hodge conjugate fields. - As promised in Sub- 
sect. 8.2, we now study the Neumann type boundary value problems for an t0p-couple 
(~, F) �9 2~P ( A t M) • ~Zq ( At M), 2 �9 [a, b]. The Hodge system now becomes either 

(10.6) { ~p= ~p(da), d*~fl=O 

a � 9  ~d'~P(At-1 M) 

o r  

(10.7) 
d*fl  = ~p(dp), d~ = 0 

f ie  ~4?~*, ~q( A t + l M) 

Of course, the duality between these systems allows us to consider only (10.6). Given an 
arbitrary a o �9 ~ '  ~P( A t- 1 M), the Dirichlet Problem is now 

J = ~p(da),  d* ~0 = 0 
(10.8) [a - -  a 0 ~ ~ ~ P ( / ~ l -  1 M) 

and given any F 0 �9 ~$d*, ~q(/kl M), the Neumann Problem is now 

(10.9) 
{4 = d * ~  = 0  9p(da) , .  

~fl -- triO�9 ~ 'Zq(Al-l  M) 

With the aid of obvious substitutions, both problems reduce to solving homogeneous 
boundary value problems for a nonhomogeneous Hodge system of the type (8.21). Thus, 
for )~ = 1, Theorem 8.4 provides existence and uniqueness results. However, for ~ ~ 1, 
the Browder-Minty theory of monotone operators fails. The case 1 < ~ ~< b poses no dif- 
ficulty since, for the data 

(~o, 40) e s M) x ~q(At  M) c s M) x s M) 

we may use Theorem 8.4 to solve (8.21) for (~b, v2)�9 s  s  We then 
conclude, by using the Regularity Theorem 9.5, that this solution actually belongs to 
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2XP(A t M) x S~q(A l M). The solution must satisfy inequality (8.39) of Theorem 8.8. In 
terms of a,  a o and ~f 0, these read 

(10.10) f Idal ~p ~ Cp(M, K) f Idao I ~p 
M M 

in case of the Dirichlet conditions, and 

(10.11) f Idal ~p <~ Cp(M, K) f I~po I ~q 
M M 

in case of the Neumann conditions. 
The case a < ;t < 1 requires an approximation of the data a 0 and ~ 0 by smooth 

forms. It also relies on the compactness principle for ~p-couples; see Theorem 10.1. We 
give the arguments only for the Dirichlet problem. The Neumann problem is 
similar, 

Given the Dirichlet data a o e  "9$d'~P(AI-1M), problem (10.8) is not affected by 
adding a closed form with vanishing tangential part to a o. Thus a o can be suited to 
extra regularity. Namely, by the Poincar~ inequality (6.24), we may assume that a o e 
XA91'~P(/kt-1M). We approximate ao by forms aJo �9 "~Ol'P(/k l -1M) ,  converging to ao in 
the norm of the space ~ '  ~p (A l - 1 M). For each j = 1, 2, ..., we solve (uniquely for 
da j) the Dirichlet problem 

{ ~pJ= ~p(daJ),  d 'v2  j = 0 

a j - aJo �9 X~T' P(At- 1 M) 

As before, with the aid of Theorem 6.4, we may suit the solutions a j to extra regularity. 
Namely a j �9 ~,~' p ( A t - 1 M)  and 

IlaJlll,).p ~ Cp(M, K)(lla~olll, ~p + ItdaJll~p) 

On the other hand, by Theorem 8.8, we have 

Ila ll   <- Ca(M, K) llda oll   

Hence, we obtain a uniform bound for a j in the norm of ~ ' ~ P ( A  t-1 M) 

[[aJl[1,~p <~ C~ (M, K)HaJolli,~p ~ Cp'(M, K)[[ao[ll,Xp 

for all j .  In other words, the sequence ((pJ, ~pJ)= (da j, 9p(daJ)) of t0p-couples is 
bounded in ~ff~P(A t M) • ~ q ( A  t M), where A ~> a. By the Compactness Theorem 10.1, 
we may assume that ( ~ ,  y~J) converges to an 9p-couple (q~, W) in ~oPr215 
~oqr A t M). For, if not, we replace (~J, yfi) by an appropriately chosen subsequence. In 
view of the uniform bounds established above, we have (q~, ~ ) � 9 2 1 5 1 6 3  ~q 
(A~M). Note that CJ = da ~, where {a j } is a bounded sequence in x~01'X~(A~-1 M) and 
a j - aJo �9 ~,~,~lz~ ~ ( A t - ~ M). From what has been already suited to a j, it follows that { a j } 
also converges in ~01' ~P (A t - 1 M) to an a (for the purpose of this proof, weak conver- 
gence would also suffice). Hence, dp = da with a - a o �9 %~91~ ~ (At -1M) .  We then arrive 
at the following 
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THEOREM 10.2. - For each a <. ,~ <. b, the Dirichlet problem (10.8) has a solution 
satisfying 

(10.12) [[a[[1,Ap <~ Cp(M, K)[[da0[[xp 

Arguments similar to the above show 

THEOREM 10.3. - For each a <~ A <~ b, the Neumann  problem (10.9) has a solution 
satisfying 

(10.13) HaHl,~p <~ C p ( i ,  K)HVotl~q 1 

10.3. Removabili ty of  singularities. - We recall the classical removability theorem 
of P. Painlev~ [Zor05]. Let  ~9 be an open subset in the complex plane. A closed set E c C 
is said to be removable if each bounded holomorphic function f :  ~9 - E - - ) C  extends to a 
holomorphic function on tg. Painlevd's theorem states that  sets of Hausdorff  dimension 
less that  1 are removable. Until recently, there was very little known about the possible 
extensions of this result to nonlinear PDEs. 

We have already mentioned that  harmonic fields on n-manifolds should be viewed 
as counterparts of holomorphic functions. The point to make here is that  the geometric 
behavior of Hodge conjugate fields does not differ substantially from that  of holomor- 
phic functions and harmonic fields. The key tool is the Caccioppoli estimate for 2)p-cou- 
ples (~b, ~p) below the natural exponents p and q. That is, with a ~< )~ < 1. The size of the 
removable sets will be measured in terms of s-capacity. 

A closed set E r 5~ is said to have zero s-capacity, s > 1, in case there is a sequence 
{77j} of functions T]j�9 C:r such that  

i) 0 <~ ~]j <~ 1 everywhere on 

ii) Each ~]j equals 1 on its own neighborhood of E 

(10 f ~ 1 4 9  
iii) lira ~]j(x) = otherwise 

iv) lim Ildrl jll8 = 0 

This definition is best adapted to our proofs and coincides with the customary one. 
Recall that  sets of Hausdorff  dimension less than n - s have zero s-capacity and con- 
versely, sets of zero s-capacity have Hausdorff dimension at most n - s. In particular, 
the sets of s-capacity zero have measure zero. 

We shall examine Hodge conjugate fields 

(10.14) q~=d~ and ~ = d *  

on the set U =  ~ - E ,  where Q is an open set of tR and E is a closed subset of 5~. As 
usual, these fields are coupled by the equation 

(10.15) ~0 = ~p(~) 

and we assume that  (q~, ~f) �9 2~oc(A t U) • ~o~(A t U). In order to extend ~ and yJ as an 
~p-couple to all of t~, it is necessary to assume some bounds near the singular set E .  
These bounds will be made in terms of the potential forms ~ �9 ~o'e p (A t -1 U) and ~ �9 
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~lo*e' q ( / ~ l + l y )  �9 Recall the numbers a < 1 < b from Definition 8.10, fix s ~> max{p,  q} 
and f'LX 2 e [a,  1]. 

THEOREM 10.4 (Removability Theorem). - Let E c ~ be a closed set of ~s-capacity 
zero and let ~ r 5~ be an open set. Consider the Hodge system 

( 1 0 . 1 6 )  d *  ~ = ~ p ( d ~ )  o n  U = ~ - E 

for ~ e ~v~c p (A  t- 1 U) and ~ e ~o*r q ( A  t + 1 U) such that 

(10.17) + +. < 

Then ~ and ~ have extensions to Q as forms of class ~4~ldo'cP(Al-1 ~ )  and ~o*~ 'q 
( A t + l ~ )  respectively. We then say that E is a removable singular set. 

This result  is relatively trivial for ~ = 1. Indeed, the smaller )~ is, the s t ronger  the 
result  is. We note that  our removability theorem is new even in the case of the Cauchy 
Riemann system 

(10.18) d*  ~ = d~ on U = ~ - E 

Thus d~ and d * ~ are locally square integrable on U, so we take s = p = q = 2. Then the 
number  r = ks > i can be made as close to 1 as one wishes because for system (10.18) we 
have a = 1 and b = oo. Assuming that  dim E < n - 1, we then conclude that  E is remov- 
able for bounded harmonic conjugate fields. In dimension 2, we recover the theorem of 
Painlev~. More generally, consider the linear Hodge system 

(10.19) d * ~ = O(d~) 

where ~ :  A t M--* A t M is a measurable linear bundle automorphism satisfying condi- 
tions (8.10-8.12). In many respects, this is an excellent extension of the familiar complex 
Beltrami equation to all dimensions. As before, we may take s = p = q = 2 and the num- 
ber  r = ~ts < 2. Thus, sets E r ~ of dimension less than n - r are removable for bounded 
solutions of (10.19) where we notice that  n - r > n - 2. The removability of sets of di- 
mension less than n - 2 follows easily by applying Caccioppoli's inequality with ). = 1 
and is largely uninteresting. There  are other  far reaching consequences of Theo- 
rem 10.4 (e.g. see the removability results for mappings of bounded distortion 
in [IM93] and [Iwa92]). Removability results for second order  P D Es  are studied in 
[BIS99]; in contrast  to the first order  P D E s  it is necessary to impose some bounds near  
the singular set not only for the solution u, but  also for its gradient  Vu. 

Precisely how big the removable singular sets are is not known. However,  the re- 
cent work of K. Astala lAst94] answers this question in the planar case. See also [Str95] 
and [GLS96]. The removability results for nonlinear Hodge systems depend strongly 
on the exponent a = ap(K) in Definition 8.10. So, it is desirable to identify, or at least 
give a good bound for, this exponent. Unfortunately,  this question is beyond the scope 
of this paper. 

PROOF OF THEOREM 10.4. - We think of ~ and ~ as measurable sections of A t -  1 
and A t + 1 Q respectively, which are equal to, say zero, on E .  Such extension does not af- 
fect our arguments  since E has measure zero. Fix an arb i t rary  nonnegative tes t  func- 
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tion Z e Co | (12) and consider the sequence Zj = (1 - ~ ] j ) X .  We have pointwise estimates 
I~jl ~ IX] and IdzjI<~ IdzI + IZI Id~ljl �9 Applying Caccioppoli's estimate (8.59) yields 

f ( IZqd~l  p + Iz~d*~lq)  ~ ~< C(p, K) f (l~ A dz q I p + I * ~ A dz~ Iq) ~ 
u U 

<.C(p, K ) f ( l ~ l  p Idzj l" IZj I ' +  Igl q Idz~ I '  IZ~ I ' )  4 
U 

<~ C(p, K)f(l~l ~ Idxl p Ixl ~ + Igl ~ Idzl ~ IXI~) ~ 
U 

+C(p, K)f(l~l ~ Idr/j I ~ + I~1 ~ Id~lj I~) ~ Izl ~ .  
U 

Here C(p, K) varies from line to line. As j--* ~ ,  the last integral tends to zero. Indeed, 
by HSlder's inequality 

f I~1 ~ Idrlj I ~ ~ II~ll~/(~-~), uIId,~jll~-->0 
u 

~q 
f I gl ~ Id~lj I xq ~ Itgll~.(~-~), uHdrly[[~ g'->O 

U 

Thus, letting j go to infinity, we obtain 

f # m ( I d ~ l  ~ + Id *~ l  ~ )  ~ C(p, K)f I~1 ~ Ixl ~ Idzl ~ + C(p, K)f I~1 ~ Ixl ~p Idzl ~ 
~2 ~ D 

for every nonnegative function X �9 Co ~ (12). This shows that  d~ �9 2~oPc (A t s ~1o~( A t 12) 
and d* ~ � 9  2~q(A z 12) c s t s By the Regularity Theorem 9.1, we then conclude 
that  d ~ � 9  s162 and d * ~ � 9  s as desired. �9 
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