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Nonlinear Hodge Theory on Manifolds with Boundary (*).

T. IwaNIEC - C. SCOTT - B. STROFFOLINI

Summary. — The intent of this paper is first to provide a comprehensive and unifying develop-
ment of Sobolev spaces of differential forms on Riemannian manifolds with boundary. Sec-
ond, is the study of a particular class of nonlinear, first order, elliptic PDEs called Hodge
systems. The Hodge systems are far reaching extensions of the Cauchy-Riemann system and
solutions are referred to as Hodge conjugate fields. We formulate and solve the Dirichlet and
Neumann boundary value problems for the Hodge systems and establish the £LP-theory for
such solutions. Among the many desirable properties of Hodge conjugate fields, we prove, in
analogy with the case of holomorphic functions on the plane, the compactness principle and
o strong theorem on the removability of singularities. Finally, some relevant examples and
applications are indicated.

1. - Introduction.

The first six sections are written to serve as a solid introduction to the £P-theory of
differential forms, although we have tried to keep it brief. The forms are defined on a
regular open region M of closed C *-smooth oriented Riemannian manifold R of dimen-
sion n, called the reference manifold. The boundary oM of M is itself a closed (n — 1)-
manifold which is empty when M = R. We denote by A'M, [=0, 1, ..., n, the lth-ex-
terior power of the cotangent bundle. Thus, the sections of A’ M, denoted by I'(A! M),
are the [-forms on M. To denote a particular subspace of I A\' M), we replace I" by an
appropriate symbol:

C=(A'M): smooth [forms,
CF# (A'M): smooth I-forms with vanishing tangential component on M,

CF(AN'M): smooth I-forms with vanishing normal component on M.

(*) Entrata in Redazione il 4 dicembre 1997.
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The closures of these spaces in the usual Sobolev norm are respectively denoted
WEPANM),  WyP(A'M) and WiP(A'M)

Further, by W% P(A' M), W P(A M) and W P(A! M), W P(A M), we denote the
natural domains of the exterior derivative d and its formal adjoint, the coexterior
derivative d*. Of course, there are more Sobolev spaces of differential forms of interest
which are relevant to boundary value problems. We have found relations between these
spaces, identified the duals and established £P-estimates. For p =2, the £P-theory is
well understood and can be found in [Con56), [Duff52], [DS52], [Gaf54], [Hod33] and
[Kod49]. In the case p # 2, there are some results in Morrey’s book [Mor66]. However,
the theory has yet to be fully developed. Indeed, establishing £P-estimates for the
Hodge Decomposition and Poincaré type inequalities (see Theorems 6.3 and 6.4) de-
mand greater effort than in the Euclidean case and are handled rather comprehensive-
ly here for the first time in many instances. Thus, our first six sections expose familiar
results while filling considerable gaps between textbooks and research papers on non-
linear potential theory. Perhaps our extension of Gaffney’s inequality

an leolly, » < C,aD(lwll, + lldell, + lld* wl,)

for w € Wk P(A' M) U W P(A! M), is the most fundamental of these estimates since it
proves critical in establishing the £P- Hodge decompositions for manifolds with
boundary

(12)  LPN'M)=dWyPNM)YDd* WHP(N I M)DIP(N M) =
=dw};P(/\l-lM)@d*Wl,p(/\l+lM)GBDCT(/\lM) -
=dWH NI M) @d* Wy (A M) @ Iy (N M)

where IC?(A\* M), 3r(A' M) and 3Cy( A M) denote the spaces of L£P-harmonic fields,
harmonic fields with vanishing tangential part and harmonic fields with vanishing nor-
mal part respectively. These decompositions serve as a guide for the proper formula-
tion of boundary conditions for the nonlinear PDEs in the sequel. With the thorough
machinery of Sect.1 and 6 in place, we make a transition to the study of nonlinear
PDEs.

Perhaps the most natural of these PDEs arises in the following classical variational
problem. Given w e £P(A! M), find the nearest, in .£P-norm, exact form ¢. That is, find
¢ satisfying

(13) flw—¢|’”=min[[|w—§|”:Eedwww-lM)
M M

Here, we exploit the £°-Hodge theory of Sect. 5 to verify that such a ¢ exists and is
unique in dW"P(A'"! M). The Lagrange-Euler equation for (1.3) takes the form

d* |o—¢|P 2w —¢) =0
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It can be reformulated as a relation
lo—¢|" % (w—¢) =

between the exact form ¢ and a coclosed form . Of course, in the above minimization
problem, d " P( A~ M) may be replaced by other subspaces of interest. Indeed, we
examine eight natural such subspaces, each of which leads to the study of a pair (¢, ¥)
coupled by

14) w=B(¢,y), dp=d*y=0

where B: A'M x A' M — A M is a given bundle map. Apparently, this provides for a
nonlinear decomposition of w. The linear case B (¢, ) =¢ +y gives the familiar
Hodge decompositions discussed in Sect. 5.

More surprising is the fact that these PDEs also arise in quasiconformal analysis.
Indeed, given a quasiregular map f: M — N between two oriented Riemannian mani-
folds of the same dimension 7, we fix a harmonie field £ on N. In this setting, the un-
knowns in (1.4) are ¢ =f*(£) and y = f, (&), the pullbacks of & via f; see Sect. 7. The
case of » =2I (i.e. even dimensions) is particularly interesting since for & e IC(A'N),
the system (1.4) is linear; see [DS89], [IM93] and [Man95].

Also, in nonlinear elasticity, the method of differential forms and equations of type
(1.4) are becoming ever more indispensible (e.g. in the study of null Lagrangians
[IL93], [RRT&8] and [Iwa95)).

To effectively handle all of these applications as well as any others of this type
which will likely arise, we introduce the so-called Hodge Systems (Sect. 8). Given a bun-
dle map 9,: ANM— N'M satisfying conditions (8.15-8.17), a pair (¢, y)e £f,
(AL M) x JBﬁ,c(/\’ M), p + q=pq is called an 9,-(conjugate) couple or Hodge conjugate
fields in case

@5 ¥=9,(0), dp=0and d*y=0

In the main body of the text, we also treat the nonhomogeneous case of this equation
but for purposes of this introduction (1.5) will suffice.

A central theme of our work are results obtained when the natural exponents p and
q are replaced by Ap and g with A = max {1/p, 1/q}. Representative of our results in
this direction is

THEOREM 1.1 (Regularity Theorem). — There exist numbers a <1 < b so that each
s’gp-couple (@, P) e LE(N M) X LEUN M) actually belongs to LIE(NA M) x Ly,
(N'M).

We emphasize here that a and b depend only on the structural constants defining
the bundle map $,. To fix these ideas, notice that the simplest Hodge system is

(1.6) yv=9, dp=d*yp=0

which means that ¢ is a harmonie field. In fact, when considering (1.6) for 1-forms on
the complex plane, it is simply the Cauchy- Riemann system. Continuing this analogy
more deeply, we give
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THEOREM 1.2 (Compactness Principle). — Let 2c R be open. Each sequence of 9,-
couples bounded in LP(N Q) x LUN Q) contains a subsequence converging in
LEN Q) x LI(N Q).

Of course, the value of this principle goes beyond this mere analogy with the normal
family theorem for holomorphic functions. Indeed, it plays an essential role in verifying
existence for the Dirichlet and Neumann problems.

Guided by the Hodge decompositions, we found proper boundary conditions for
Hodge systems. These conditions are formulated in terms of the potential of ¢ or the
potential of y. Thus, we should assume that either ¢ is exact or that y is coexact. Be-
cause of a duality principle, we need only consider the case when ¢ is exact, say ¢ = da.
The Hodge system can then be written

@ p=9,(da), d*yp=0

for ae W P(A"1M) and y e LYY(A! M), with some A€ [a, b].
In the Dirichlet Problem, we prescribe the tangential component of a on M while
in the Neumann problem, we prescribe the normal component of ¥ on oM.

THEOREM 1.3 (Existence Theorem). — Given age W*?(A'"!M), a<A<b, the
Dirichlet Problem for (1.7) has a solution satisfying: a—age WE*P(N'"1M)
and

lalls, 2 < Cp lldaoll

Given yoe W M(AL M), a <1 <b, the Newmann Problem for (1.7) has a solution
satisfying: ¥ — P oe WL (AL M) and

Hals, 15 < Collwollly

We have reserved for our final result, a dramatic extension of the Painlevé remov-
ability theorem and the results of [IM93], [Iwa92]. For the sake of simplicity, we state
this result for the introduction only in the linear case which is already both new and
nontrivial. Thus, we assume that $: AR —> AR is a linear bundle automor-
phism.

THEOREM 1.4 (Removability Theorem). ~ Let Qc R be open and Ec R be closed.
Consider the Hodge system
1.8 d*¢=9dE) mU=Q-F

for Ee WEEALLD) and & e Wi 2(AYLU). If, moreover, & and & are bounded then
they extend to Q as solutions to (1.8), provided dim E < s, where s > n — 2 is a number
dependent only on the structural constants for 9.

Although we do not pusue the matter here, a few words about connections with the
second order PDEs are in order. Applying d* to (1.7), one can eliminate v from the
Hodge system to arrive at the equation

d* $,(da) =0



T. IWANIEC - C. SCOTT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 41

for one unknown a e W * (A" M). For I =1 and M an open region of R”, this com-
prises the familiar A-harmonic equation

divA(xz, Vu) =0

where A: M x R"—R"; a mapping of the trivial bundle A'M. We refer the reader to
[BI83] and [IwaB83] for estimates of A-harmonic functions with applications to quasireg-
ular mappings and to [HKM93] for a fuller treatment. The advantage in studying the
first order Hodge systems is particularly evident when one wants to pass to the dual
equation. For this, it is necessary to write the A-harmonic equation as $(du) = d*v,
with a 2-form v as an additional unknown. One can now eliminate % to obtain the dual
equation d$ ~1(d *v) = 0 which inevitably involves differential forms. These duality ar-
guments were successfuly exploited in [Iwa92].

2. — Preliminaries.

2.1. Some exterior algebra. — The current section is dedicated not only to an exposi-
tion of those aspects of exterior algebra essential to our development but more impor-
tantly to establishing notation for the sometimes cumbersome technical details associ-
ated with differential forms. The best general reference here is [Car70].

We let E denote a real vector space of n-dimensions. An [-linear, alternating func-
tion &: E X ... x E— R will be called an I-form and the space of all such forms will be
indicated by A!E. In particular,,A'E = E', the dual to E. For technical reasons, we
set A°E =R and recall the exterior algebra of forms AE = &7_,A'E. The familiar
wedge product of £ A'E and ¢e AFE is given by

@.1) EANDX, oy XKy )) = 2 68Xy oy X)) EX, -y X,
where the sum is taken over all permutations {4, ..., %, j1, ..., J} of {1, ..., k+1}
satisfying i, <... <7, and j; < ... <Ji, and ¢ is the sign of {4, ..., 4, J1, ..., Jx }. Note

that EAG = (~1HEAE.
When E is endowed with an inner product (,) and an orthonormal basis
B = {es, ..., €.}, an inner product is naturally induced for E' by

@2) & 0= 3 e ten

and for A'E by

(2-3) <§7 C) = det(si’ C])

where §=&,A\...AN§and E=C; A\... A for §;, ;e E'. Let’s denote the basis dual
to B by &' = {e?, ..., e"} (e e'(e;) = 0;). We recall that when & is orthonormal,
(2.10) and (2.11) guarantee that the system

2.4) {eA...Net: 1 <4 <...<y<n}
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forms an orthonormal basis for A! E with dimension (?) Werefertoe=e¢!A... Ae"as
an orientation for K. Associated with e is the so-called Hodge star operator.

2.5) s: NE->A""'E, 1=0,1,...,n

uniquely determined by

(2.6) x*1=e and ENxL=(& e

forall &, (e A'E and =0, 1, ..., n. Here, we observe that # is an isometry and that
* % is simply multiplication by (— 1)~ on A’ E. We take a moment now to exploit the
structure elucidated above to discuss some intrinsic geometrie properties of forms as-
sociated with subspaces of £. For this, let V be a subspace of £ and let #: E— V denote
orthogonal projection. Given an arbitrary w e A'E, we define the tangential part of w
wrt. V) wre NE by

2.7 wr(Xy, ...y, X)) = o@#X,, ..., 7X)

for Xi, ..., X,e E. We observe here that wr is still an element of A!E but with the
property that for X, ..., X;eV, we have

(2-8) wT(Xl’ ---’Xl)zw(Xl,---;Xl)

This induces w’s normal part @ y =@ — w . By AYE (ALY E), we indicate the sub-
space of A' E with @ ;=0 (@ y = 0). Thus, the I-forms orthogonally decompose accord-
ing to
2.9) NE =(AYE)® (NLE)

Often useful is the following

LEMMA 2.1. - Let {e,, ..., e, } be an orthonormal basis of E with {e,, ..., e; }(k <n)
a basis of the subspace V and let o = X w;,, . e"A... Ne™, where the sum is taken
over all ordered [-tuples 1 <i,<...<4<n. Then

(2.10) wp= .kaibm,ileil/\.../\eile/\f\,E
s

2.11) wy= .Zka)ihm,ilei‘/\.../\eile/\lva
uy>

For the remainder of this section, we let £: E — F be a linear map between the in-
ner product spaces (E,(,)z) and (F,{,)r). Denote by £#: F'—E' the map dual to £
(i.e. (L*ENX) = £(LX) for £ F' and X e E). The concept of the dual map extends natu-
rally to I-forms. This map, still denoted by .£#: A' F— A'E and called the pullback of
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£, is defined according to

2.12) LEFEN.LNED=LPE N NELEFE

for &,, ..., E,eF’.
Notice that “pulling back” is possessed of many nice properties including

(2.13) LEEND = LPENL*E

2.14) (LK)* = o* o*

2.15) &)= (e

(2.16) AL¥=2'e* NF>NE for 1eR

When dim E = dim F', this pullback provides for the general formulation of determi-
nant of £, uniquely given by

2.17 L*¥f=(det Le

where e and £ are the orientation forms for £ and F', respectively. Also, the transpose of
£, £ F—E is uniquely defined by the rule

(2.18) <£t Y, X)E' = <Y, .EX)F
for all Xe £ and Y e F. The interplay between the operations =, det, pullback, trans-

pose, tangential and normal parts is both satisfying and important for the sequel. For
later reference, we give a short list of facts representing this interplay

(2.19) £H* = (L*y

(2.20) det £ =det £

@.21) (&) % = (det £) » (£#)?

2.22) soy =(#w)y and *wr=(*xo)y

Further, with ¢: V— E denoting inclusion, we get
itw=i*owr

Ancther useful pullback of a linear map £: £ — F between inner product spaces is de-
fined by the rule

(2.23) Lp=(—1"tx ¥+ NF>NE
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We then have

(£K)# = 3(4#08#
(2.24) (Lp) 1= (L),
ALy =A""'Le: NFSAN'E for all AeR

With this notation, the well known Laplace expansion of the determinant reads as
Lp(L*) = (det £) Id: NE—>NE

or
(L*)YLy=(det £)Id: NF>A'F

Fixing orthogonal bases for E and F, dimE = dim F = n, £* and £, are represent-
ed with respeet to the induced orthogonal system by a matrix whose entries are the
Ix 1 and (n—1) X (n — I)-minors respectively of the matrix for £. Notice that these

matrices have size (7;) = (nﬁ l)'

2.2. The Riemannian manifold setting. — For the duration of this paper, M will
denote a regular open region of a closed (without boundary), oriented, Riemannian
manifold (R, g) of dimension % = 2. We mention now that & will play only an auxilliary
role serving as a reference to various geometric structures on M. For this reason, we
refer to (R, g) as a reference manifold. Also, let us recall that a regular open region
M c R is one for which there exists a finite atlas €1 on the reference manifold R consist-
ing entirely of coordinate charts (U, k) € @ so that x is a C *-diffeomorphism onto R*
and (U N M) =R" whenever U meets oM. Observe that the notation

R%Y = {(@1, ..., %,): 2, >0}

is being used here. We refer to such an atlas ¢ as a regular atlas and to those (U, k)
for which U meets OM as coordinate neighborhoods at the boundary.

For any regular region M, there is a sufficiently small number ¢ > 0 so that there
emanates, from each point s € SM, a unique open geodesic arc y , of length 2¢ which is
orthogonal to M having half of y, in M and half outside of M. These geodesic arcs
form a 1-dimensional C *-foliation of a region, called a collar neighborhood of oM, with
size ¢

Ne=Km= Uy,

To each point a € N, we assign eylindrical coordinates (s, t), where s e M indicates the
unique geodesic y, passing through o and the number te (—e¢, ¢) is the geodesic dis-
tance from a to s which is positive if & € M and negative if a is not in M. Of course, the



T. IwaNiEC - C. ScotT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 45

coordinate function ¢: N,— R has no critical points (i.e. dt #0). This gives rise to a
C *-diffeomorphism

(2.25) D:N,>IMX(—¢g,¢8), Da)=(s,1)

Using such a collar neighborhood and associated coordinates, it is understood that
there exists a C “-perturbation F: & x(—1, 1) = &R of the identity idz: R — R with
the properties

(2.26) EachF,=F(e, t): R — R is a diffeomorphism with Fy=idg;

{Tlth(M), t>0
@27

F t (M) cM ’ t<0
Further, the reflection through M in W,
(2.28) r: N,— N,

is an orientation reversing diffeomorphism of N, with itself given by (s, t) = (s, —1),
in cylindrical coordinates.

We will denote by TR the tangent bundle over R and if we need to specify precisely
the fibre over a € R, we write T, R. Each fibre T, R is furnished with an inner produect,
induced by the tensor g, which we denote by (X, Y), for X, Ye T,R. Observe that
in this notation we ignore the dependence of the inner product on the point a e K.
By AR, we indicate the I-th exterior power of the cotangent bundle 7*R. Precisely,
we mean that the fibre over ae R is given by ALR = AY(T,R). See Subsect. 2.1.
We use the symbol (&, &) for the inner product of the l-covectors &, e AL R. The
Whitney sum A R = @7, A’ R will be called the exterior algebra bundle, whose fibre
Ne®R = O o ALR is endowed with the inner product defined by letting the spaces
ALR, 1=0,1, ..., n be mutually orthogonal. Since most often we will be considering
the bundle A’ R, we abbreviate this notation to A! when no confusion is possible. Final-
ly, we use analogous notation for 3M when we consider it as a manifold rather than sim-
ply a subset of R (e.g. A'OM = N(TEM)).

2.3. Exterior forms. — Let E be a bundle over a manifold N and let £2 be an arbit-
rary subset of N. By I{£2, E) we denote the sections of £ defined on £2. To simplify this
a bit, in those cases when Q = N, we write I(E) for IN, E). For example, (M, A!)
denotes sections of A= A'® which are defined on 8M while IXA'dM) = I(8M,
A OM) and I(AY) = (R, AN'R) denote the [-forms on the manifolds M and R re-
spectively. As one more point of emphasis for these subtle but important distictions we

give
e, \)=INQ)
when 2 is an open subset of R.

Notice that the wedge product, Hodge star and inner product discussed in Sub-
sect. 2.1 extend pointwise to I-forms. For example, {,): I(Q, A\') x (R, A\})—
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—I(N°Q) is defined by the rule
(2.29) (&, tXa) = (&(@), &(a))

for &, (e (2, N\') and a € Q. Recall that the symbol (,) on the right hand side stands
for the inner produect on /\33{_ Following Subsect. 2.1, we may define tangential and
normal parts of a form £e I'M, A') pointwise on M by

(2.30) Er(b) =8(b)r, &En(b) =E&(b)y
for be OM. Notice that £; and &y are elements of I'(6M, A!), and
(2.31) Elam=&Er+ &N

When we wish to denote particular subspaces of I(2, A'), we will use familiar nota-
tion for the space and (2, A!) to indicate the domain as well as the degree of the forms
under consideration. For example, the arbitrarily differentiable I-forms on the regular
region M c R are denoted by C* (M, N') = C* (A M), those with compact support by
Cy" (A' M) and those which are C ®-smooth up to the boundary by C =@, A!). Also,
throughout this work, we let C7* (M, A') and Cy (M, A') denote the smooth I-forms
with vanishing tangential and normal parts respectively.

For a C *-mapping f: X —Y between manifolds, we may define the associated pull-
back of forms f#, f,: [(A'Y)— I(A'X) according to

(f* w)(a) = [Df(a)1* w(b)
and
(f# w)a) = [Df(a)]# w(b)

for w e (A'Y) and all a e X, b = f(a). Here, Df(a): T,X— T,Y denotes the differential
of f and [Df(a)1*, [Df(@)14: Ny Y— ALX are the pullbacks of the linear map Df(a) as
given in Subsect. 2.1.

Of fundamental concern to us will be the exterior derivative

(2.32) d: C*(ANM)—C= (A1 M)
For which, we have the formula
daAB)=daNB+ (-1)aAdB

where ! stands for the degree of a. The formal adjoint of d, also called the Hodge codif-
ferential, is given by

(2.33) d*=(_1)nl+1*d*:Coo(/\l+1M)_)Cmo(/\lM)

We note the commutation rules f*d = df* and f,d* = d*f,. Of course, d and d* are
understood for more general spaces of differential forms but we reserve such discus-
sion until Sobolev classes are introduced. Finally, we note that the duality between
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these differential operators is emphasized by the integration by parts formula

2.34) j(du,v>— j(u, d*v) = juT/\ * vy
oM

M M

where ueC*M, N') and ve C* (M, N'*T1).

3. - Sobolev classes of differential forms.

Here and subsequently, the measure on R will be the one induced by the volume
form u = = 1. Differential forms which are equal a.e. will be regarded as indistinguish-
able. It is customary to omit notation of the measure under the integral sign and we
shall follow this custom when it is clear that no confusion will arise.

3.1. The Lebesgue spaces. — If 2 is a measurable subset of R and 1 < p < = is fixed,
we denote by £P(£2, A') the space of all measurable I-forms wel(Q, A!) for
which

1/
3.1) leoll,, o = j|w|P <o, forp<o
Q
3.2) [w]l« o= esssupg |w| <

Most of the time we will be dealing with the spaces £7( A! M) in which case we omit ref-
erence to the set 2 = M and simply write ||w|, = ||, ». If 1 <p, ¢< = is a Holder
conjugate pair, then the scalar product of a e £7(2, A') and Be £L1(2, N') is defined by

3.3 (@, o= [an+p=[BAxa=[(a,B)
Q Q Q

In the style of previous conventions, we abbreviate (a, ) with (a, 8). Of course, the
full 27 space is not the only one that will be of interest to us. In particular, we will re-
quire the local spaces

(3.4) LLAN M) = {we (N M): ||lw|,, o < © for each compact Qc M}

DEFINITION 8.1. — A differential form w e LL(N' M) is said to have generalized ex-
terior derivative in case there exists a locally integrable (I + 1)-form on M, denoted by
dw, such that

(8.5) (w, d*n) = (dw, 1)

for every test form 5 eCy> (N M). If both w and dw are integrable on M and (3.5)
holds for any neC> (A1), then we write w =0 and say that o has vanishing
tangential part. The notion of generalized exterior coderivative and vanishing nor-
mal part are defined analogously. Lastly, we refer to

kerd = {w e Li (N M): dw =0}
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as the closed I-forms and to
kerd* = {we L (N M): d*w =0}
as the coclosed l-forms.

3.2. The Sobolev spaces. — For k=1,2,... and 1 <p < o, Sobolev space
W P(A! M), is defined in the usual fashion by first choosing a finite atlas for the refer-
ence manifold R, say A = {(U;, k;):i=1, ..., m}, as well as a C “-partition of unity
{xi€Cs (U;): 2 x; =1} subordinate to 1. This allows us to decompose w € A\l M) ac-
cording to w = 2, w;, where w; = x;w and consider the pullback of w; via the mapping
ki R U;

(3.6) wf(w)=§1‘,w§(x) do;, xeU=k,UNMCcR"

Here, the sum is taken over all ordered l-tuples I = (iy, ..., ;) and dx; =dx; A ... A
Adx;,. If each function w? has generalized partial derivatives D®w?e £P(U;) for all
|a| <k, then the Sobolev norm of w is defined by

m
”w”k,p = 1';1 ”wi”k,p
where

”wi”k,p = IalE<k 21: ”Dawﬂlp, U;

It is not difficult to see that the Sobolev spaces corresponding to different atlases and
partitions of unity are all equivalent.

An important feature of WY ?( A! M) is that every such form is the restriction to M
of an element of W ?( A! R). Even better, there is a bounded linear operator, called an
extension operator

3.7 ~ WLP(AL M) — WHP(ALR)

which satisfies @ |y = o for all @ e W' P(AL M). To see that this is the case, let @ be a
regular atlas. If U;c M, then w; = y ;w can be regarded as a form of class W"P(A'R)
equal to zero outside of U;. If, however, U; meets M, then we recall formula (3.6) and
extend w¥ to R* by requiring that wl(z, ..., 2,) = 0i(z,, ..., —2,). We denote this
extension to R” by @¥. Next, return to the manifold R by pulling back @¥ via the map
k;: U;—R", In this way, we obtain a form @;e WiP(A' U;). Finally, we put
o= 0 WPNQR).

Armed with the extension operator, one can prove basic approximation properties
of the Sobolev Spaces. For example, using the Meyers and Serrin approximation theo-
rem, we obtain

COROLLARY 3.2. — C*(A'R) (restricted to M) is demse in WH-P(A' M), for all
l€sp< o,



T. IwaNIEC - C. ScOTT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 49

Let us denote by W§ P(A* M), 1 < p < o, the space of I-forms on M whose zero ex-
tension to the reference manifold belongs to W' ?(A'R). We then have

COROLLARY 3.3. — C° (A M) is dense in Wy P(A' M), for all 1 <p < o,

Due to Definition 3.1, we may speak of vanishing tangential and normal parts of
forms in W"P(A'M). Accordingly, the spaces of such forms will be denoted by
WEP(A'M) and WY P(A' M). It is immediate that

W PN M) = WhP(A M) N WP M)

A very useful tool in dealing with boundary values of differential forms is furnished by
special coordinate systems {U, k= (%, ..., #,)}, K(UNM)=R%, chosen so that for
each be dM N U, the tangent vector 5/0x, is orthogonal to T,(3M). The existence of
such systems is easily established by using cylindrical coordinates. In addition, one can
require that the vectors 9/0xy, ..., &/3x, form a frame which is orthonormal for T, R at
a specified point b € 3M, but not necessarily at a collection of points clustered about b.

Suppose that w e W P(A' M) and y € Cy° (U) is a member of a partition of unity as
above. The form yw splits into tangential and normal parts

ildxil/\.../\dxil‘*‘ Z ﬁily.,,,ildxil/\.../\dxil

r0= D) Qy, e
i€h<..<fj=n

1<ij<..<gy<n

Here, the coefficients a;,, ; belong to W§'»(UN M) while the coefficients 8;
only belong to W P(U N M). We then see that a;, .. yand B, ; can be approximat-
ed by functions of class Cy° (U N M) and Cy*° (U) respectively. Thus, there exists a se-
quence of I-forms in Cg° (A! U) with vanishing tangential part on dM which converges
to yw in the Sobolev class W ?(UNM, N'). Using a partition of unity, we then

obtain

COROLLARY 3.4. — The space Ci* (M, N') is dense in Wi P(N M). Also, in view of
Hodge star duality, Cxx (M, N\') is dense in Wy P(A'M), for all 1 <Sp < o,

3.3. Partly Sobolev classes of first order. — One special feature of the differential
equations we shall discuss is that the partial differentiation occurs only via the opera-
tors d and/or d *. Therefore, the natural spaces of differential forms in which to look for
solutions will not require that all partials exist. Such spaces, called partly Sobolev
classes, have a place of central importance in this paper. In this section we define and
summarize briefly the basic properties of such classes.

For the space W% P(A! M), we require only that both a form and its generalized ex-
terior derivative (see Definition 3.1) are £P-integrable

38 WEP(N' M) = {we LPNM): do e P (A1 M)}
This space is equipped with the norm

(3.9) leolla, = llwll, + ldel,
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Similarly, we define
(3.10) WPNM) = {we LPNM): d*we £2(AN7 M)}
which is provided the norm

3.11) lollgs, = lloll, +ld*wll,

REMARK 3.5. — It is a straighiforward consequence of Definition 3.1 that for
we WHP(A'M), 1 Sp< «, the form do has generalized exterior derivative equal to
zero (i.e. ddw = 0). Moreover, if w =0, then (dw)r = 0 as well. Similar considerations
apply to the exterior coderivative.

Note that both W% P(A' M) and W*"?(A' M) are modules over the ring C* ),
since for each y € C * (M), we have

(3.12) dyw) =ydo +dy Awe LPA'IM)  if we WHP(ALM)
and
(3.13) d*(o)=yd*o— (1"« (dy A *w)e LPNIM)  if we W PN M)

For f: X—Y a C ~-diffeomorphism of compact Riemannian manifolds (with or without
boundary), we recall the formula d(f* w) =f*(dw). Because of this, the pullback
operation

(3.19) fEWEPALY) = W PN X)

is a Banach space isomorphism. This observation is the key to seeing that the exten-
sion operator ~, originally defined in (3.7) for W'P(A'M), is actually acting on
WEP(A' M) as a bounded linear operator with values in W% P(Al R).

A slight change in the proof of Corollary 3.2 gives

COROLLARY 3.6. — C*(A'R) is dense in WHP(A'M), for all 1 <p< .

PrOOF. — As before, we choose a finite atlas for R, say A = {(U,, x;): k;: U;—R"}
and a partition of unity {y;e C¢>(U;): 2 x;=1}. Fix w € W»?(A M) and let & denote
its extension to R so that @ € W P(A! R). We then consider the pullback of y ;@ to R®
via k;!: R"— U;. This pullback, denoted @¥, has compact support and belongs to
W P(ALR™). Using the fact that in R, the differential operator d has constant coeffi-
cients, we see that the convolution of @¥ with standard mollifiers provides us with a C *
approximation of @¥. We now return to the manifold R by pulling back via the map
k;: U;—R". The details are left to the reader. =

Using the Hodge stars * : (A" 'Y) >I(A'Y) and *: (A" X) > (A" "' X), we
may introduce another pullback operation, denoted by f: I{A! Y) — I'{ Al X) and given by

(3.15) falw) = (1"t s f* (5 w)
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for w e (A'Y). We leave it to the reader to verify that f, commutes with codifferentia-
tion

(8.16) frd*w) =d*(fpw)
As before, we see that
(3.17) Sy WP(NY) - WP (ALX)

is a Banach space isomorphism. We now have a corollary dual to Corollary 3.6.
COROLLARY 3.7. — C*(A'R) is dense in W "P(A' M), for all 1 Sp< .

A proper subspace of W P(A! M) (W P( A M), respectively), well adapted to our
boundary value problems, is the class W% P( A M) (W4 P(A! M)) of differential forms
with vanishing tangential (normal) part on 3M . The following corollary provides a nat-
ural and intrinsic characterization of W% P(A! M) and W% P(A'M) for all 1< p< .

COROLLARY 3.8. — A differential form belongs to W& P(N' M) (W4 P(NA' M), re-
spectively) if and only if its zero extension to the reference manifold belongs to
WHP(ALR), (W P(AR)). The space Cy* (N M) is dense in both 9% P(A' M) and
WL PN M)

ProoF. — We only give proof for the case of W¥P(A'M) and comment that the
WL P(A M) case is Hodge star dual. It follows from Definition 3.1 that the zero exten-
sion of w belongs to W% P(A'R) with dw = 0 outside of M.

We shall have established the converse if we prove that C;°(A'M) is dense in
W P(A M). Suppose that w e W P( Al R) vanishes outside of M. To make its support
slightly smaller, we recall the perturbation of identity F;: R — R, 0 <t <1 as given by
(2.26) and (2.27). Since M ¢ F,(M), pulling back via the diffeomorphism F,, we obtain a
form F#(w)e W"P(A'R) which is supported in a compact subset of M. We also
have

tlin(l) Ff(w)=Ff(w) =0 in W'P(AN'R)

In view of these observations, we only need to approximate each F/*(w) by forms of
class C;° (A\' M). This is done the same way as in the proof of Corollary 3.6. The only
point remaining to be mentioned is that by using mollifiers, we have actually obtained
forms supported in a slightly larger set than that of F* (w), but still in M. m
DEFINITION 3.9. — Let dr and dgf denote the closures of the differential operators
d: Cg* (N M) c £P(N' M) — LP(N*1 M)
and
d*: Co(NM)c LP(NM)— LP(N"PM), 1<p<wx

respectively.

Corollary (3.8) simply means that the domains of these operators are W§ P(A' M)
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and W& P(A' M), respectively. Formula (2.34) shows that dp: WkP(A'M)— £P
(A'"*'M) is the Banach space adjoint of d*: W I(A'*1 M) — LI(A! M). Similarly,
df is the Banach space adjoint of d: W% YA M) — LIN' M), 1<p,g< o, p+g=
=pq.

3.4. Harmonic fields. — A form he £L.(/A\' M) which is both closed and co-closed
(.e. dh=d*h =0) will be called a harmonic field of degree I. We denote by I A’ M)
the space of all harmonic fields on M and regard it as well known that such forms are
C *-smooth. Notice that 3 A\' M) serves as a natural extension of holomorphic fune-
tions to Riemannian manifolds. Indeed, a 1-form h = u(x, ¥) dx + v(x, y) dy on R?® is a
harmonic field if and only if the complex function f= % — ¢v is holomorphic. The three
basic Banach spaces of harmonic fields of concern to us are

(3.18) HP(N M) = W P(A' M) NN M)
(3.19 IENM) = {he HP(NM): hp=0}
(3.20) HE(N M) = {he IP(N'M): hy=0}

where 1 € p < «. Clearly, the Hodge star operator preserves harmonic fields. Precise-
ly, we have * JU(A'M) = IA(A""'M) and * ICHE(N' M) = 3R (A" 'M).

3.5. Partly Sobolev classes of second order. — A form y e W' P(A! M) is said to be-
long to L2 P(A' M) if dy e WHP(AYY 1 M) and d*y e W P(A'~1 M). The norm for this
space is given by

@:21) Iy lle s =7l p + ldy o+ ld* vl

REMARK 3.10. — We should point out that £2P(A' M) is a proper complete subspace
of W P(A'M). For example, harmonic fields of class 9V P(AN M) are members of
L2P(AN M), but need not belong to W P(N' M).

The following closed subspaces of £%?P(A' M) will be useful
LHPNM) = {ye LEP(NM): yp=(d*y)r=0}
(8.22) LY NM) = {ye L2P(NM): yy=(dy)y=0}
L2P(AM) = {ye L2P(N M):(dy)y = (d*y);=0}

Density of smooth forms in these spaces is a delicate problem. A characterization of
higher order Sobolev spaces via the exterior and coexterior derivatives is pursued
in [BS96].

4. — Gaffney type inequalities.

The inequalities we study in this section represent critical estimates for the opera-
tors d and d*.
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4.1. Gradient estimates in R . — We prepare for the more general results (i.e. on
manifolds) by presenting a variant in Euclidean space. At this point, we deviate slightly
from the rest of the text by using A! to denote A! R”. This convention is only in force
for this subsection and thereafter we return to Al = A' K.

PROPOSITION 4.1. — There exists a constant C = C(p, n), 1 <p < «, so that for any
aeCF R, N) with compact support, we have

1) IVall, < Cn, pXidall, + lid* all,)

In the statement of this proposition, we are using

Va = z‘—, . da
3%y o,

dx;. For the proof, when a =2 a’dr; and =23 B’dx; are

I
where Sa _ > da
ox; I Ox;

{-forms in a domain of R* whose partials exist, we write

<Va,Vﬂ>=ﬁ<3‘i %>=2 9a’ %
i i1 Ox; Ox;

b
=1

a.’l?i axi

Our arguments are based on certain identities and £-estimates for the Riesz trans-
forms in R"”. We have divided the proof into a sequence of lemmas.

LEMMA 4.2. - We have the following identity
4.2) (dardﬁ>+<d*a’ d*ﬂ)—(Va, V,B)= 2 i(ag—.lﬂ‘.]l—l_a.ll—llg{—])

#UNJ)=1-1

Here and subsequently, f;_; stands for the partial derivative 3f/dwx;, where
{i} =1—J. The signs in the summation depend on I and J but we do not specify them
because they will play no role in the sequel.

ProoF oF LEMMA 4.2. — Let us denote by B(a, ) the bilinear form in the left hand
side of 4.2. Because of bilinearity, it is sufficient to verify formula 4.2 for the
forms

a=Adx;, f=Bdx,
where A and B are differentiable functions. We then have
xa=Axdx, *f=DBxdx,
da=A1-dxi/\d901, d/3=Bjd£L'j/\de

Hereafter, A; stands for the partial derivative 6A/dx; and we use the Einstein summa-
tion convention. Notice also that

dxa=Ade;\ *dxy, d*p=B;dx;\ «dx;
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Hence
(da, dﬂ) = A1B]<dwl/\dx1, dx]/\de> =X
(d*a, d*B)=A;B(du; \ *day, da; N\ *dwy) :=X*
(Va, VB) = A;By(dwy, duy) =Y

It is clear that if #(INJ) < —1 then each of the expressions X, X* and Y vanish.
Thus, (4.2) holds trivially. Now, two cases are possible. Either #(INJ) =1 or
#UINJ)=1-1. In the first case, we see that I =J. Hence, X = E AB,, X*=

= Z A,B,and Y= Z A;B,. Thus B(a, B) =0, as desired. In the second case, [ =

= {p} UKandJ = {q} UKforsome multiindex K=INJwith#K=1-1,p # gandp,
g ¢ K. This gives

X =A,B,(dx, N\ dax;, dx, \day)
X*=A,B(dw, \ *day, deg N\ * day)

(no summation)
and Y =0. By elementary combinatorial arguments, we find that
(dwy N\ *dg, da, N\ * dacy) = —(dwg A\ day, de, Adiy) :=e= £1
In all, we obtain
B(a, p) =e(A,B,— AB,) =e(A;_;B;_1— Ay B, )
as claimed. = -
REMARK 4.3. — Our proof reveals that (dx; . A dxy, dx; ;N\ dxy) is the sign in (4.2).

Let us rewrite identity 4.2 as

4.3) B(a, ) = > =lat_yBN)yo1— (@b 1B 4]

#UNS)=1-1

We denote by £V P(R%) (£1?(R"), respectively) the space of locally integrable func-
tions on R% (R™) whose distributional gradient belongs to £P(R" , R™) (£P(R", R"), re-
spectively), 1 <p < «. Let £} ?(R%) denote the space of functions from L7(R%)
whose zero extension to R™ belongs to £ 7(R").

LEMMA 44. - If ae CF R, AY) has compact support and e L1 I(N'R%) with
Br=0and g=1, then

(4.4) [ &, B =0
R%
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Proor. - In view of (4.2), it suffices to show that

(4.5) J'(ag—J/SJ)J—I = j(a{I—I,BJ)I—J =0
R" R%

for all l-tuples I and J with #(I NJ) =1 — 1. First notice that both integrands in (4.5)
belong to W P(R% ). Furthermore, for each k=1, 2, ..., n and any ¢ € W" 9(R%), Fu-
bini’s theorem yields

[a= jj( f%k dxk) da, ...dg,...dw, =0
R% )

where ¢ =0 if k=7 and a = —  otherwise. In particular, (4.5) holds if J — I = {n} =
#]~J.Inthe case {n} =1 —J, B’ is a coefficient of the tangential part of 8. Thus, 8’ €
e Wi 7(R™ ) and (4.5) follows by applying (4.6). Moving to the case when {n} =J — I, we
see that af is a coefficient of the tangential part of @. Consequently, a! vanishes on
OR™ =R"~'. Since {n} # I —J, the partial derivative a’_; vanishes on R" ! as well.
Identity (4.6) once again implies (4.5). =

LEMMA 4.5. — For each fe £LP(R%) (LYP(R%)), there exists ge Ly ¢(R%)
(LV1(R%)), 1<p, g< », p+q=pq, such that

(4.6) Iv7 11,11 vgll, < C(n, ¢)X(Vf, Vg)

where the constant C(n, p) depends only on q and the dimension. The norms and the
scalar product are in R’;.

PROOF. — Denote by % the reflection of x = (x4, ..., 2,) € R” through dR" = R" "1,

That is, & = (x;, ..., ®,_1, —&,). Using this reflection map, we extend fto R” by requir-
ing that

4.7 f@) = —f(x) in case fe £LyP(R%)

4.8) f(@) =f(x) in case fe £LLP(R")

The extended function (still denoted by f) belongs to £!'?(R"). We now consider the
case of fe £§P(R%) and comment only that the case fe £1?(R") follows similarly.

First notice that the gradient of the extended function satisfies Vf(@) = — Vf().
Observe that the vector field F = |Vf|? "2Vf= (F,, ..., F,): R"—>R" satisfies |F|?=
= |Vf|? and so F e £LY(R", R"). We also have

4.9) F@) = — F(x)
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Now we define g: R*—R as the Riesz potential of F. Precisely,

f (x -y, F(y))

(4.10) g(x) = —
| —y|

dy

The gradient of g can then be expressed using the Riesz transforms in R” according to

G=Vg=—R(R, F)= —[Ri(é‘,leFj) .

This yields the estimate

19gllq, re = 1Gllg, e < CCy DIFMlg, we = Cl, DIIVF IR

Thus g e £ 2(R™).
Using familiar identities for the Riesz transforms, we obtain

(Vf, V9) = —(Vf, R(R, F))xe = —(R(R, Vf ), F)gn = (Vf, Fhpe = |Vf |5 HVS [, me

Combining this with the previous estimate for Vg, gives

(4.11) IV |lp, 2 [IVg g, e < C(ne, g)(Vf, VgIgo
In order to reduce this estimate to R%, we observe that
(4.12) g@) = —g(x),

which follows from (4.9) and an easy change of variables in the 1ntegral (4.10). We now
see that G@) = — G(x) which in turn reveals [Vgll, rr=2"4|Vgll,, IV, re=
= 21/7||Vf ||, and (Vf, Vg)rs = 2(Vf, Vg). Therefore, inequality (4.11) is equivalent to (4.6).
Finally, relatlon (4.12) gives that g restricted to R% belongs to W§Y(R%). =

REMARK 4.6. — Essentially the same proof applies when f and g are functions on R
with values in a finite dimensional inner product space. In particular, for differen-
tial forms f, g: R% — N'R™.

PROOF OF PROPOSITION 4.1. — It will be convenient to regard a as a function on R%
with values in the ( ) -dimensional inner product space A’ = A' R”. Recall the orthogo-

nal decomposition (2.9), Al = (/\TR")GB(/\NR”), with respect to R*~!=38R"% cR".
Accordlngly, a =u + v where u: R%Z — ALR” and v: R%. — AL R" are orthogonal point-
wise, u e Cp’ (R AY) and ve Cy (R%, A'). This, in view of vp=ay—ur =0, yields ve
e Ly PR, /\NR") while ue £V ”(R AGR™).

By Lemma 4.5, there exist forms ue £ 9(R%, AbR"™) and ve £§ (R%, AYR"),
p + q =pg, such that

(4.13) V], < Cn, )(Vui, Yu)
(4.14) [Vll, < Cn, 9 (Vo, Wv)
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Here we have assumed that [ Vul|,=[Vv]|,= 1. This introduces no loss in gener-
alilty since we may normalize u and v. These are orthogonal components of an /-form
B=u+ve Wy IUA'R). Therefore

IVall, < |Val, + | Voll, < Cn, (Y, Vu) + (Vv, V)] = C(n, ¢)(Va, VB)
On the other hand, by Lemma 4.4 we have
(Va, VB) = (da, dB) + (d*a, d*B) <
< C)|| V8l (ldel], + | d* all,) < 20 (ldal, + |d*af,) m

4.2. Gaffney’s inequality for W' P(A! M). — Before stating the global result, we use
the groundwork just developed to give the following

LEMMA 4.7. — For each point a € M there exists a constant C = C(a) such that
(4.15) lwll, p, 10 < Cllo g, + lIdeollp, e + | d* wll, 20

for all weCy (M) vanishing outside a sufficiently small neighborhood of a. This
neighborhood may depend on the point a € M, but not on .

PROOF. — For aedM, choose a coordinate system {U, k= (xy, ..., x,)}, KUNM) =
=R" so that the tangent vector 8/0x, is orthogonal to 7T,(3M) at every point be
€ dM N U. In addition, we may assume that x(a) =0 and that the components of the
metric tensor (w.r.t. x) satisfy g;;(0) = J ;. The latter condition is always guaranteed by
requiring that the tangent vectors 3/0xi, ..., 8/0x, are orthonormal at the point
aedM. ‘

Next, let a= ; a’(x) de; denote the pullback of w via the mapping x~1: R > UNM.

Obviously, a e CF (R%, A') and has compact support. Of course, pulling back dw gives
da. However, since d*w involves the Hodge star, its pullback is

I
de"‘ ZB]J($) alde

4.16) S A7 (@) ‘98“

(1

where A{{ ; and Bf are C® functions on R” whose explicit nature depends on the repre-
sentation of the metric tensor g (i.e. on k). Further, our choice of coordinate system x
guarantees that at 0 € R®, the first term of (4.16) is d* a. Thus we see that inequality
(4.15) can be rephrased, equivalently, as

417) lalls, » < Celllel, + lldall, + | Pall,)

in R%, where & = P(x, D) is a first order linear differential operator with C *-coeffi-
cients for which

(4.18) 0, D)=4d*
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Now, to prove (4.15), we use Proposition 4.1 and the triangle inequality to obtain
lally, , < C(n, pYlall, + lldall, + ld* all,)
< C(n, p)(”a”p + “da”p + Ilya”p + “({P—d*) a”p)

Next observe that for given £ > 0 and when « is supported in a sufficiently small neigh-
borhood of 0 e R*, we have the pointwise estimate
These two estimates apparently imply (4.17).

If @ is an interior point of M, we may repeat these arguments with R™ in place
of R.. m

I

8901

i,1

[(P—~d*)al <e(|a| +2

THEOREM 4.8. — There exists a constant C,= C,(M) such that
(4-19) ”wnl,pscp(uwllp_'_“dw”p+“d*wnp)
for every we WrP(NM)U WHP(AN'M), 1<p< .

Proor. - We will be concerned only with w e W P(A' M) which, in view of Corol-
lary 3.4, we may assume to be in Cf (M, A!). For each point a € M, choose a neighbor-
hood according to Lemma 4.7.

Since M is compact, we can select finitely many of these neighborhoods to cover M,
say {Q;:i=1, ..., m}. Let {3,€Cs"(2;): 2 x;=1} be a partition of unity subordi-
nate to this covering. To each 2; there corresponds a constant C; so that (4.15) holds
with @;=y;w in place of . Now w = 2 y; and since dw;=x;dw +dy; \w and
d*w;=yx;d*w— (=1)"*" % (dy,\ *w), we may conclude with the desired esti-
mate

m
”wnl,p s igl uwinl,p

 Cilloill, +lldwsll, +lld* @;ll,) < Cllol, +ldoll, +lld*wl,) =

3 Ms

REMARK 4.9. — Gaffney’s inequality quickly implies that both IB(N' M) and
BN M) are finite dimensional.

Indeed, inequality (4.19) applied to & e ICB(A' M) U HZ (A M), 1 < p < o reads as
Ill1, < Cplkll,,. By compactness of the imbedding WY ?(A! M) — £2(A! M), it follows
that the unit ball of the subspace 3B(A'M)c LP(A' M) is relatively compact. Thus,
dim ICB(A' M) < o, Similarly, dim HR(A'M) < .

It is a consequence of the regularity theory of C.B. Morrey that
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REMARK 4.10. - Harmonic fields with vanishing tangential or normal component
are actually C~-smooth up to the boundary. That is

(4.20) N M)CCEDM, N and HE(N M)cCy M, N\)

For this reason, we shall omit the superscript p in the notation for these two spaces.
LP-bounds of a harmonic field in terms of its tangential and normal part can be found
in [IMS95].

We will find estimates for a form w exclusively in terms of the p-norms of dw and
d*w to be very useful. Qur next theorem is dedicated to demonstrating one such
result.

Before stating this result, notice that given w e £'(A! M), the orthogonal projec-
tions of w to IHp(A' M) or Hy(A' M) are well defined. Recall that both are finite di-
mensional subspaces of C* @M, A')c £L2(A' M). Thus, if A4, ..., k, is an orthonormal
basis for IC( A M), then the projection Hr: L1 (A M) — Ip(A M) is defined by

m

(4.21) Hp(w) = 21 cihi, ¢i=(w,h)y

9=

Analogously defined is the projection Hy: LY(A'M)— ICv(A' M). We denote by
ICET (A M) and ICX (A M), the subspaces of £1( A’ M) consisting of forms which are
orthogonal to 3C;( A M) and 3Cy(A! M) respectively.

THEOREM 4.11. — For each 1 <p < o and we WyP(N M)NIET(AN'M) or we
e WHP(A' M) N IR (A M), we have

(4.22) lolls, » < C,)lIdwll, +l[d* wll,)
PROOF. — Suppose to the contrary that (4.22) fails. This means that for each positive

integer k, one can find w ;e Wy ?(A! M) which is orthogonal to ICr(A! M) satisfying
the inequality

Jdorsl + | @i, < ol

Because of homogeneity, there is no loss of generality in assuming that flw [, = 1.
Combining these observations with Gaffney’s Inequality (4.19) yields

kllow
ok, St <

=~

14
and

Glloul, _ 2

d +||d* S <
ldor + el < =22 < 2
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for k> 2C,. The first estimate implies that there exists a subsequence of {w,}, con-
verging weakly to some w e Wy P(A! M). As such, w is also orthogonal to 9C7(A! M).
By compactness of the imbedding W} ?(A! M) c £P(A' M), we see that |, =1. On
the other hand, the second estimate above shows that w is actually a harmonic field of
class HB(A' M)c CF (M, N)c £L2(M, N') and as such, it is orthogonal to itself. Hence,
w = 0. This disagreement invalidates our assumption that (4.22) fails. m

We shall see that Theorem 4.11 is part of a more general spectrum of results con-
cerning Poincaré type inequalities. All of which will be formulated after the Hodge de-
compositions have been established.

5. — Hodge decompositions.

Decompositions of a differential form into exact, coexact and harmonic components
play an essential role in the potential theory on Riemannian manifolds. In fact, our pa-
per systematically exploits these decompositions. For smooth forms, Hodge decomposi-
tions were motivated by the theory of deRham ecohomology. However, we will not devel-
op this point here. As a consequence of our study of nonlinear PDEs, it became clear
that Hodge decompositions for £P-forms are a major prerequisite. It is apparent, how-
ever, that the extremely rich literature on this subject, does not cover all required
details.

In this section, we formulate basic decompositions in Sobolev classes and outline
the proofs which are necessary for completeness of the arguments in the sequel.

5.1. A brief historical account. — It is the essence of linear Hodge theory that each
smooth form weC *(A'R) on a closed manifold R splits according to

®.1) w=da+d*B+h

where aeC* (A1 R), Be C* (AT R) and ke IC(N' R). The forms da, d* B and h are
unique and mutually orthogonal with respect to the inner product (,) on £2( A’ R). This
yields the following orthogonal direct sum decompostion

(5.2) C(N'R) =dC™ (AR BA*C* (AT IR) B I(N' R)

where dC *(A'"1R) and d*C * (A1 R) are the spaces of exact and coexact I-forms on
&, respectively.

Historically, this decomposition has been used to conclude that each deRham coho-
mology class of R is uniquely represented by a harmonic field. Indeed, d * 8 = 0 when w
is closed and consequently, decomposition (5.1) reduces to

wo=da+h
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Concerning a regular open region Mc R, we have three types of Hodge decomposi-
tion

C*M, N)=dCr (M, N-)@d*Cy M, N*1HSIHDM, N)
(5.3) C*(M, N)=dCr (M, N-H)@d*C= M, N1 @I (M, N)

C*(M, Ny =dC* (M, N-@d*Cy M, N1 ®HxyM, N\
We trust that all of the notation used above is self explanatory. The summands occuring
in the right hand side of these formulas are mutually orthogonal.

Applications of these decompositions pertain largely to the relative deRham coho-

mology of a manifold with boundary. This idea goes back at least as far as the work of
A. W. Tucker [Tuc4l] and G. F. D. Duff and D. C. Spencer [DS52].

Let us rephrase the decompositions (5.13) as follows. Given ¢ e C* (M, Ab), there
exists aeC* (M, N'71), BeC> M, N'*') and he ICM, A') such that

(54) p=da+d*f+h

where the boundary conditions for o, 8 and % are described by (5.3). Because of orthog-
onality, the terms da, d* 8 and % are uniquely determined. However, the forms a and 8
are not unique. Using the decompositions (5.3), but with a and 8 in place of w, it follows
that we can also require one of the following sets of conditions be satisfied

55  ar=0, By=0, aed*C*M, A" and fedC*(, A
(5.6) ar=0, hy=0, aed*C*M,N) and BedCy (M, N)
BT By=0, hy=0, aed*C¥M, A and fedC*(, N

Under any one of these sets of conditions, the forms a and 8 are uniquely determined.
We may now express each w e C*(A'M) uniquely as

(5.8) w=¢+y

where ¢ and y are subject to one of the following constraints
pedCP(A"'M) and d*y =0
pedC*(AN"1M) and d*y =0, yxy=0
dp=0 and wed*C¥ (NI M)
dp=0 and yed*C™(A"*'M), ¢r=0

Of course, the latter two constraints are Hodge star dual to the first two. We shall use
these examples as a guide to formulate boundary value problems for nonlinear
equations.

REMARK 5.1. — Forms o and f as in (5.5), (5.6) and (5.7) are orthogonal to their cor-
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responding spaces of harmowic fields. In particular, using Theorem 4.11, we 0b-
tain

(5.9) lall, , < C,Dlidall, and |Bl,,< C,AD]d*Bll,

Abstract boundary value problems for differential forms are discussed by P. E.
Conner [Con56]. In Subsect. 5.3, we will touch on a few aspects of Conner’s approach to
these problems. For more theory, we refer the reader to the work of M. Gaffney
(e.g. [Gaf54]).

The crucial step in generalizing decompositions (5.3) to Sobolev classes is due to J.
Eells and C. B. Morrey [Mor66] who proved the differentiability and £P-integrability of
L2-decompositions. Our formualtion of the Hodge decompositions rely on these results
of Morrey.

5.2. The spaces of exact and coexact forms. — In connection with the formulas of
(5.3), we introduce the following subspaces of £LP(A'M), 1<p<

dWH PN M) = {da: ae Wh (AT M)}
AWy PN~ M) = {da: ae WFP(N" M)}
Analogously defined are the spaces of coexact forms;
d* WLP(A M) = {d*a: ae WHP(NTIM)}
Ad* WYP(NTIM) = {d*a: ae WYP(NTI M)}

It is an immediate consequence of Corollaries 8.7 and 3.8 that the above spaces are
completions of the corresponding classes of smooth exact and coexact I-forms occuring
in (5.3). However, it is far from being evident that

COROLLARY 5.2. — For 1 <p < =, all four of these classes are complete subspaces of
LPNM).

PROOF. — Suppose dw;—>¢ in LP(A'M) for some w;e W-P(AN"TM) (Wy?
(A'"1 M), respectively), 7=1,2,.... Our goal is to show that ¢ =dw for some
we WHP(ANITM) (WEP(A'I M)). Using Corollary 3.2, we may certainly assume
that w,;e C= @, A1) (CF (M, N'™1), respectively). We need to modify the forms w;
so that the sequence {w;} will stay bounded in the Sobolev norm. For this, we decom-
pose each w; according to (5.4)

We then replace w ; by coexact forms w}=d*f;=w; — da; — h;. Clearly, d* w; = 0 and
dw}=dw;— ¢ in LP(Al M). In case of no boundary constraints for w ;, we only require

that 8;eCy (M, A'). This guarantees that w}e Cy M, A'~1) N IR (A" M) and so
by Theorem 4.11 we obtain the estimate

lwjll,, < Cy(Dldw;ll,<C
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In case w;e Cf M, N'™1), we take a e CF (M, A'~2) and h; e ICr(AN'~! M) which im-
plies that @} e CF (M, A'"1) N ICF (A1 M) so again the estimate above holds.

We are now in position to define w e WU P(A'" M) (W P(A'"! M)) as the weak
limit of a subsequence of {w}} in W P(A!"! M). Thus dw = ¢, as desired. The coexact
cases are handled analogously. =

As a consequence of the Hodge decompositions, we obtain

COROLLARY 53. — For 1 <p < o, we have
dWHP(NTIM) =d WP (AT M)
dWyP(NTM) =dWEP(NTI M)
d*WhP(NTIM) = d* Wi PN M)
d* WhP(NFIM) = d*W§ PN M)

The proof is similar to that of Corollary 5.2.
To shorten notation, we write w eimdy; or w eimdy if, for some 1 < p < o, w be-
longs to d Wk ? or d*W4P, respectively. In view of Remark 3.5, we see that

dWhPc {wed WP wp=0} = (dW-P),

Equality in this inclusion does not occur in general and the quotient space
(dWhP)p /d Wi P becomes an interesting cohomological object in its own right (e.g.
Consider an annulus in the plane. Then a smooth radial function can represent a nonze-
ro element of this space). Of course, the Hodge star dual spaces (d* " ?)y /d* Wy ?
are not necessarily trivial either.

The Hodge decompositions (5.3) may now be formulated precisely for the
£P-space.

THEOREM 5.7. — For 1 <p< , we have the following direct sum decomposi-
tions

(5.10) LPNM) =d Wy P(AIM)Dd* WHP(A L M) ICP (AN M)
(6.11) LPNM) =d W PN TM)SA* W-P(AN T M)D (A M)
(5.12) LP(N M) =d WV PN IMY D d* WY PN M) @ Iy (N M)

Moreover, if a differential form o e LP(N M) is written w =da + d*f + h in accor-
dance with one of the above three decompositions, then

(519 Idall, +ll2* g, + Il < @ llwl,

We restrain ourselves to only a few comments about the proof of this theorem. The
L2-decompositions are rather special and follow by variational principles. The case
p = 2 was thoroughly examined by C. B. Morrey. We then notice that the uniform esti-
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mate (5.13) follows from the closed graph theorem. Further, Morrey’s results can be
extended to 1 < p <2 by duality arguments as demonstrated in [Sco95].

Associated with the Hodge decompositions are the following orthogonal projections
onto respective subspaces:

Harmonic Projections

H, Hp, Hy:L)NM)—=>ICENM), HFENM), HLG(NM)

Exact Projections

E, EpL2NM)—>dWH AN M), dWri(N'M)

Coexact Projections

E*, Eﬁ:£2(/\IM)—>d*W1’2(/\l+1M), d*wll\}2(Al+1M)

ProprosITION 5.5. — The harmonic, exact and coexact projections extend to bounded
linear operators of LP(N' M), 1 < p<w onto the corresponding spaces with Sobolev
exponent p in place of 2.

Although it is certainly possible to present verification of this result via the
Calderén-Zygmund theory, we simply observe that this fact is equivalent with Theo-
rem 5.4, with C,(M) serving as an upper bound for the norms of these operators. Let us
denote by I: £”( A M) — £P( Al M) the identity operator, 1 < p < . Theorem 5.4 can
be rephrased as

I=E,+Ef+H
(5.14) I=E;+E*+Hy
I=E+E}+Hy

Repeated application of Theorem 5.4 enables us to write
COROLLARY 5.6. — Each w e LP(AN'M), 1 <p < =, decomposes according to
w=doa+d*f+h
with one of the following sets of boundary conditions

ae WEP(N-IM)Nd*WHP(A M)
(5.15) B e WHP(AFIM) N-dWH (AL M)
he 3PN M)
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(ae WEP(NIM)Nd*WhP(ALM)
(5.16) 1Be WHPAT I M) Nd Wy PN M)
|k e ICH(N M)

(0 WL PN M) N dE 9PN M)
(5.17) {Be WHP(INT M) NdWHP(AL M)
b e dR (N M)

Under these conditions, the forms a and S are uniquely determined and satisfy

(5.18) lells,p + 11811, 5 < CoMD |l

ProoF. — We need only establish inequality (5.18). For this, we observe that both a
and B are orthogonal to corresponding spaces of harmonic fields. In particular, Theo-
rem 4.11 applies to a and B giving ||a|, , < Clldal, and [|8l, , < Clld* Bll,. This, com-
bined with (5.13) gives (5.18). =

5.3. Green’s operators. — Hodge decompositions are closely linked with the study of
the Laplace-Beltrami operator (Laplacian)

(5.19) A=dd*+d*d: C=(M, \)—>C*(M, N\)
It is not difficult to see that the second order Sobolev spaces, as introduced in Sub-
sect. 3.5, are the domains of the following closures of the Laplacian
Ag=dfd +dpd*: LLP(N M) — LP(A'M)
(5.20) Ap=d*dp+dpd*: L3P(A' M) — LP(N M)
Ay=did+ddf: L2°(NM)— LP(N M)

These operators, in view of Corollary 5.6, give rise to three types of Green’s operators
defined on LP(A'M);

5.21) G: LP(N'M)— L5P(N'M)
' I=4,G+H

522) Gr: LP(N M) — L5 P (N M)
o I=A4,;Gp+Hjy

5.23) Gy: LP(N M) — L5P(N M)

These are the strongest possible forms of the Hodge decompositions. The projections
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are simply expressed by means of Green’s operators as

E;=dpd*G, Ef=dfdG
(5.24) {T T N N

E=ddfGy E*=d*d;Gp

However, for the purposes of this paper, Green’s operators will play no essential role.
Consequently, we do not take the space here to prove them. The boundedness of the ex-
act and coexact projections into £P(A! M) will suffice. Finally, we would like to com-
ment that in the case p = 2, the Laplace operators 4, 4 7 and A4 y are positive and self-
adjoint. This is of fundamental importance in developing an abstract £2-potential the-
ory on manifolds with boundary; see [Con56].

5.4. Duals and orthogonal complements. — In the sections to follow, we will ad-
dress the classical questions of existence, uniqueness and regularity of solutions to a
wide class of nonlinear PDEs on manifolds. To deal with the nonlinear character of
these equations, we will apply Browder’s theory of monotene operators to the existence
question. This being the case, we need to select a critical list of spaces of I-forms de-
fined in the previous sections and carefully identify their corresponding duals. Fur-
ther, in deriving the Euler-Lagrange equations for the £”-projections, we will need the
orthogonal complements of these spaces as well. In this regard, we give the following
Theorem.

THEOREM 5.7. — Drawing on the notation developed in the previous sections, we
have

Space Dual space Identification Orthogonal complement
a9 r adhe ddf Gy LiNkerd

d*whr a*wh e d*drGr L9Nkerdr

dWy? A drd*G LiNkerd*

d*Wwh? AR ag dG L9Nkerd

LPNkerd L9Nkerd dd*Gy + Hy d* Wk

LPNkerd* LINkerd* d*dGp+ Hp d Wk

LP Nkerdp L9Nkerdy dd*G+H d*wha

£P Nkerd L9N kerds d*dG+H awhe

Before proceeding to the proof of this theorem, perhaps a few comments about
how to read the table are in order. The first two entries, d W' ” and d W 9, indicate
that under the familiar Riesz integral representation of £P-duals, d W' ? is dual to
d WP, More accurately, given w e d W' 9, the representation (w, a) = Mf (w, o) for all

aed WP, is a Banach space isomorphism between d W! ? as a subspace of £7 and the
dual to d W' ? when d W' ? is considered as a subspace of £7. The operator T = ddj Gy
is defined on all £27 with image equal to d W' ¢, Thus, if R: .6?— £ denotes the usual
Riesz identification, then TR is a natural way to uniquely identify an element of d W' ?
with an element in its dual. The space £9N kerdy is the subspace consisting of all
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a € £7 which are orthogonal to d W' ? in the sense that 0 = (w, a) = [{w, a) for every
g

w e d WP, Of course, this discussion applies analogously to the other rows of the table
above.

PROOF OF THEOREM 5.7. — Since verification of each row follows similar reasoning via
different 2P-Hodge decompositions, we deal only with the first row. Let

@: dWHP(NTIM)->R

be an element from the dual of d W' ?(A'~! M). Since @ is bounded linear on d W' ? as
a subspace of £7, we may apply the Hahn-Banach Theorem to extend & continuously to
all of LP(A'M). In this setting, there is we £LY(A! M) representing & according to

P(a) = (w, a)
for all a e £LP(A' M). Decomposing w according to (5.23) gives
w =4 yGy(w)+ Hy(w) = dd Gy(w) + df dGy(w) + Hy(w)
Integration by parts then reveals
D(a) = (ddff G (w), @)

for all aed W P(A"1 M). Of course, dds Gy(w) e dW" 9 as desired.

To see that such a representation is unique, suppose that 7edW"? satisfies
(n, @) =0 for all a e dW"P(A ! M). We will argue that 7 = 0. Let 7 be an arbitrary I-
form of class £7. Decompose 7 according to (5.17) and apply integration by parts to get
(n, t) = 0. This is enough to conclude that » = 0.

Notice that in the course of proving that d W' ?is dual to d W' ?, we have observed
that dW" 9= dd Gy L.

Next, let’s uncover the orthogonal complement of d W' ?. For this, suppose w e
ed W ? and ¢ € £L9N ker df . Thus w = df and according to Definition 3.9, there is a se-
quence {¢;}cCy” with ¢ ,—¢ and d*¢,—d*¢ =0 in L. We can now estimate
(w, ¢) with

(@, )| < |(w,p—0p)|+|(w, 9r)|=(w,p—0r) |+ (B, d*p)|
<lol,lp —oully +1Bl:ld* P ill,—0 as k— =

The equality here follows from the compact support of the smooth forms ¢, and inte-
gration by parts. Thus w belongs to the orthogonal complement of £7 N kerds. For the
reverse inclusion, let ¢ e £7 be orthogonal to all of d W' ?. Decomposition (5.12) says
that ¢ may be expressed as

p=d*B+h, Py=hy=0

Since ¢ y=d*By+ hy =0, we have ¢ € WP with d* ¢ = 0. According to the com-
ments following Definition 8.9, we may conclude that ¢ ekerdf. =
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6. — Poincaré inequalities for partly Sobolev classes.

Having disposed of Gaffney’s Inequality and the Hodge decompositions, we can now
establish new estimates and relations between the Sobolev spaces.

6.1. Intersections of partly Sobolev clusses. — For 1 <p < «, we introduce the
space LVP(ALM) = WHP(ALM) N W P(A' M) and equip it with the norm

6.1) leollerran = lllp, 0+ ldewllp, e + |ld* wll,, 20

Before continuing, we give a characterization of the subspaces of £ ?( A! M) with van-
ishing tangential and normal parts.

THEOREM 6.1. — For each 1 <p < =, we have

6.2) LVPAN'R) =WEP(N'R)
(6.3) LHPN M) € WhP(N' M)
(6.4) Wi PN M) = WhP(AM) N WG PN M)
(6.5) W PN M) = WhP(N MY N W PN M)
(6.6) WhPA'M) = WHP(A M) N W PN M)

PROOF. - We begin by proving (6.2). Let @ be an arbitrary element of £1'P(A'R). As
usual, using a partition of unity, we may assume that w is supported in a coordinate
neighborhood, say (U, x: U—R"). Let w* denote the pullback of w via the map
k"1 R"— U. Obviously, o * belongs to £2P(A!' R") and has compact support. Moreover,
the hypothesis that dw and d*w are L£P-integrable on R can be stated equivalently as

Pote LL(A''R") and Quw*e LP(AIIRY)

where Pz, D): [(A'R*) > T{A'*'R"™) and x, D): (A'R") = I(A'"1R") are first
order differential operators on R" with Cy”-coefficients. We then apply Friedrichs
theory on the equivalence of weak and strong extensions of a first order differential
operator [Fri44] (see also [Hor41]). Accordingly, there exists a sequence of forms, say
wfeCy(A'R™) such that 0f —>w#, Puf— Po* and Qu?— Qw* in £7.

Pulling back the w¥’s to the reference manifold via the map x: U—R", we obtain
a sequence, denoted w;e Cy*(A'U), such that w;—w in LP(A'R), dw;—dw in £°
(A" R) and d* w;—~d* w in LP(A'~1QR). Finally, with the aid of Gaffney’s Inequality,
we conclude that {w;} actually converges to w in the norm of W"P(A'R), prov-
ing (6.2).

Now, (6.4) is straightforward because the zero extension of a form from WP
(A'M) N WL P(A M) belongs to WEP(ALR) N W2 P(ALR).

Similar reasoning applies to the inclusion (6.3). For this, we simply notice that yw
WEP(ALR) N W P(ALR) whenever y e Cp® (M) and we £YP(A'M).

Unfortunately, Friedrichs theory does not apply to (6.5) and (6.6). The trouble is
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that the boundary constraints make the problem of approximation by smooth forms
more delicate. From what has already been proven, it follows that each we W%?
(A'M) N W4 P( A M) has generalized first order derivatives which are locally £P-in-
tegrable on M. The task is now to prove the LP-integrability of these derivatives near
an arbitrary boundary point, say be oM.

Let (U, k= (%4, ..., %,): U—R") be a coordinate neighborhood at b so that the
vectors J/0x, are orthogonal to M at each point of U N M. In addition, we require
that {9/dx,, ..., 9/3x,} form an orthonormal basis for T, R. Using this coordinate sys-
tem in U, we write

6.7 - w= 21‘, w! dx;

where the w! are functions on U N M of class WP (U N M). We notice that the [-forms
day = da; N ... \ dw;, give an orthonormal basis for AT, R) but they are not necessari-
ly orthogonal at other points. Next, we consider the partials dw/9x; e LE(UNM, AY)
defined by

6.8 — =2 —dx;, i=1,..,n
(6.8) 5%, o,
and recall the formulas
a I
do =3 22 du, Ada
i, 1 ax,

(6.9)
I
d(*w) = 2‘; 982)— da; \ *dx1+2w’d(*dx1)
, i

We look at (6.9) as a linear system of equations with 3w’/dx, as unknowns. At the poin

b, this system takes the form ‘
aa)l n-1 awl
nel Ok, i=1 I ox;
(6.10)
dw?! Sl o Gw! !
d(xw)= 2 di, N\ * dx; + 21: dx; N\ *da; + > ol d( * de;)
nel 0OX, i=1 X;

This purely algebraic calculation does not involve any assumptions about the regularity
of 8w!/3x;. It shows, in particular, that at b the variables dw’/dx, depend linearly on w,
dw, d*w and dw/dx; with i=1,2, ...,n—1.

By the implicit function theorem, the system (6.9) is solvable for dw/dx, near the
point b. More precisely

a
aw =5a), .a_w,__,, it ,da), d*w
ox, ox; 0%y _ 1

where & is a linear form in the indicated variables whose coefficients depend only on
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the coordinate system k= (xy, ..., x,) and are C *-smooth. This gives us a pointwise
estimate
3 2
6.11) ' Y l<ofjof+| 2|+ 4|22 l+|dcu[+(d*w|
n axl axn—l

Thus, the p-norm of dw/3zx, (near the point b) is controlled by the p-norms of w, dw,
d*w and dw/dx; with i=1,2, ..., n — 1. We are, therefore, reduced to showing that
Ow/dx;e LP(N'V) for i=1,2,...,n—1, where VcUNM is a regular open region
whose boundary coincides with M near the point 4. Poincarés lemma guarantees that
having chosen V small and regular enough, we may assume that 3C;(A' V) =0. A final
convenient assumption we are allowed to make is that w vanishes outside a small neigh-
borhood of the point b € M. For, if necessary, we replace w by yw, where y is a suitable
C *-function on R equal to 1 in a neighborhood of 5.

Since w was assumed to have vanishing tangential part on M, we obtain @ , =0 on
dV. We also have

(6.12) (w,dn) =(d*w, n)

for all ne C*(V, A'~1) with #7=0 on M. Compare this with formula (2.34).
We shall have established the £?-integrability of dw/dx; if we prove that

dw
(6.13) (8w~ : ¢) <Clollewsanlolly,, »+g=pq

for every test form ¢ e C;" (A'V) and i =1, 2, ..., n — 1, where C depends only on the
coordinate system k= (x;, ..., x,): U—R" and the region V. Integration by parts
reveals

Jw _ i])_
(6.14) (a—xi,¢)— (w, axi)J’J‘%(‘“"”)

where B is a bilinear form with C * (V)-coefficients. In particular, we only need to show
that

3
(6.15) (w, a—"’)sdlwlloel'p(M) Il
i
fori=1,2, ..., n—1. With all of this in mind, we proceed as follows. First, we split ¢
on V according to Hodge decompositions (5.6) and (5.9).
(6.16) ¢=da+d*B+h, ap=hpr=0

where aed*C >V, A, BedCf (V, A, and ke ICp(A'V). The latter implies & = 0.
By Corollary 5.6, we have

(6.17) leds, o + 1811, e < Colloll,
It is erucial to observe that the partials da/9x; have vanishing tangential part on M for
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all i=1, ...,n—~1. To see this, we write
(6.18) o= EI al da; + 2 al da;
ne¢

Since 8/0x,, was orthogonal to the vectors 8/3xy, ..., 3/0x, _, the condition a y = 0 is the
same as a’ =0 on M whenever n ¢ I. The latter is obviously preserved under the par-
tial differentiations 8/3x,, ..., 8/0x,_,. Thus the tangential part of da/dx; vanishes on
oM as well.

We write
(6.19) a—¢—d %+ —d d—— id*—d"‘i B
ox; axi ox; ox; 8901 ox; ox;

where the commutators in parentheses are first order differential operators with C *-
coefficients in U. In particular

D a-al ol 4| Zar—arZ)p
8901 8aci awi axi

Since w =0 on JV, we have

(6.20) <C(lally, o + 1811, )

g q

3B 3B
(6.21) (w, d* 5) = (dw, - ) <||do|l,[18l;,
Similarly,

da. da
622 (007 22 ) (a0, 22 ) <ot

because (3a/3x;)r=0 on M. Finally, combining (6.19), (6.20), (6.21) and (6.22)
yields

L

d
(w, -})sc<||w||,,+udw||,,+||d*w||p><na||1,q+uﬁul,q>scuwnﬁl,mlwnq

which completes the proof of (6.5). The dual identity (6.6) holds as well. =
We can now strengthen formulas (3.19) and (3.20) with

LEMMA 6.2. - If we £P(A' M), 1 <p < =, is both closed and coclosed, then w is in
Hr(A' M) or (N M) if and only if @ 7=0 or oy =0 respectively.

6.2. Poincaré inequalities. — For the purpose of studying Sobolev spaces of differ-
ential forms in greater detail, estimates of Poincaré type are often useful. The following
result can be regarded as a refinement of Theorem 4.11.

THEOREM 6.3. — Given we L¥P(AM), 1 <p < x, there exists a harmonic field
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he 3P(A' M) such that w —he WHP(A'M) and
(6.33) lw = &l < Co(MD(ldwll, + |ld* oll,)

Moreover, if wr=0 or wny=0, then hy=0 or hy =0 respectively.

THEOREM 6.4. — Given we WHP(A'M), 1 <p< o, (we W P(A' M), respect-
ively) there exists a closed (coclosed) form wqe LP(A'M) such that o —wqe WP
(N'M) and

(6.24) lo —woll,, < CoM|dwll, (C,M)|d*w],)
Moreover, if w =0 (wy=0, respectively), then (wqo)r=0 ((wo)y=0).

The proofs of these theorems are based on the Hodge decompositions for Sobolev
spaces and Theorem 6.1.

ProoF oF THEOREM 6.3. - We split w € £ ?(A' M) into parts w =da +d*B + h ac-
cording to decomposition (5.10). Note that both da and d* 8 are members of the class
LLP(ALM) because d*(da)=d*we LP(N"'M) and d(d*B) =dwe LP(N*M).
Moreover, (da)y = 0 and (d* 8)y = 0 (see Remark 3.5). By Theorem 6.1, these forms ac-
tually belong to W' ?(A’M). They are also orthogonal to all harmonic fields of class
I (AL M) as is easily confirmed. Theorem 4.11 yields inequality (6.23) as follows

©25) o= hlly,p <lldally, , +ld*Bll,, ,
< C,(M)(|d*dall, +[|dd*Bl,) = C,M) (|doll, + |d* wll,)

Moreover, if w ;= 0, then we split w according to decomposition (5.11). In this case, we
obtain z € IC (N M), da e Wy P(A' M) and d* e Wk P(A' M). Although da is orthog-
onal to all 3C*(A! M), the form d * 8 is only orthogonal to IC-( Al M), which is still suffi-
cient to apply Theorem 4.11. It follows that (6.23) holds in this case as well. The case of
o =0 is handled similarly by using decomposition (5.12). =

PROOF OF THEOREM 6.4. — For w e W*P(A'M), 1 <p < », and using the same de-
compositions as in the previous proof, we define the closed form w,=da + %. We then
notice that w —wo=d*Be W' P(A' M) and the required estimate follows as before.
The details are left to the reader. =

REMARK 6.5. — OQur proof shows that o — w, belongs to
WHPNM) N d* WHPATIM),  if we WHP(AIM)

WEPINMYNA*WEP(NTIM),  if e WEP(ANIM)
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7. — Some nonlinear problems.

This section is intended to motivate our future investigation of a particular class of
nonlinear PDEs for differential forms on Riemannian manifolds (Hodge systems). The
first subsection touches on a few nonlinear aspects of the Hodge decomposition and is
closely linked with Poincaré type estimates.

7.1. £P-Projections. — Throughout this subsection, ¥ = VP ( A! M) stands for one of
the following subspaces of LP(A'M), 1<p<

dWHVP(AITIM)  or dWHP(AITIM) (Exact forms)
d*WLVP(AITI M) or d*WHP(AITIM)  (Coexact forms)
LPINM)Nkerd or LP(NM)Nkerdy (Closed forms)
LPNM)Nkerd* or LP(N'M)Nkerdf (Closed forms)

Note that all of these spaces are complete. In order to obtain a precise approximation of
a given form w € £2(A! M) by an element from VP (A! M), it is natural to examine the
nonlinear projection

(7.1) O=1,: LP(N'M)— (N M)

which carries w € 2P(A! M) to the nearest element of © as measured by the £P-metric.
This image is called the £P-projection of w into V. The existence and uniqueness of
such a projection is easily established by convexity arguments. The element ITw just
defined solves the minimization problem

12) ||w—nwng=minj|w—n|p
M
subject to all test forms 7 € VP (Al M). In this way, we obtain what is known as the inte-
gral form of the Euler-Lagrange equation
(13) j(n, |o — Hw|?~2(w - Hw)) =0
M

for all n e V(A M). Given &, an element of a normed linear space, we will make fre-
quent use of its s power, s =0,

(7.4) £ =|E]"7 g, 0°=0

Clearly, (w — Hw)”~* belongs to the dual space £I(A'M), p + q = pg. Moreover,
equation (7.3) says that this form is orthogonal to ¥ = Y?(A! M). Because of its geo-
metric meaning, the £P-projection is obviously a bounded operator. Namely,

(1.5) lo-I,0|,<llo|, Hence, |H,0],<2|w],

For nonlinear operators such as I7,, p # 2, this estimate does not necessarily imply
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continuity. However, with the aid of the Euler-Lagrange equation, we can prove conti-
nuity of /1, and give a uniform estimate for the modulus of continuity of I7.

PROPOSITION 7.1. — For each 1 <p < », there exists a constant C, such that
(7.6) 117 — 118l < C, (el + 1811, ) = *lle — B3
for all a, Be LP(N M), where t=1/(1+|p—2]).

ProOF. — Set £=a —Ila and =8 —IIB. The Euler-Lagrange equation reads
(EP~1—¢P~1 pn)y=0, for all ne V. Applying this to 5 = 718 — IIa, yields

(P - L E- =" - L a-p)
Hence, by Holder’s inequality
@7 &=L - <[lEP Tt = 8P | lla - Bll,

The following two inequalities, which hold in an arbitrary inner product space, will be
useful both here and in the future.

(7.8 (&l +]EP 2 o —EIP< AP -EP71, 5= 08)
(7.9) [EP7 1= EP 7 [ < B+ |E]P 2 |2 = g

whre A = A(p) and B = B(p). For notational convenience, we introduce the exponent
a = (1/2) min(p, q) <1. Combining (7.7), (7.8), (7.9) and Hoélder’s inequality gives

[er+ienr2 g - g2<aler= - g olla-Bl,
M
sAB[ [(|§|+ICI)“”‘Z“IE—CIZ“(IEHICI)”"’“]Uqlla—ﬂllp
M

SAB( I<|s|+|z;|>P-2|s—CI2)""’( I<|§|+|:|>p)“‘“”"lla—ﬂllp
M M

Hence,

@10)  [(1&]+ 181?72 |- ¢ |2 < AB]la— Bll, )7 gl + gll, )P ra-o
M
On the other hand, using Hélder’s inequality again, we see that

(7.1D) ||§—C|lp<[f(|§|+ICI)“’“‘Z“IE—CIZ“(MHlél)p“””]l/p
M

< (‘J(lgl + ICl)p—Z |§_ Clz)WP(MI(Igl + |C|)p)(l—a)/p
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which combined with (7.10) yields
1€ - &ll, < (AaBlla - Bll, )=/~ (&l + g, )e - /e

where (aq —a) {(q —a) =t, as is easily verified. For the final conclusion, we observe
|70 — 1181l < |& = &I, + @ = Bll,.- By (7.5), we also have [|&[l, + [|¢]l, < [|all, + [|81], To-
gether, these give the desired estimate

|Ta — 1B, < [1 + (ABY1(lall, + |Bll,)' ~*lla—Bl; =

As we have seen, the orthogonal projections extend continuously from £2(A! M) to
LY(N'M) for 1 <s< . It is of interest to know whether or not one can extend the
nonlinear operators IT,: £P(A' M) — VP(A' M) to £(A' M) for s different from the
natural exponent p. One of our primary results in this direction is

THEOREM 7.2. — For 1 <p <s< «, there exists C,=C,(p, M) such that
(7.12) 17,0, < Cllol,
for all we £5(N\ M).

We shall prove this theorem only for s sufficiently close to p, see Remark 9.6.
Analysis similar to that in [Twa83] shows that estimate (7.12) holds for all s = p. Critical
to this proof is the C®-regularity theorem of K. Uhlenbeck [Uh77] (see also [Ham92])
and the LP-theory of the sharp maximal operator as developed by C. Fefferman and E.
Stein [FS72]. It would exceed the scope of this paper to discuss all of these advances
here (see [Str 99]). It is worth mentioning, however, that (7.12) is also valid for s slight-
ly smaller than the natural exponent p. We put off discussing these estimates below the
natural exponent until Subsect. 9.3, where such estimates will be treated in greater
generality; see Theorem 9.5 and Remark 9.6. Precisely how small the exponent s can be
is not known. However, there are enough arguments to safely conjecture that the oper-
ator I1,: L7(N' M) — OP(A'M) extends as a bounded operator IT,: £L5(N'M)—
— V¥ /\l M) foralls > max{1,p—1 } It is also of interest to know Whether I1,is a con-
tinuous operator in £5( A’ M), as it is for the natural exponent s=

We now examine the Euler-Lagrange equation (7.3). For this, recall the orthogonal
complements of VP( A\' M) as listed in Theorem 5.7. Our goal is to show that all eight
cases for the space V(! M) reduce equivalently to the same type of first order differ-
ential equation. Namely,

(7.13) v =%(p)
for ped W' P(A'" M) and v e LYYNA M) Nkerd*, where
(7.14) A: NM->NM

is a given bundle map. Thus, % also acts on sections I'( A! M) with values in I(A! M).
Concerning boundary conditions, we will have either

(7.15) ¢eimdy (the Dirichlet boundary condition)
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or
(7.16) wekerdf (the Neumann boundary condition)

Let us illustrate the situation in case of the projection I7: LP(A'M)—d WP
(A1 M). Thus VP = LI(A' M) Nkerds and the Euler-Lagrange equation reads

(1.17) (=Y =y
or equivalently
(7.18) w=¢+yi?

where ¢ = ITo e d W' P(A' "1 M) and y € LYN' M) Nkerd;t. If one projects w to © =
d Wy PN M), then VP = LI( AL M) Nkerd *, so the equation remains the same but
the new boundary condition is ¢ eimdy, while ¢ e kerd*.

Other cases lead to equations similar to (7.18), in which [ may possibly be replaced
by n — [ and the exponent p by its Holder conjugate ¢. It is worth noting that equation
(7.18) gives exactly the £2-Hodge decomposition when p = ¢ = 2. See formula (5.8) and
the boundary constraints which follow it.

7.2. Quasiregular mappings on Riemannian manifolds. — Let M and N be arbit-
rary C“-smooth oriented Riemannian manifolds of dimension n. We shall consider
mappings f: M—N of Sobolev class Wi (M, N),1<s< ». The differential
Df(x): T,M—T,N, y = f(x), is defined at almost every point x € M. We assume that
the Jacobian determinant J(x, f) = det Df(x) is non-negative (f preserves orienta-
tion).

DEFINITION 7.3. — An orientation preserving mapping fe WkS(M, N) is said to
have finite dilatation if

(7.19) |rglla;x1 | Df(x) &| = RK(w) Iré‘rlﬁ=nl |Df(x) E| ae. xeM

where 1 < X(x) < « is called the scalar dilatation at x. If X e L= (M), we introduce
the maximal dilatation K= |%(x)|. and call such f K-quasiregular. Finally, o
homeomorphism of class Wi (M, N) which is K-quasiregular is called K-quasicon-
Sformal.

Of course, in formula (7.19), the norm of the tangent vectors £ is the one given
by the inner product on T, M while the norm of Df(x)§ is from T, N, where
y=f(=).

The theory of quasiregular mappings successfully extends both geometric and ana-
Iytic aspects of holomorphic functions of one complex variable. In the plane, these as-
pects are well understood due to the work of L. Ahlfors, A. Beurling, B. Bojarski, I. N.
Vekua and many others. See for instance, [AB50], [Ahl66], [Boj55], and [Vek62]. Large-
ly as a consequence of these studies, the theory has been greatly expanded to higher
dimensions whose fundamental principles were set in the pioneering work of F. W.
Gehring, J. Viisild, Y. Reshetniak, O. Martio and S. Rickman. See [Geh62], [Res69]
and [MRV69, MRV70, MRVT71]. For a thorough treatment of analytic properties of
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quasiregular mappings, we refer the reader to [Res89], [BI83] and [Ric93]. A Quasicon-
formal mapping f: M — N is, in fact, conformal with respect to a new metric on M,
called the dilatation tensor of f. In general, this tensor is only measurable but still uni-
formly elliptic with respect to the original metric on M. Continuing the analogy with
the complex case, we shall sketch how the conceptual foundations of quasiregular map-
pings lead to the governing PDEs. In many respects, these equations generalize the fa-
miliar Cauchy-Riemann system. We shall discuss here just a few of these equations.
See [IM93] and [Iwa92] for the Euclidean case.

Let us begin with a linear mapping .£: E— F between inner product spaces. It fol-
lows from Definition 7.8 that £ is K-quasiconformal in case det £ > 0 and the following
dilatation condition holds

(7.20) | LE|F<K|LE|r

for all unit vectors &, {eE. We then define a symmetric positive definite mapping
G: E—E

(1.21) LLL = (det £)*"G
Observe that detG =1 and

(7.22) K2|E|3<(GE, Ep<K®?|E|%

Indeed, if 0 <13 <... <12 denote the eigenvalues of G, then inequality (7.20) means
that

A% = max (GE, &)z < K*min(G¢, {)p = K22}

Since A,45...4,=1, we obtain A?<K"A7<K"i,..A,=K" and ATZK™A}
2K "*A,...A1=K ™" which is really just (7.22).

Of course, G defines a new inner product on the space E so that the mapping
£: E—F becomes conformal with respect to this new metric. Note that G is simply a
scalar multiple of the pullback via £ of the metric on F.

It will be convenient to introduce the symmetric square root of G

(7.23) L=\G:E—E, LoL=G, detL=1
The eigenvalues of L are 0 <1, <...<4, and inequality (7.22) reads

(7.24) ME|lps|LElp<K|E|E

for all e K.

We now recall the I-th exterior powers Gy: NE— ANE and Ly: NE—>NE
where we observe Ly o Ly = G4. The eigenvalues of L, are the products 4; ... 4; i corre-
sponding to all ordered l-tuples 1 <4, <... <4 <n. For unit l-covectors £ N\'E, we
then obtain

(G4, Eyup=|Ls&|p= A}, . AT K7Y
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and

1

usl
A3.. A%

(Go&, E)ng = IL#§|2/\lES}~%»---/1i—l+1=

Hence

K2 |E5up s (G&, Enps K2 |E|%ux

or equivalently,

K el wp<|Le&lnp <K' |E| v

for all £e N'E.

We now return to the general K-quasiregular mapping f: M — N. Its differential
Df(®): T, M— Tp, N is defined at almost every point x € M/ and is a linear K-quasicon-
formal transformation. The first differential equation of particular relevance is the so-
called Beltrami system

(7.25) D'f(x) Df(x) = J(x, fP"G(x), wxeM

where D'f stands for the transpose of Df. As we have previously remarked, the bundle
map G: TM — TM is symmetric with determinant equal to 1 and, more importantly, is
uniformly elliptic

(7.26) K2 |E|?<(GE, ) <K?|E|?

for all vector fields £ e I(TM). G is a measurable section of the endomorphism bundle
End (TH). The essence of our approach is to regard G as a new metric tensor on M,
conformally equivalent to the pullback via f of the metric on N. For this reason, we call
G the dilatation tensor. It is a tautology that f is conformal with respect to this
metric.

Not much is known about Riemannian measurable structures in dimensions greater
than 2. No doubt this is due to the difficulty in defining the curvature tensor of G. On
the other hand, intrinsic topological properties of quasiregular mappings can be ob-
served only in the presence of measurable dilatation. It is fortunate that certain results
of smooth conformal geometry can be carried over to measurable Riemannian struc-
tures without the necessity of differentiating the metric tensor.

Fix an arbitrary harmonic field on N, say

(1.27) EeH(NN), dE=d*E=0

It should be noted that on some manifolds, harmonic fields must necessarily vanish at
some points. However, because of the local nature of the equations in question, we may
confine ourselves (if necessary) to a small region of N so that we may always
assume

(7.28) 0<inf|§|<sup|é|<w

This assumption is essential for ellipticity of the forthcoming equations. See (7.42) and
(7.43). The unknowns of our equations will be the pullbacks of & via the mapping
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f: M— N. Namely,
(1.29) =& elNM) and p=F(E)el(NM)

From here on, we assume that the Sobolev exponent for f satisfies s = max{l,
n—1}. This makes it legitimate to apply exterior differentiation. Accordingly,
do =f*(d&) =0 and d*y =f,(d*&) =0. We then observe that

Ap 12 Aq l
750) {qs cLENM) {w e LIL(N M)
dp=0 d*y=0

where p=n/l, g=n/(n—1) and 2 =s/n. It has been recognized in quasiconformal
analysis that the most natural Sobolev exponent s in which to consider quasiregular
mappings is the dimension of the manifolds. In which case, we have 1 =1.

Our immediate goal is to show that the forms ¢ and y are coupled by equations
similar to (7.13). Before stating these equations, we need to recall the linear map
£: E—F, its I-th exterior power £,: AlF— A'E and the Hodge star operator
*: NE—>N""'E,

LEMMA 74. - For a given l-covector Ee N'F, define ¢ = L*(E) e N'E and v =
L4(E) e NE. Then,

(7.31) Y=|E|2" UG, 9)P P2Grop, p=

or equivalently

"
n—1

(7.32) ¢ =|E|2" UGy, P)I~PEG*y, g=

REMARK 7.5. — Using L =\/G, formulas (7.31) and (7.32) can be given the more
symmetric form

Lyp ' [L*yp Y
(7.33) =
- (%)

Proor. — First notice that equation (7.81) is invariant under multiplication of both
Ee N'F and 2 € Hom (E, F) by a scalar. Therefore, there is no loss of generality in as-
suming that [£[=1 and det £=1. Applying formulas from Subsect. 2.1, we obtain

(7.34) G=L'L, Gp==Lu(L,) and G*=L*(L*)

Hence, again following Subsect. 2.1, G4 ¢ = L4 (L) L*E = £, & =1y, which is equiva-
lent to G*y = ¢. Next, we compute (G4 ¢, ¢) =(G*¥y, v) = (9, ¥) = (L4&, L7 &) =
((L*YLLE, E) = (&, E)det £ =1. These identities imply (7.31) and (7.32) at
once. ®
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We remark that in the conformal case we have G, = id and therefore our formulas
are concisely expressed as

(7.35) * £F = (det LY -2 e# . Al N\ LE

In particular, in even dimensions, say n = 2[, the Hodge star commutes with the pull-
backs on [-forms

(7.36) *Ly=Lyu* and = L*¥= L%«

This commutation law substantially simplifies equations for conformal mappings in
even dimensions; see [DS89] for [ =2 and [IM93] for arbitrary I.

PROPOSITION 7.6. — The differential forms ¢ and ¢ defined in (7.29) are coupled by
the nonlinear equation

(7.37) p=Uy(p), dp=d*yp=0
where U ,: N'M— N'M is a bundle map defined by

(7.38) A (9) =|E|2"7(p, G )P P%Gyp, p=

In this equation, we understand that the norm |&| is evaluated at y = f(x), making
|| a positive function on M.

For the conformal case, G is the identity, so equation (7.37) takes the form

(7.39) ¢=|§|2—p¢p—1

Or, equivalently
( )q ( )p
€| 1€

Of special interest in even dimensions is the case [ = n/2, since it leads to a linear
system. More precisely, p = g =2 and we only need to assume that fe WL (M, N) to
obtain

(7.40) Y=Gus¢ or equivalently ¢ =G*y

where d¢ =d*y = 0. Further, when G =id, we obtain Cauchy-Riemann type equa-
tions

(7.41) o=y, dp=d*yp=0

Clearly, ¢ and y are harmonic fields and consequently C “-smooth. Forms in a pair of
this kind will be called harmonic conjugate fields. It is worth noting that equations
(7.40) and (7.41) do not contain & and, therefore, are elliptic even if & vanishes at some
points of N.

Applying exterior differentiation (in the distributional sense), we eliminate ¥ from
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(7.37) to obtain second order equations for ¢ and y

(742) A*[|E]277(8, G o) PGyl = 0
Similarly, we have

(7.43) aLlE1P Uy, G*y)~P2G*y] =0

These equations are easily recognized as Euler-Lagrange equations for the variational
integrals:

@44) [1Les1? 181
M

and

(7.45) [1L*w)e 1812
M

Our next section deals with examples of nonvariational type equations.

7.3. A nonlinear Hodge decomposition. — Another kind of nonlinear problem in-
volving differential forms concerns generalizations of the Hodge decompositions.

Given a bundle map B: A'M x AN'M — A' M, we wish to express each w e £P
(NM),1<p< o, as

(7.46) w=%8¢,y), dp=d*y=0

Via the linear case, B(¢, ¥) = ¢ + v, the Hodge decompositions suggest each of the
following four sets of boundary constraints

pedWrP(AN"1M), and wywelP(ANNM)Nkerd*
pe LPINM)Nkerd, and yed* W-P(A*IM)
pedWHP(A~ M) and ye LP(AN'M)Nkerdy
peLP(NM)Nkerd and yed* WyP(NTIM)

(747)

Under these conditions, the decomposition w = ¢ + y exists and is unique. We will
impose similar boundary constraints for the nonlinear case. For example, for we
e £LP(A! M), we may consider a closed form ¢ which is obtained as the £P-projection of
w into the corresponding space as listed in the first column of formulas (7.47). This
leads to a nonlinear decomposition

(148) w=¢+y? !, pelP(NM)Nkerd, yeLI(NM)Nkerd*

with p + q = pgq.
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Another example, which does not come from a variational problem, is the nonlinear
decomposition

(7.49) =g tyt, ab>L
p

with ¢ € LP(A' M), ye LP(A'M), dp=d*yp=0 and a set of boundary conditions
from (7.47). In this case, however, the Sobolev exponents for ¢ and vy must be replaced
by ap and bp, respectively. The problem which must be overcome is that variational
principles no longer apply to (7.49), except for the cases (@, b)=(1, 1/(p—1)) and
(a, b) =(1/(p—1), 1). Instead, we shall use the Browder-Minty theory of monotone
operators. For reasons which will be clear in the proof of Corollary 8.7, this method re-
quires that p =1/a + 1/b. From here on, we assume that this relation holds. We first
eliminate ¢ from equation (7.49)

(7.50) d* (¢ — )’ =0

For w e £P(A\! M) fixed, we define a nonlinear mapping A: INA! M) — I \' M) by the
rule

Ai=(&"- )", Eel(N'M)

We impose a final condition on the numbers a and b in order to insure the following
monotonicity property of the mapping A.

ProposiTION 7.7. - If a and b satisfy

(1.51) K:=min{a? ¢ 2} + min {b%, b2} >1
then
(7.52) (K-1)|§-C| |AE - AL| s(E-C, AE - AQ)

for all &, te (A M).
Proor. - We give only the main idea of the proof which consists of three steps.
Step 1. For each exponent 0 <a < « there exists a constant A, such that
12i,=zmin{a,a '}

and the following inequality

(7.53) (=84 E-0)=h,]8° -8 |E-¢|

holds for vectors &, { from an inner product space.

REMARK 7.8. — From here on, we assume that A, denotes the largest constant for
which (7.53) remains valid. Clearly, A,=A, if ab=1 and A,=1.

To see (7.53), we note that by the remark just given, we may assume that ¢ = 1. In
view of homogeneity, we may also assume that |£|=1> |{|=2>0. Therefore,
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(&, ) =tx for some —1 <t=<1. After squaring, inequality (7.53) takes the form
a?[1+ 2% —f(1+ 2% HP = (1 + 22— 2tx2)(1 + 22 — 2tx)

For this inequality, it suffices to show that

a+l _ + a-1
(754) 1+ ta(1+ 1) > l

1+ 22— 2t a
and

a+1 __ a—-1
(7.55) 1+ te(l + 2% %) > l

1+ x%0—2¢° a

We look at these expressions as functions (homographies) with respect to £. Clearly,
their extremal values are attained at one of the endpoints t =1 or t = —1. To complete
the verification of (7.53), we need only prove that
1 1+2*  1-—2°
< <

a 1+2 11—z

The inequality in the middle follows from & = x* while those on the left and right are
equivalent to ax® —x <o —1 and * — ax < a — 1, respectively. Both functions are con-
vex, thus their maximum occurs at either x =0 or x = 1, which is obviously less than
a — 1. This completes the proof of (7.53).

Step 2. The sharp constant for inequality (7.52) in place of K —1 is given by

(157) Ma, b) =Ad,—\V1-22V1-12

With the aid of a rotation, we need only consider vectors &, { and w from a three dimen-
sional space, say the Euclidean space R3. Denote by X& = £° — w and

<X§"XC’§_C> =cosa2/1a, OSa<£
|XE—Xt||E—¢| 2
(AE-ALXE-XD) _ oo, 0<g<
|AZ — AZ| | XE — XC| 2
<A§_AC’§_C> =cosy, Os‘y<n’
|AE - AC| |E-¢]

By an elementary geometric argument, we find that y < a + . Thus,
cosy Zcos(a+B) =cosacosf—sinasinf =i, h,— V1—-12V1-23
We see that our estimate is sharp since equality may occur.

Step 8. Using the estimate 1, = min {a, a "'}, we want to know under what condi-
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tions for @ and b the constant A(a, b) is positive. This happens if the constant K defined
by (7.51) is greater than 1. In fact, for K>1 we have M(a,b)=ZK—-1. =

8. — Hodge systems.

In Section 7, we looked at examples of nonlinear problems and related differential
equations. There are, of course, more equations for differential forms on manifolds
which play an important role in mathematics and physies. In this section, we describe a
general setting in which the equations (7.17), (7.37), (7.40), (7.41) and (7.49) occur natu-
rally as particular cases of the so called Hodge system.

Suppose we are given a bundle map % : A' M — A' M. By a solution for %A , we
mean a pair (¢, ¥) e (A’ M) x [(A' M) of l-forms on M which are coupled by the
equations

8.1) v=U(p), d¢=0, d*y=0

Without getting into the technicalities of the definition, let us assume in advance that
o is a homeomorphism on each fibre AL M, x € M. We then refer to such equations as a
Hodge system. A more rigorous definition will follow shortly.

System (8.1) is still underdetermined. As it was confirmed by the Hodge decomposi-
tions and well exemplified by the £P-projections, one may look for ¢ to be an exact form
or for y to be a coexact form. However, the system would be overdetermined if one re-
quired that both of these conditions hold simultaneously.

Next observe that it suffices to examine only the case

82) ¢=da, wekerd*

Since, if ¢ ekerd and y =d* 8, we simply replace equation (8.1) by its Hodge dual
equation

(8.3) p*r=UA*p*)
where
A*= (=D DA 1a: A" I Mo>AN"IM

with 2 ~! denoting the inverse of %A . The new unknowns are expressed in terms of ¢
and y by the rules

(8.4) o*=(-1Y"D xypeimd
(85) p*=(—1)""D s pckerd*

The question now arises as to how we should formulate the boundary conditions for the
Hodge system (8.1)-(8.2). Of course, we are only entitled to formulate such conditions in
terms of the tangential part of o or the normal part of ¥ on dM. However, a more care-
ful analysis reveals that, just as with holomorphie functions, where one can prescribe
the real or imaginary part on the boundary, one can prescribe a y or ¥ 5 on M, but not
both. Without too much detail, we are now in a position to state two well posed homoge-



T. IwaNIEC - C. ScOTT - B. STROFFOLINI: Nonlinear Hodge theory, etc. 85

neous boundary value problems for the Hodge system
8.6) y=U(p)
Specifically, the Dirichlet Problem:

8.7 peimdr, and yekerd*

and the Neumann Problem:

8.8 peimd and yekerdf

8.1. Homogeneous systems and Hodge conjugate fields. — Obviously, the natural
exponent of the Lebesgue space in which to consider the solutions of (8.6) will depend
on the growth of the bundie map % : A'M — A’ M. We shall first discuss homoge-
neous systems of linear growth, for which the £2-space is most natural. Suppose we are
given a bundle map

(8.9 & NM->NM
satisfying the Lipschitz Condition:

(8.10) |96 - 9E|<K|§ -]

the Monotonicity Condition:

@8.11) (E-C, 9E- Q2K |E-¢)?
and the Homogeneity Condition:

(8.12) Ot =tHé&

for all £, e INA' M), te R, where K = 1 is a constant. Notice that conditions (8.10) and
(8.11) can be concisely rephrased

1E=8— 98+ BE|<k|E-C+ HE— BT

where 0 <k <1 depends only on K= 1.
In general, $ need not be linear except when K = 1(k = 0). In which case, $ is the
identity on A'M. The Hodge system is then particularly simple

(8.13) o=y, ¢ekerd, yYekerd®

Now a harmonic field can be viewed as a pair (¢, ¥) € £L&.(A' M) X £2. (A M) of sol-
utions to the system (8.13).

In analogy with harmonic conjugate functions on the complex plane, we refer to a
pair (¢, ¥) € LE(A M) X L& (N M) of solutions to the homogeneous system

(8.14) y=9(¢9), d¢p=0, d*y=0
as -conjugate fields, or simply an H-couple.




86 T. IWANIEC - C. ScoTT - B. STROFFOLINI: Nonlinear Hodge theory, etc.

Following the lead of the familiar p-harmonic operator, 1 < p < %, we now consider
a bundle map

Hp: NM—->NM
such that
8.15) |98 — 98| SK(E|+|E1P 2 |E- ¢
(8.16) (Dp8— 9,8, E-O)ZKI(JE| +[E|P2|E - C|?
(8.17) ,(t8) =t|t|P 29, (&)

for all £, EeI(A'M) and teR, where K =1 is a constant.
This apparent generality is easily managed in view of the fact that for every such
9,, there is a unique bundle map (8.9), so that

(8.18) D = (&, DEYP DR HE

Indeed, (8.18) defines a bijection between the class of Hodge systems of linear growth
and the class of Hodge systems of p-th power growth. It is inverted according to the
formula

8.19) HE= (gv @p §>(2-p)/p @pg

Hence, $ satisfies conditions (8.10), (8.11) and (8.12), as is easily verified.

The dual to £, is defined by ©,=(-1)" "'« ©; % : A""'M— A"~! M. It is impor-
tant to note that §, satisfies conditions similar to (8.15), (8.16) and (8.17) but with the
Holder conjugate exponent ¢ in place of p.

DEFINITION 8.1. — A pair (¢, ¥) € LE (N M) x LL(N M), 1/p +1/qg =1 is called
an 9,-conjugate couple in case

(8.20) Y=9,(¢), dp=0 and d*y=0

REMARK 8.2. — The Hodge systems will also be studied for pairs (¢, y) of class
L8N M) x LN M) with some A= max {1/p, 1/q} and such pairs will be called
D-couples as well.

8.2. Nonhomogeneous systems. — The study of Hodge systems under homogeneous
boundary conditions (8.7) and (8.8) involves no loss of generality as long as we do not
require the bundle map % : A'! M — Al M in (8.6) be homogeneous. For this reason, we
focus our attention on nonhomogeneous Hodge systems of the form

8.21) Y+yo=9,(0+ o)

where (¢, ¥o) is a given pair from £LP(A' M) x £L9(A' M), while the unknown pair
(¢, v) satisfies either the conditions of the Dirichlet Problem:

(8.22) pedWEP(ANNM) and yeLYYAN'M)Nkerd*
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or those of the Neumann Problem:

(8.23) pedWHP(AN'M)  and  ye LYA M) Nkerds

REMARK 83. - Note that dW} P =dWg? and dW*P?=dW®?, See Corollary 5.3.

The existence and uniqueness of such solutions will be established by the method of
monotone operators. Ultimately, we will examine the nonhomogeneous equation (8.21)
with both the data (¢, ¥,) and the solution (¢, 1) belonging to £LP(A! M) x LY(A'M).
However, for A =1, the monotone operators argument breaks down.

We begin with some estimates for the case of the natural exponents p and q (ie.
A=1).

THEOREM 84. — For each data (¢, ¥) € LLUN M) x LUN M), there exists a
unique solution (¢, ) e LP(N' M) x LI M) to (8.21) subject to one of the condi-
tions (8.22) or (8.23). In either case, we have a uniform estimate

®24) [o1+ 1919 <C® [(1901” + w017
M M

In this way, we are led to two nonlinear operators
(8.25) D, N: LLAA' M) x LIN M) — LP(N M) x LYN M)

defined by the rule (¢, ¥ o) — (¢, ¥), with Dirichlet condition (8.22) for the operator
D and the Neumann condition (8.23) for 9. These operators will play the same role in
our nonlinear theory as the Riesz transforms do in the more familiar linear case. Our
goal is to extend the Calderén-Zygmund theory of singular integrals to the operators
D and N. Their natural space is, of course, L7 (A M) x LI(A' M) in which the bound-
edness of © and M is ensured by inequality (8.24). Notice that the constant C,(K),
as might be expected, is independent of the manifold M. However, because of non-
linearity, boundedness does not necessarily mean continuity. Qur next estimate is
simila.}' to (7.6) and establishes continuity of © and N in their natural space £P(A'M)Xx
LINM).

THEOREM 8.5. — Under the hypothesis of Theorem 84, if moreover, a,, ae LP(A M)

and By, Be LYN M) solve the equation Ypla+ag)=B+po and (a, B) verifies the
same boundary conditions as (¢, ¥), then

®26)  [(Jo~al’+|p B
M
<cuo[j<|¢o|p+|ao|f°+|wo|q+1bo q>] [J<|¢o @0l + o= mw]

where t=1/(1+|p—2]).

The proof of Theorem 8.5 involves lengthy but rather elementary estimates. The es-
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sential technical details are the same as in the proof of Proposition 7.1, so we leave them to
the reader.

Proor oF THEOREM 84. - We give the proof only for the case of Dirichlet boundary
conditions (8.22). The Neumann problem is similar.

We begin by recalling the exact projection
1 1
q

Ep: LI(N M) —d Wk (N M), +—-=1

See Proposition 5.5 and formula (5.24). It follows from the Hodge decomposition that the
kernel of E; consists of coclosed forms. More precisely,

827 ker Ep = £YNA M) Nkerd*
Accordingly, equation (8.21) is equivalent to
(8:28) Er[9,(9 + 90)l =Er(y,]
Next, we define a nonlinear operator
F: dWp PN M) ~>d Wy (N~ M)

according to
(8.29) BE=Er[9,(E+ ¢0)]
for &ed Wy P(N~1 M).

It is important to observe that ¥ maps dWyP(A'"!'M) into its dual space
d Wy YN~ M) (see Theorem 5.7), which makes it legitimate to apply the Browder-

Minty theory of monotone operators. In this light, our proof falls naturally into three
parts.

(i) & is continuous Indeed, by Proposition 5.5, Er is a continuous operator with
norm < C,(M). See (5.13)

¥ — B, < C,(M) [|9,(E + d0) — 9,(E+ 90,
SKC,MD|(E+po | +|C+do P 2)E-C),

chq<M>[ j(|s+¢o|+|;+¢o|w~l|§—¢|]”q
M

< KC,(M)([|Ellp + 11l + 2l o ll,)P P )1& — £l3e
(i) & is strictly monotone For &, CedWHP(N"'M) we identify T&—Bie
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d W (AL M) with a linear functional on d Wk (A ~! M) (see Subsect. 5.4). It follows
that

(BE-BENE-O) =

= [(Brl9,E+ 90) ~ ©pE + 90} E= 1) = [(Dp(E+90) — Dp(E + 90 E-0)
M M

The latter equality follows from the observation that Ep=1I—E* — Hp: LYYN M) —
— L9 A M) and the form & — £, being a member of d Wy ?(A'~! M), is orthogonal to the
range of both E* and Hy. Now, thanks to monotonicity condition (8.16), we obtain

(8.30) BE-BOE-O 2K [(|E+ 0| +]E+00|F 25— 220
M

Equality occurs if and only if £=¢ a.e.
(iii) & is coercive Indeed, letting & = —¢ ¢ in (8.30) gives

FOE+90) 2K [|E+90|7
M

since B(—¢,) =0. In particular, (FE) &)/[|&ll, goes to infinity as [|&]l,— .
Having verified these three conditions, we may apply the Browder-Minty theorem
[Bro63] to see that the mapping

(8.31) F:dWHPINIM)>d WA~ M)

is both one to one and surjective. It follows that equation (8.28) is uniquely solvable for
¢ e dWFP(N ! M). Finally, we define y e £I9(A"! M) to satisfy (8.21). Equation (8.28)
clearly forces Ky =0 and consequently d * ¢ = 0, as desired. Estimate (8.24) is then es-
tablished by applying Theorem 85 to a=8=0a,=8,=0. =

REMARK 8.6. — It is important to observe that in the proof of Theorem 84, we did not
use the homogeneity hypothesis (8.17). Indeed, we used only that $,(0) =0, which guar-
antees that $, maps LN M) into LYN M).

We are now in a position to prove the existence and uniqueness of decomposi-
tion (7.49).

COROLLARY 87. — For 1<p< o« and a, b satisfying both l/a+1/b=p and
min (a2, @ ~2) + min (b2, b ~2) > 1, we have that each w e LP(N M) can be unigely de-
composed according to

8.32) w=¢%+y°
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where ¢ € LP(N M) and ¢ € LP (N M) are subject to one of the following boundary
constraints

@) ¢ eimdy and pekerd*

(i) ¢ eimd and v e ker dg

(i) ¢ ekerd and y eimdy

(iv) ¢ ekerdy and ypeimd*

ProoF. ~ It suffices to establish existence and uniqueness of the decomposition under
one of the constraints (i) or (ii), since the remaining cases are Hodge star dual to these.
Let us first compute y from (8.32)

p=(0— @)W
Recall the bundle map A: A'M— A' M given by AE = (£% — )" (see (7.50)). Hence,
Ap+ o= -y + o'
We may express this as a Hodge system
Ds0=—yY+y,

where s =1 + a/b = ap and the bundle map §,: L5(N'M)— LY(A"'M), 1/s+1/r=1
is defined by

9, =AE+ 0™

Here, the given form v o = w ' belongs to £7( A! M) while the unknown form ¢ belongs
to £5(A\' M). We use Proposition 7.7 to verify that §, satisfies hypothesis (8.15) and
(8.16) with s in place of p. Finally it is clear that $,(0) = 0 and so Corollary 8.7 follows
quickly from Theorem 8.4 and Remark (8.6). =

8.3. Estimates beyond the natural exponent. — Up to now, we have considered the
Hodge system (8.21) only in its natural space £2P(N M) X £L9(A! M). This led us to a
definition of two nonlinear operators ® and 9t corresponding to the Dirichlet and Neu-
mann boundary conditions, see (8.25). In order to provide a baseline for the analysis of
these operators, we first look at the nonhomogeneous Cauchy-Riemann system on M.
That is, 9,=1d: NM—>NA' M.

(8.33) Y+yYo=9¢+ oo

The solutions of the corresponding boundary value problems are easily found from de-
compositions (5.14) by means of singular integrals. Precisely,

(8.34) d=Er(yo—o), w=E*+Hr)¢—vy,o)
for the Dirichlet problem, and
(8.35) o=E{o— o), v=(EF+HyN¢—vo)

for the Neumann problem. In either case, due to the boundedness of the above projec-
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tions in L2 (A M), we have
1
(8.36) [AglP+ 1Py <G, M0 [(g0*+ [wo P, 2>
M M

Now, one may ask whether the nonlinear operators © and 9, originally defined on
LP(AN' M) x L9(AN' M) by (8.25), actually extend to L£P (A'M)X L9 (A'M), with
some p’ and ¢’ different from p and q. Because of the homogeneity hypothesis (8.17),
the correct spaces in which such extensions might take place are of the type
LP(N M) x £4(A' M) for 4> max{1/p, 1/g}. Naturally, the factor L=p'/p=q'/q
will depend on the ellipticity constant K.

We come now to the central estimate for Hodge systems.

THEOREM 8.8. — Given any nonhomogeneous Hodge system (8.21), there exist posi-
tive numbers

(8.37) a,(M, K) <1< b,(M, K)

and a constant C,(M, K) such that if (¢o, ¥o) and (¢, ¥) belong to L¥(N\' M) x
LN M) with

(8.38) a,(M,K)ysA<b,(M, K)

and solve either the Dirichlet or Newmann problem for (8.21), then

(8.39) [Ueim+1v1P <M, B) [(190 17+ |wo |
M M

The following retrospective comments about inequality (8.39) are in order. One well
known approach to estimates above the natural exponent for nonlinear PDEs (41> 1 in
our case) is to use Gehring’s Lemma [Geh73] on reverse Holder inequalities. We shall
not follow this idea here since it fails for A < 1. Another interesting method, this time
for estimating «very weak solutions» (1 < 1) of nonlinear PDEs has been proposed by
J. Lewis [Lew93]. His method involves looking at maximal functions of the gradient. In
our case, however, the partials of ¢ and v are involved only via d¢ and d * y. Thus, we
have no control of the full gradient of ¢ and . The methods most useful for such equa-
tions have been developed in [Iwa92] and [IS93]; see also [Str95]. It is our intent to
demonstrate these ideas here.

PROOF. ~ Suppose ¢, ¢ € LP(A' M) and y,, pe LY A M) verify the Hodge
system .

(8.40) Op(@+P0)=v+vy,, dp=d*y=0
where ¢ is subject to the Dirichlet type boundary condition
(8.41) pedWEP(A-TM)

We may argue similarly for the Neumann problem. Although the precise values of the
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numbers a,(M, K) and b,(M, K) will be specified later, we assume in advance that

p

If A=1, one can compute the inner product of both sides of (8.40) with the form ¢.
Since d W% P(A'"! M) is orthogonal to LY(A' M) Nkerd*, we obtain
(842) (9, Dp(¢ +¢0)) = (¢, ¥o)

This, in view of conditions (8.15) and (8.16) leads immediately to estimate (8.39) with
A = 1. Disappointingly, for 1 = 1, this simple argument no longer works. In order to ar-

rive at integrals of the type I |¢|* and I |¥|*, we multiply (8.40) by the form
M M

1 1
N Smax[l, —]sap(M, K) <1<b,(M, K) <2
q

Ap-p AglAg - 1) 1
lo| pel (N M)

Unfortunately, integrating over A will not annihilate the unknown form . An easy
computation leads to the following pointwise inequality

ip
’—2'7 O, B) |90 |7 < (9,6 + Bo), |97 ) =

ip
= (Yo, |67 779)+ (v, |9|7779) < Clp, K) |90 | + —-—|“f;{ +(, 9|7 o).
Hence, integrating over M yields
(843) ¢l < 4KCp, K)(|lpoliE + lwolld) +4K(y, |9p|® P¢)

Notice that the last term was not present in the A =1 case because ¢ and y were or-
thogonal. Fortunately, we do not actually need this term to vanish. As we shall see, this
term will be absorbed by the left hand side if 4 is sufficiently close to 1. The key is the
following inequality

(8.44) W, |9 7¢) <C,(M) |2~ 1|l =2+ |yl

which holds for arbitrary forms ¢ e d W ?(A° M) and y € LY(N M) Nkerd*. Having
this inequality, we procede as follows. From (8.40) and conditions (8.15) and (8.16), we es-
timate [|y||;, in terms of y,, ¢ and ¢,. This, combined with (8.43) and (8.44) yields

®45)  [(oI*+ 9P <|i-11C, K, D[ 1917+ Co, K, D [(olf+ 9ol )P
M M M

We shall have established inequality (8.39) if we set the numbers a,(M, K) <1<
b,(M, K) close enough to 1 so that
(8.46) [A-1|C(p, K, M) <1

for all A€ [a,(M, K), b,(M, K)].
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Thus, we are left only with the task of proving (8.44). Note that Hélder’s inequality
gives only the rough estimate

(8.47) w, g1 Py <|opll?* |yl

regardless of the assumptions that ¢ eimdr and y e kerd *. However, for A =1 these
assumptions ensure that (y, ¢) = 0, proving (8.44). As might be expected, the general
case will follow by an interpolation between (8.47) and (y, ¢) =0. To this effect, we
decompose

(8.48) |p|* Pop=da+y, aeWHHMDAITIMY, d*y=0

where da =Er(|¢|® P¢) and y = (E* + Hy)(|¢|*? P ¢); see decomposition (5.14).
For abbreviation we introduce a bounded linear operator

(8.49) T=E*+Hp: LN M)— L"(ANM)Nkerd*

where 7 can be any number greater than 1. It is important to notice that

(8.50) Tp=0, (sincep ed Wy with Ap>1)

Another useful observation is that

851) (y,da)=0, (since e LY A'M)Nkerd* and ae Wy H-V(A-!M))
Hence,

(8.52) (y, 9|7 79)=(y,y) < ”1/)”lq“7“1q/(lq—l) =l |l “T(|¢|Ap_p¢)“/1q/(xq—1>

It is a simple matter of boundedness of the operator T:L"(A'M)— £7(A'M),
r=Aq/(Aqg — 1), that

17| @172 @) igrag-1) < CoMD [l pll 1571

But this estimate is not sufficient to prove inequality (8.39). We need to improve the
constant to show that

(8.53) 1T 612 ) lligag -1y < |4 — 1| Clp, M) ||| 227+

for A sufficiently close to 1. This refined estimate holds only when T¢ =0 and can
be obtained by using the following stability property of the kernel of the opera-
tor T.

PROPOSITION 8.9. — Suppose T: £ (A' M) — L7(A' M) is a bounded linear operator
forall 1 <r< «. Denote its norm by ||T||,. Then for every ¢ € L5(N\ M) with Tg =0,
we have

(8.54) ITC @15 D) o+ < |e|Cllolli+e
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where

_ 2s(b—a)
T (s—a)b—s)

provided 1 <a<s<b and s/b—1<e<s/a-1.

A7lla+ 1715

This result is a reformulation of Proposition 1 from [IS93] in terms of differential
forms. The idea of the proof is based on complex interpolation and ean be traced back to
[RW83]. We set e=(A—1)p, s=Ap, a=(p+3)/4 and b = sp, where

1
1- — <i<1+ L
4pq 4pq
A trivial verification shows that s—a>(p—-1)/2, b—s>1 and s/b—1<e<s/a—1.
This yields inequality (8.53) and completes the proof of Theorem88. =

8.4. Caccioppoli estimate. — In nonlinear PDE theory, the interior estimates of Cac-
cioppoli type are critical for proving regularity properties of the solutions. We will also
find them useful in proving the removability of singularities for Hodge conjugate
fields; see Subsect. 9.3.

The Sobolev exponents in our estimates will be independent of the open set on
which we choose to consider a local solution. To keep this clear, we introduce the
following

DEFINITION 8.10. — Given 1 <p< o and K=1, we denote by
a=0,(R, K), b=0b,(R, K)
where a,(R, K) andfl b,(R, K) are those determined by Theorem 8.8 with M set to K.

Let 2 be an arbitrary open subset of &. We shall examine the nonhomogeneous
Hodge system

(8.55) O+ Po)=v+y,, dp=d*y=0
where both pairs (¢, ¥,) and (¢, ¥) belong to LE(A Q) X LL(Al Q) with
(8.56) a<A<b

The bundle map 9,: A Q2 — Al Q verifies conditions (8.15), (8.16) and (8.17).
In order to formulate Caccioppoli’s inequality, it is necessary to express ¢ and v in
terms of their potential forms £ and ¢, respectively. This means

(8.57) ¢ =dE, Ee WhP(A-1 Q)
(858) p=d*5, LeWPNT Q)

This introduces no loss of generality as long as £ is chosen to be cohomologically trivial
(e.g. a coordinate neighborhood of a point of R).
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THEOREM 8.11 (Caccioppoli Type Estimate). - Under the definitions above, we
have

B59)  [(|x%dE |7+ |xPd*E| PV <CE [(1x*olP+ 17w ol T+ ENd "+ | *EAd? |
Q 2

for all nonnegative test functions y e Cy” ()

It is worth pointing out that the constant C,(K) is independent of £ and A.

ProoF. — We begin by multiplying the Hodge system by x”. In view of the homo-
geneity property of 9,, see (8.17), we obtain

D1+ 1 Po) =x"d* L+ x" Yo

This in turn can be viewed as a system on the reference manifold R.
(8.60) Dp(d + Go) = ¥ + %o
where

¢ =d(x?8) ed WH (N1 R)

;/; — d*(qu) Ed*wd*,lq(/\Hl R)

Go=1"00— I NEcALP(N'R)

Po=x"Po— (1D x[dyP A x L] e d LN R)

It is immaterial which extension $,: A'® — A' &R of the map 9.t N Q=N Q we
choose as long as 9, satisfies the same conditions (8.15), (8.16) and (8.17). For instance,
see formula (9.3). Applying Theorem 8.8, we obtain

(8.61)

(8.61) [ag 1P+ 1817 <@, B> [(1Go 7 + 190 |77
& &

The only issue which remains is that of replacing the tilde forms by &, £, ¢, and y 4 as
shown in (8.61). The rest of the calculation is straightforward. m

9. - Regularity theorems for Hodge systems.

Roughly speaking, our goal in this section is to show that the solution (¢, ¥) of the
Hodge system

9.1 O+ Po)=v+y,, dp=d*p=0

enjoys the same degree of integrability as does the data (¢, ¥ ). The system will be
studied on various open regions 2c R of the reference manifold K. However, the
range of the integrability exponents will be independent of Q. To keep things clear, we



96 T. IwaNIEC - C. ScotT - B. STROFFOLINI: Nonlinear Hodge theory, elc.

shall use, for the rest of this chapter, only the characteristic numbers for the reference
manifold R. That is

9.2 6=0,(R, K) <1<b,(R,K)=b

as given in Definition 8.10. In particular, these numbers depend only on the structural
constants of the Hodge system (9.1) but not on the region Q. Neither the hypothes-
is nor the conclusions of our theorems will be affected by extending $,: N(A' Q) —
— (A Q) to sections over R as long as the conditions (8.15), (8.16) and (8 17) remain
valid for the extension.

One such extension is given by

9.3) XoDp(&)+ (1 —xo) |EIP72E, EelINR)

where y o stands for the characteristic function of the region Q. In Subsect. 9.2, we
shall discuss other possible extensions; see formula (9.39). For notational convenience,
we simply assume that 9, is already defined on R and satisfies the conditions (8.15),
(8.16) and (8.17) therein.

9.1. Interior regularity. — Let 2 be an open subset of R. We begin with the follow-
ing preliminary result which illustrates the integrability improvement property for lo-
cal solutions of a Hodge system. Recall o and b from Definition 8.10.

THEOREM 9.1. — Given (¢, ¢) € LE(A Q) x LY (A Q) which solves the nonhomo-
geneous Hodge system (9.39) with data (¢, Yo) € LE(NA Q) x LU(A Q) for some
Aela, bl, we have

(¢ 1/)) € £loc(/\l Q) X £loc(/\l Q)

Before trying to solve this problem, it may be helpful to reduce it to special cases.
First notice that it introduces no loss of generality to assume that

9.4) ¢=dE for some Ee W-P(A"1 Q)
and
9.5) yw=d*¢ for some (e WIH(AIQ)

Indeed, since the result is local, we may take Q to be a regular region of trivial coho-
mology (i.e. the relative cohomology groups ICr(A! Q) and ICy(A! 2) are zero. We
then use the Hodge decomposition (5.17)

(9.6) p=da+d*B+h, hy=By=0

where a e W (A1 Q) and we recall that ap > 1. Since ¢ was closed, we find at once
that d* 8 + & is a harmonic field with normal part vanishing on 9Q. Accordingly, ¢ =
= da, as desired. We argue similarly for (9.6). In particular, by the Sobolev Imbedding
Theorem, we obtain

9.7 EcLEP(NIQ) and Ee LLINAIIQ)
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for all a’ > a sufficiently close to a. One further assumption we can make is that

9.8 &, ¢, ¢ and v, are compactly supported in 2
For, if not, we take an arbitrary test function 0 =#eCy" () and consider new equations

Hp(dE+Po)=d*T+ 9,
for E=y7& and £ = 7 ¢, where (¢, ¥) can be considered as new data which is given by
formulas similar to (8.61)
$o=n'po—dn?NEe LTP(N'R)
Yo=n"po— (1" " x[dnP A #E]e LYUNR)
The new Hodge system can be viewed as a system on the entire reference manifold R.

Thus, the Caccioppoli inequality applies for 1 =a. Let ¥ be an arbitrary nonnegative
function of class Cy°(£2). Inequality (8.59) yields

9.9 J'(qu |¢|p+xp+q ftplq)“SCp(K, gg)j(qu [@o|P+xP 7w D"
Q Q

+Cp (&, R) [G? | Va|? @ = Eo [P+ %7 [ V2|7 |2 = Lo [
2

This inequality holds for arbitrary £,e LP(A'Q’)Nkerd and {oe LUN' Q)N
Nkerd*, where Q' is any open set containing the support of the test function y. From
now on, we no longer need to appeal to the Hodge system. Inequality (9.9) alone will
imply the desired higher integrability. Namely,

9.10) (¢, P)e LLP(AN Q) X LYUA Q)

for some a’> a. For this, we need to reduce the problem to the Euclidean space R".
Without loss of generality, we may think of £ as a coordinate neighborhood in R. Let
f: R*— Q be a diffeomorphism from R" onto 2. We then pullback the forms in (9.9) to
R” by the rules

P=f*@), @o=r*9py, E=f*©&), E=r*&)

v=r(¥), Wo=fe(yy), T=fe(®), To=fe(&o)

See Sect. 2 for the definition of the pullback operations f#, fy: I(ARQ) —=>I(AR"). In
view of the commutation formulas dof* =f* od and d* ofy =f, od*, inequality (9.9)
reduces to a similar one on R” for the forms defined above. Of course, the constant
C,(K, R) will change. It will depend on f and the support of the forms involved there,
but will not depend on the test function y. Instead of introducing new symbols, we sim-
ply assume that Q = R”.

Proor oF THEOREM 9.1. — Our proof is divided into four steps.

Step 1 (Reverse Holder Inequality).
Fix an arbitrary cube @ c R*. We denote by 2@ the cube with the same center as @
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but dilated to twice @’s size. Then there is a nonnegative function y e Cy”(2Q) such
that

(9.11) {X <1 (with equality on Q)

|Vx| <C(n)|Q| ™" (everywhere)
We refer to y as a cutoff function for the cubes @c2@. Now estimate (9.9) yields

©12)  [(l¢[P+ 9| <C, p, B) [ (|90 7+ 9o |7
q 2@

+Cn, p, K) [ (@17 |E= & |7 +1Q| ™" [Z — £o |7
2Q

Here, we are still free to choose the forms &, and £, on the cube 2Q, as long as

Eoe LP(N-12Q)Nkerd and &ye LYNAT12Q) Nkerd*

Many of the estimates for differential forms on Euclidean space are classical. However,
some of them are not well known. For the convenience of the reader, we rephrase
Corollary 4.2 from [IL93].

LEMMA 9.2 (Poincare-Sobolev Lemma). — Let @ be a cube in R". Suppose
Ee WETNID) and e WU S(ATI D), where 1 <7, s<mn. Then there exist E,e
LN D) Nkerd and Loe LENTID) Nkerd* such that

(9.13) 1€ = &ollunn - » < Clr, m) ||dE],

(9-14) ”C_Couml(n—s)gc(s’ ’IL) ”d*C”s

It is important to notice that the constants C(r, n) and C(s, n) are independent of
the cube . Let us set

1
9.15) m=1- =+ < min {p, q}
n n

Hence,

1 <m < min{ap, ag}
We shall apply the lemma to the cube (@ =2@Q and with exponents r=ap/m and
s = ag/m. By Holder’s inequality, we obtain

_ _ i —7 ((n —7) ap)/nr
la), ap/nﬁg_golapslmil m(ﬁg_&ol /(n ))
@ @D

$C(n, p)lmll—m( Ild&lap/m)m
@D



T. IwaNIEC - C. ScOTT - B. STROFFOLINI: Nonlinear Hodge theory, elc. 99

Similarly,

ICDI_W”ﬂC—Co |W$C(n,p)|@|l‘m( jldC|W/m)m

@ @

Combining this with (9.12) leads to the estimate

916)  f(p[P+ || <Cn, p, K f (1o |7 + 9o |7
Q 2Q

+C(n,p,K)[ ]((|¢|”+|¢|‘1)“/m]
2Q

Here and in the sequel, we use the symbol af =1/|®| ffor the integral mean over a
@

cube M cR". Finally, it will be convenient to set
9.17) F=(lgP+|¢|9%, Fo=(po|P+|po|)*"

Then, (9.16) yields the so-called reverse Hélder inequalities

(9.18) (](Fm)l/mSA ]£F+B( ][an)um
Q

2Q 2Q

for all cubes @ c R™ with the constants A and B independent of the cube . Note that
Fe £™(R") and Fye £LX(R") for all k > m sufficiently close to m (k = a'm/a) and both
F and F; are compactly supported. Usually, in estimates like (9.18), the constant A is
greater than 1. However, the case A <1 is worth discussing as well. By the Lebesgue
Differentiation Theorem, one may pass to the limit as @ shrinks to a peint. This leads to
a pointwise estimate F < AF + BF,. Hence, F < (B/(1 — A)) F,. In particular, F is in-
tegrable with the same power as Fy. This argument obviously fails when A = 1. Never-
theless, it turns out that up to a certain degree, the power of integrability of F' remains
as large as that of Fj,. Our next step considers this case. We shall present a new ap-
proach to Gehring’s Lemma [Geh73] by carefully examining the constants involved in
the familiar maximal inequalities.

Step 2 (Maximal Inequalities).
For F e £1(R"), m = 1, its Hardy-Littlewood maximal function is defined by

1/m
M Fx) = sup[( ][|F|M) : xeQCcR*
Q

where the supremum is taken over all cubes @ with edges parallel to the coordinate
axes of R® and containing the point x. We abbreviate I, = IR,
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PROPOSITION 9.3. — For each k>m =1 and fe £L¥R™), we have

32k
9.19 F|*< F|*
9.19) Rnﬂzmm < e JIF

< 2"(k —m)

. Fl*
(9.20) an; | -

[1m,F
o

These refinements of the classical maximal inequalities are proven in [BIS3]. Note
in particular the more detailed information concerning the bounding constants for
these operators. As a corollary, we obtain

LemMMmA 94. — Suppose two functions f and fy are coupled by the inequality
(9.21) M fSADY+ B, /o, m>1

Let k> m be close enough to m to satisfy

(9.22) grat K™ gy
k-1
Then,
(9.23) [171F<62e+1B* [ £, |}
R™ R"®

provided that both f and f, belong to £*(R").
Proor. ~ Applying (9.19), (9.20) and (9.21) yields

17 (z" - km) uwemfnkszn(" k’") (AIDY s+ BT o]

k—m k k 1/k k—m 1/k k 1/k
2" —— gr2k—— | A +{2" —— 32— _| B
(i) ez a5 ) Bisl

||f||k + (6"2)B| £, ||,

which implies (9.2). =

We would now like to combine Lemma 9.4 with estimate (9.18). Unfortunately, a
technical difficulty arises since we do not know a priori that F belongs to £*(R*) for
any k> m. Our next step resolves this concern.

Step 3 (An Approximation Argument).

One can approximate F and Fy by functions of class Cy(R"®) in such a way that in-
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equality (9.18) is preserved. Indeed, let  be an arbitrary nonnegative functions of class
Cs° (R™) such that [#7(y) dy = 1. We refer to such # as mollifiers. The approximations
are defined by

Fi=n+F and FJ= (g% F'm

where = stands for convolution. Thus, F7 and F{ are continuous functions with compact
support. Using Minkowski’s inequality for integrals, we obtain

[ (s

SAIn(y)( ][F(x-—y)dac)dy+BJﬂ(?/)( f

R® 2Q R® 2Q

f n(y) F(x —y) dy

Rﬂ

m 1/m 1/m
dx) s[n(y)(f(p(x—y)lmdx) dy
R* Q
1/m
IFo(w—y)lmdx) dy

<A ](F'?+B[ In(y) :I: |Fo(x — ) Imdxdy]1/m=A ][FW+B( ]( |F¢ |m)l/m
2Q R® 2@ 2Q 2Q

as desired.
We now pass to the supremum over all cubes @ ¢ R” containing a given point x € R".
This leads to a pointwise inequality for maximal functions

M, (F7) < ADAF") + BN, (F()

Next, let k£ > m be chosen close enough to m to satisfy condition (9.22). This, combined
with (9.23) yields

9.24) [1F7|F< 62t 1BE | Fy |t
R" R
for all mollifiers 7. Recall that the function F, belongs to £¥(R") for some k > m. Let-
ting n approach the Dirac measure, we conclude that F also belongs to £¥(R") and as a
limit case of (9.24), we find
[FE<e2iB: [ R}
R’n Rﬂ

Finally, we return to the definition of the functions ¥ and F,, see (9.17). Setting o' =
= ka/m > a, we obtain

[UglP+1wlor <62 B* [ (1o |7 + o |
R" R®

Unfortunately, this proof gives no information about how large a’ can be. We overcome
this weakness in our final step.

Step 4 (A continuous induction).
Let T denote the set of all numbers ¢ from [a, b] so that the solution pair (¢, ¥) be-
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longs to £LE.(A Q) X £ (A 2) whenever the data is also chosen from this space. We
seek to show that T = [a, b].

Our hypothesis guarantees that there is some nonempty largest subinterval con-
tained in 7'M [a, b] and containing a. Thanks to the arguments above, we see that this
subinterval is relatively open. Thus, to conclude that 7 = [a, b], we need only argue
that this subinterval is relatively closed as well. To this end, suppose

(9.25) (¢, ¥) € LEAN Q) X LU(N Q)

for all te[a, y) with a<y <b.
Suppose that the data pair (¢, y,) belongs to

LIRIN ) X LN Q)

We need to show that the solution pair (¢, ¥) also belongs to this space. As in (9.4) and
(9.5), the problem reduces to the case when

¢=d§ and y=d*

where Ee WHP(A1 Q) and Le WHH(AM Q) for all ¢ <y. By the Sobolev Imbed-
ding Theorem, (£, {) € LIE(A' Q) X LIL(A! 2). We may assume that all of the forms &,
g, ¢o and Y, are compactly supported in £ and are coupled by the Hodge
system

Hp(dE+ o) =yo+d*¢

on the whole manifold K. For, if not, we replace them by tilde forms as in Subsect. 8.4;
see formulas (8.61). These observations make it legitimate to use Theorem 8.8.
Accordingly,

(9.26) [Go17+ w19y <Cp&, &) [(190 7+ o7 for all 1<y
R R

Of course, the fact that the constant C,(K, R) does not depend on the parameter ¢ is of
critical importance here. We then see, that as a limit case, (9.26) holds with ¢ =1y.
Therefore, y € T and the proof of Theorem 9.1 is complete. ™

9.2. Extending the Hodge system across the boundary. — The estimates we derived
in the previous section provide no information about higher integrability properties of
solutions near dM . One practical way to answer such questions is by extending the sys-
tem and its solutions beyond the region M. This procedure is both effective for our pur-
poses and has a broad range of applications. Therefore, we shall discuss it in
detail.

We begin by recalling the collar neighborhood N,c & of M and the reflection
r: N,— N, see (2.28). This mapping is an orientation reversing diffeomorphism of N,
with itself which keeps the points of M fixed. Furthermore, through each point s e M
there passes a unique geodesic arc y ,c N, which is orthogonal to M and the map 7 re-
stricted to y, is an isometry of v, onto itself. This property of » will be crucial in con-
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structing so called regular extensions of forms of class W% ?(A"! M) and LIYA M) N
kerd out of the boundary. This will be done with the aid of the pullbacks »*:
TN N) = TIN N, and 1 = (=10 s p# 5 TIALN,) > T(A' N,). Thus, *7r,=
r* % . Recall also that »* commutes with exterior differentiation while r, commutes
with d*. We shall often use the formula r*(a AS) = r*a Ar* . Obviously, r* o +* =
14 o4 = id. The following uniform bounds follow by a compactness argument

1
9.27) EIﬂ! <|r*B|<2|B|

©28) %wsir#mszlﬁl

for all Be (A'N,) and =0, 1, ..., n, provided e is sufficiently small. Indeed, if » was
an isometry, we would have || = |r* 8| = |r4B| . When restricted to a sufficiently nar-
row collar neighborhood N, of the boundary, the reflection r: N',— N, becomes arbi-
trarily close to an isometry. Note too that the Jacobian determinant, J(x, r) = r4(1), is
negative. Hence (9.28), for [ =0, reduces to

(9.29) < -Jx, V<2 on N,

DO | =

At each point ¢ € OM the differential Dr(a): T,R — T, R acts as identity on the tangent
subspace T, (0M) and as minus the identity on the normal subspace N,(3M). It then fol-
lows from the definition of the pullback that

(9.30) (r*w)yr=wr and (@r*w)y=-wy on M

for all weC*(AN,).

Let Qc N, be an arbitrary open connected set which is symmetric about M (i.e.
"R) = Q). Denote RQ*=2NM and Q~ =R~ M. Thus, (") = 2"*. We shall con-
sider a nonhomogeneous Hodge system on 2

(9.31) D (p+9)=v+y,, ¢=di and d*yp=0

The aim is to reflect these equations across M to 2~ . As always, we will work under
the assumptions (8.15), (8.16) and (8.17) for the bundle map o, : ANQY > AN QF. The
data pair (¢, Vo) belongs to LYP(A'Q ) x LYIYALQ7), min{Aep, A¢g} > 1, while
the solution pair (¢, ¥) belongs to LP(A' Q%) x L¥(A'Q*), min{ip, g} > 1. The
reflection will work only if we impose one of two standing constraints on oM.

Dirichlet constraint

9.32) Er=0 on oM

Neumann constraint

(9.33) yy=0 on M
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These constraints are understood in the sense of distributions. That is, in the case of
Dirichlet’s constraint, we have

(9.34) Ee WhP(A-1Q*)  and jdg/\a=(—1)l+1 j ENda
Q* ot

for all test forms aeCy* (A" 'R), and in the case of Neumann’s constraint, we
have

(9.35) j dBNA %9 =0
Q+

for all BeCy° (A~ Q). In other words, an integration by parts produces no integrals
along oM ..

In order to extend system (9.31) to 2, we first reflect the bundle map 9, : ANQt—
AL Q2+ via the pullbacks

r* I ANQ SANQY and re NQTS AN QT
by the rule
(9.36) Dy = T Dt NQ AN Q-

This mapping satisfies conditions (8.15), (8.16) and (8.17) with possibly a new constant
(independant of M) in place of K. Indeed, let’s take the time to verify at least the mono-
tonicity condition (8.16). The other two are easily checked using estimates (9.27) and
(9.28). To this end, we will exploit the following identity for Xe A’ Q%) and
YeN Q™)

<”‘#X’ Y>= *(Y/\ *T#X) = *(Y/\’r‘# * X) =
= xr (r*Y N\ 2 X) = xr% (X, r*Y) = J(x, (X, r*Y)

Now take arbitrary &, & e I(A' Q ). By virtue of the monotonicity condition (8.16) for
the map §, and estimates (9.27), (9.28) and (9.29), we compute

(9, ()= 9, (8), E—0) = ~(rp[ Oy (r*E) -, (r* D), E- )

= —J(@, XD, r* &) — o7 (r* L), r*E—1r*E)

1
K2p+1

= —J(@, ) K (|r*E| + |r*C| P2 [r*E-O) |22 ((&]+[EP~216- ¢l

as desired. From the way in which ©, was defined, we know that
(9.37) Dy (¥ o +r¥po) = ~rpp — ey
or equivalently,

(9.38) O, (—r*p—r¥pg) =rpy + 14y,
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It may be more or less clear at this point that our intent in extending the Hodge system
is to define

9,5 iftenN@*t
9.39) o =1" . Lo
9, (8) if LeNQ
In case of the Dirichlet constraint, we extend ¢ and y by the rules
~ =d Q° ~ *+
©0.40) 3= ¢# 3 on = P on 9_
r¥*¢p=dr*E on Q~ —r4y on Q

Accordingly defined are the extensions ¢, and 9. In case of the Neumann constraint,
we put

©41) 5= {qﬁ =dE on ~ {1/) on Q

~r*¢p=—dr*E on Q- T4y on Q7
and ¢, ¥, are defined analogously. In either case, we have
(9.42) Gp(@+B0) =Y+,
Note that the degree of integrability of the pairs (¢, ) and (¢,, ¥,) remains un-

changed. In fact, by virtue of (9.27), (9.28) and (9.29), we easily arrive at the uniform
bounds

(9.43) [aB1=+ 1B <ziew [ g +2ie [ |yl
Q- e+ o
(9.44) I(|50|lop+|17,0|loq)$21+lopJ' |¢0|lop+21+lqu' [y |ho
Q- Q+ Q+

The only issue remaining is the behavior of ¢ and ¢ near 3M. We shall have established
the extension of the Hodge system if we prove that ¢ e d W% *(2) and d* ¥ =0 on Q.
As might be expected, we are going to show that

(9.45) ¢ =dE
where £e W #(Q) is defined by the rule

(9.46) E= {E on £2 and &= {g on &

r*& on Q° —r*E on Q°

in case of the Dirichlet and Neumann constraints, respectively.
In order to prove formula (9.45), we fix an arbitrary test form w e C;7° (A" ! Q) and
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compute the integral
JJ)/\w= Jﬂls/\wi IT#(dEAr#w)
(o} fol Q-

Hereafter, the signs + and — correspond to the Dirichlet and Neumann constraints,
respectively. Changing variables in the last integral via the mapping r: 2" —>Q~
yields

[onw= Jd’g‘/\(wir#w)= Jd;’;‘/\a
P Py ot

where a = * r*w e Cy* (A" ! Q). Hence, in case of the Dirichlet constraint, we may
use (9.34) to write

j?ﬁ/\w= (—1)+! f ENda
Q o+

This formula also holds under the Neumann constraint because in this case we have
a=w—-r*weCf(27), see (9.30).
Continuing in this fashion, we obtain

ja/\w= (—1)l+1j5/\(dw +drte) = (-1)+1 j EAdw + (—1)! jr#(r#g/\dw)
Q2

ot QF or

= (—1)’+lj(§tr#§)Adco= (—1)l+1j§/\dw
o] e}

Which means that ¢ = d in the distributional sense.
In order to prove that d*y =0, we proceed analogously. Take any test form
neCy* (A" Q) and compute the integral

[annsi= [dnnsw= [dnnsrey
2 ot Q-

In contrast with the previous proof, this time the sings — and + correspond to
the Dirichlet and Neumann constraints, respectively. Using the commutation rule,
xry=7% %, we find that

Jann«§=[dgn«yp= [dyart «y
g ,

Qt Q
= jdn/\ *YF Jr#[dr#n/\ * )= JdﬁA * P
(o2 Q- ot

where B=nFr*neCy° (N~ ! Q). Now, in case of the Neumann constraint, thanks to
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identity (9.35), we have

fdﬁ/\ xp=0

Q+

In case of the Dirichlet constraint, we have =97 —r*neCF (A" ' Q*+)whiled*y =0
on 2% and so this integral still vanishes. In either case then, we arrive at the
equation

jdn/\*z;=0
Q

which shows that d*3 =0 on Q.

9.3. Regularity up to the boundary. — Recall ¢ and b from Definition 8.10 and fix an
arbitrary A e [a, b].

THEOREM 9.5. — Given a nonhomogeneous system
9.47) Gl + @)=y +y,

with (9o, ¥o) € LP(N M) X LY(N M), suppose that the solution pair (¢, y) satis-
fies either the Dirichlet conditions

Pped W PN-TM), wpelL9NA'M)Nkerd*
or the Neumann conditions

PpedWHP(NIM), welLY%A'M)Nkerds
Then, (¢, ) € LP(AN' M) x Lg* (N M).

Proor. - First, extend the equations beyond oM as in Subsect. 9.2, say to an open
set Mcf. Then the assertion is a straight forward consequence of Theorem
91. m

REMARK 9.6. - When 9,(&) = |£|P~2&, Theorem 9.5 deals with the projection opera-

tor I1, defined in Subsect. 7.1. Combining this result with Theorem 8.8 implies
Proposition 7.1.

10. - Hodge conjugate fields.

We return now to the study of homogeneous systems and their solutions. That is,
pairs (¢, y) of l-forms on M which are coupled by the equations

(10.1) y=b(¢), dp=d*y=0
Recall the numbers a = a,(K) <1 <b,(K) = b from Definition 8 and the inequalities
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ap>1, ag>1. Notice then that for each open QcM, any H,-couple (¢, y)e L
(N Q) x £49(A' Q) actually belongs to LL(A! Q) x LL(AL Q).

10.1. A compaciness principle. — Our first result is an extension of the familiar nor-
mal family property of holomorphic functions.

THEOREM 10.1. — A family of ©,-couples which is bounded in £LP(N Q) x £4
(N Q) is compact in LP(N F) X L9(N'F) for each compact subset Fc 9.

ProoF. — Consider a sequence (¢, y;) of H,-couples satisfying
(102) I illp, @+ |9 illag, 0 < Cq

fori=1, 2, ..., with Cp independent of j. Using Theorem 9.1, we see that (¢;, ;) €
LN Q) x £9(A Q). Unfortunately, this theorem does not say anything about the
bounds for the bp-norms of ¢ ; or the bg-norms of y ; on compact subsets of Q. To obtain
such bounds, we fix a point x € F. Now, there is a (small) neighborhood U about x such
that ¢, = d&, and y = d * {;. Furthermore, with the aid of Poincare inequality (6.24), we
can always take £;e W P(A'"1U) and ;e WM (A*1U) such that

”ginl,ap s Cp(U) ”¢i”ap = CU
”Ci”l,aq = Cp(U) ”’lpzllaq = CU

Then, by the Sobolev Imbedding theorem, there exists a¢’> a such that
(10.4) 1&:llap+NEillag < Cu

with possibly new constant Cy independent of i =1, 2, .... Applying Caccioppoli in-
equality (8.59), with 1 =a’ yields a uniform bound for ¢; and y;

I illap, o+ 9illarg, v < Cor

where U’ is a new, possibly smaller, neighborhood of the point . It is now clear that by
repeating these arguments several times, we will arrive at the estimate

(10.5) I8 illup, v+ 9 illog, v< Cy
for some neighborhood V about x. Because of the compactness of the imbeddings:
WANTIV)CLATIY) and WAV c L1AHITY)

we may assume that {&;} and {{;} are Cauchy sequences in £LP(A!'"'V) and
LI(A*1V), respectively. If not, we could restrict ourselves to a subsequence. Next, we
multiply the equations v ;= 9,(¢;) by x?, where yeCy (V) is a fixed, nonnegative
funetion equal to 1 in a neighborhood V' about x.

O, (x1dE;) = xPd*E;
This can be viewed as a nonhomogeneous Hodge system of the form

Dpld(x16) —AYINET=d*((PL) ~ (=1)" "™ % (dxP A*E))

(10.3)
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Applying (8.26) yields
[10i=0517+wi=w;1°
v

1-t t
<C(f|sm+|s,~|”+|ci|q+|c,-v) (fnai—sjlmci—cm)
12 14

Hence {¢;} and {y;} are Cauchy sequences in £LP(A! V') and LI(A' V"), respectively.
This, combined with the uniform bounds (10.5), implies that {¢;} and {y;} are actually
Cauchy sequences in £L2(A' V') and £9(A' V'). Finally, the set F can be covered by a
finite number of neighborhoods such as V'. Therefore, {¢;} and {y;} are Cauchy se-
quences in LP(A'F) and £9(A! F), respectively. =

10.2. Boundary value problems for Hodge conjugate fields. — As promised in Sub-
sect. 8.2, we now study the Neumann type boundary value problems for an ,-couple
(¢, ) e LP(N M) X LN M), iea, bl. The Hodge system now becomes either
Y=9,(da), d*y=0

(10.6)
{ae W (AT M)

or

d*p = , do=0
(10.7) { p=%) 4

,BE W“,lq(/\l+1M)

Of course, the duality between these systems allows us to consider only (10.6). Given an
arbitrary a,e W»*#?(A\!'"! M), the Dirichlet Problem is now

=9, (da), d*yp=0
(10.8) ¥ = 9ylda) v
a—age WEP(AN-T M)

and given any y,e W 4 (A! M), the Neumann Problem is now

{w=@p(da>, d*yp=0

(10.9)
Y~ Yo WA MNTI M)

With the aid of obvious substitutions, both problems reduce to solving homogeneous

boundary value problems for 4 nonhomogeneous Hodge system of the type (8.21). Thus,

for A =1, Theorem 8.4 provides existence and uniqueness results. However, for A =1,

the Browder-Minty theory of monotone operators fails. The case 1 < A < b poses no dif-

ficulty since, for the data

(Do, Vo) e LP(N M) x L9N M)c £P(N M) x LI(N M)

we may use Theorem 8.4 to solve (8.21) for (¢, y) e LL(A' M) x L1(A M). We then
conclude, by using the Regularity Theorem 9.5, that this solution actually belongs to
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L2(N M) x £49( A M). The solution must satisfy inequality (8.39) of Theorem 8.8. In
terms of a, aq and ¥, these read

(10.10) [1dal* <C,M, K) [ o |
M M

in case of the Dirichlet conditions, and

10.11) [1dal®<C, B) [ |90 |™
M M

in case of the Neumann conditions.

The case a <1 <1 requires an approximation of the data a, and ¥, by smooth
forms. It also relies on the compactness principle for $,-couples; see Theorem 10.1. We
give the arguments only for the Dirichlet problem. The Neumann problem is
similar.

Given the Dirichlet data age W (A" M), problem (10.8) is not affected by
adding a closed form with vanishing tangential part to a,. Thus a, can be suited to
extra regularity. Namely, by the Poincaré inequality (6.24), we may assume that a,e
Wb #(A'~1 M). We approximate a, by forms a’e W' P(A!~! M), converging to a, in
the norm of the space W' *(A'"! M). For each j=1, 2, ..., we solve (uniquely for
da’) the Dirichlet problem

Yi=9,(da’l), d*ypi=0
al — alye WEP(NTIM)

As before, with the aid of Theorem 6.4, we may suit the solutions a’ to extra regularity.
Namely a’e W"?P(A"! M) and

laifly, 1o < Co(M, K) (||, 3 + llda[|15)
On the other hand, by Theorem 8.8, we have
laills, < Cu(M, K) | da
Hence, we obtain a uniform bound for o in the norm of W' *#(A=1 M)
lally, 2 < C; (M, K) ey, 2p < Cp (M, K) ||t

for all j. In other words, the sequence (¢, y/) =(da?, 9,(da’)) of H,-couples is
bounded in £2(A' M) x £4(A\' M), where 4 = a. By the Compactness Theorem 10.1,
we may assume that (¢7, 7) converges to an 9,-couple (¢, y) in LE(A'M) X
£ (A M). For, if not, we replace (¢’, ¥’) by an appropriately chosen subsequence. In
view of the uniform bounds established above, we have (¢, ¥) e LP(A' M) x £4
(A'M). Note that ¢/ = da?, where {a’} is a bounded sequence in W"*(A'~! M) and
a’ — afye Wy # (AL~ M). From what has been already suited to a/, it follows that {a’}
also converges in W (A" M) to an a (for the purpose of this proof, weak conver-
gence would also suffice). Hence, ¢ = da with a — aye Wy P( A1 M). We then arrive
at the following
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THEOREM 10.2. — For each a <A <b, the Dirichlet problem (10.8) has a solution
satisfying

(10.12) lalli, 1 < C,(M, K)||dal|s,

Arguments similar to the above show

THEOREM 10.3. — For each a <A < b, the Neumann problem (10.9) has a solution
satisfying

(10.13) lall, 1< Co(M, K) |lyolld,?

10.3. Removability of singularities. — We recall the classical removability theorem
of P. Painlevé [Zor05]. Let £2 be an open subset in the complex plane. A closed set EcC
is said to be removable if each bounded holomorphic function f: Q — F — C extends to a
holomorphic function on £2. Painlevé’s theorem states that sets of Hausdorff dimension
less that 1 are removable. Until recently, there was very little known about the possible
extensions of this result to nonlinear PDEs.

We have already mentioned that harmonic fields on n-manifolds should be viewed
as counterparts of holomorphic functions. The point to make here is that the geometric
behavior of Hodge conjugate fields does not differ substantially from that of holomor-
phic functions and harmonic fields. The key tool is the Caccioppoli estimate for §,-cou-
ples (¢, ) below the natural exponents p and q. That is, with @ < 4 < 1. The size of the
removable sets will be measured in terms of s-capacity.

A closed set E'c & is said to have zero s-capacity, s > 1, in case there is a sequence
{n;} of functions n;e C~(R) such that

1} 0 <7;<1 everywhere on &
ii) Each »; equals 1 on its own neighborhood of £
1 for xekl
0 otherwise
iv) lim [ldn ], = 0

This definition is best adapted to our proofs and coincides with the customary one.
Recall that sets of Hausdorff dimension less than % — s have zero s-capacity and con-
versely, sets of zero s-capacity have Hausdorff dimension at most » — s. In particular,

the sets of s-capacity zero have measure zero.
We shall examine Hodge conjugate fields

(10.14) ¢=dE and p=d*

on the set U = Q2 — E, where £ is an open set of R and E is a closed subset of R. As
usual, these fields are coupled by the equation

(10.15) Y= 9,(¢9)

and we assume that (¢, ¥) € £L.(A' U) X £L. (AL U). In order to extend ¢ and v as an
$,-couple to all of 2, it is necessary to assume some bounds near the singular set E.
These bounds will be made in terms of the potential forms & e WEP(A"' U) and ¢ e

iii) lim #;(x) ={
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WY YA 1T). Recall the numbers a < 1 <b from Definition 8.10, fix s = max{p, ¢}
and fix Ae[a, 1]

THEOREM 10.4 (Removability Theorem). — Let Ec R be a closed set of As-capacity
zero and let Qc R be an open set. Consider the Hodge system

(10.16) d*t=9,(df) om U=Q-E
for Ee SEL(ANLU) and e Wiy YA U) such that
(10.17) &l sspris =y, 7+ (€l asqs = 3, v < @

Then & and ¢ have extensions to 2 as forms of class WEP(N'™' Q) and Wiy
(A1 Q) respectively. We then say that E is a removable singular set.

This result is relatively trivial for A = 1. Indeed, the smaller 4 is, the stronger the
result is. We note that our removability theorem is new even in the case of the Cauchy
Riemann system

(10.18) d*¢=dé onU=Q-F

Thus d& and d* £ are locally square integrable on U, so we take s = p = ¢ = 2. Then the
number r = As > 1 can be made as close to 1 as one wishes because for system (10.18) we
have a =1 and b = o . Assuming that dim £ < n — 1, we then conclude that £ is remov-
able for bounded harmonic conjugate fields. In dimension 2, we recover the theorem of
Painlevé. More generally, consider the linear Hodge system

(10.19) a*&=9(dg)

where $: A' M — Al M is a measurable linear bundle automorphism satisfying condi-
tions (8.10-8.12). In many respects, this is an excellent extension of the familiar complex
Beltrami equation to all dimensions. As before, we may take s = p = ¢ = 2 and the num-
ber r = As < 2. Thus, sets E c R of dimension less than n — r are removable for bounded
solutions of (10.19) where we notice that » —r > n — 2. The removability of sets of di-
mension less than n — 2 follows easily by applying Caccioppoli’s inequality with A =1
and is largely uninteresting. There are other far reaching consequences of Theo-
rem 104 (e.g. see the removability results for mappings of bounded distortion
in [IM93] and [Iwa92]). Removability results for second order PDEs are studied in
[BIS99]; in contrast to the first order PDEs it is necessary to impose some bounds near
the singular set not only for the solution u, but also for its gradient Vu.

Precisely how big the removable singular sets are is not known. However, the re-
cent work of K. Astala [Ast94] answers this question in the planar case. See also [Str95]
and [GLS96]. The removability results for nonlinear Hodge systems depend strongly
on the exponent a = a,(K) in Definition 8.10. So, it is desirable to identify, or at least
give a good bound for, this exponent. Unfortunately, this question is beyond the scope
of this paper.

PRrOOF OF THEOREM 10.4. — We think of & and ¢ as measurable sections of A'~! Q
and A'*! Q respectively, which are equal to, say zero, on E. Such extension does not af-
fect our arguments since £ has measure zero. Fix an arbitrary nonnegative test funec-
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tion y e Cy” (2) and consider the sequence y; = (1 — 77,;)x. We have pointwise estimates
;| <|x| and |dy;|<|dx|+ |x| |dn;|. Applying Caccioppoli’s estimate (8.59) yields

[(Ix3del” +|x2d*E|7Y <C, B) [(|EAdxrS|? + | EAdgE |7
U U
<Co, B [([&17 1d 17 15 1+ 121° | |9 1 1P
U
<C(p, K) [ (1817 |dx|” |x]° +|£|7 |dx|? [x]7)
U
+0p, KO [ (1817 |dn; |7 + 217 dn; |9 ] 7.
U

Here C(p, K) varies from line to line. As j— =, the last integral tends to zero. Indeed,
by Hélder’s inequality

[ 18177 1dn; 1 < |85 -, olldn 12 —0
U

[ 12177 1dn; 17 < e litges - g, v lldn ;g —0
U

Thus, letting 7 go to infinity, we obtain

[P (dg + 1ax ) < Cp, K [ 1517 121 |dy | + Clp, KO [ |£]% [x]* |y |
2 2 Q

for every nonnegative function y € C5° (2). This shows that d& e LA Q) c LE(A! Q)
and d* e LN Q)c L4(A Q). By the Regularity Theorem 9.1, we then conclude
that dé e £h.(N' Q) and d* e £ (A' Q), as desired.
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