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The Convergence of the Spectrum 
of a Weakly Connected Domain (*). 

MARC BRIANE 

A b s t r a c t .  - The paper deals with the convergence, as s tends to zero, of the spectrum of the Neu- 
mann problem -Av~ =/~(s)v~ in a ,,weakly connected,, periodic domain ~ E of R 3. The do- 
main SO~ is composed of a finite number of disjoint connected domains linked by thin 
bridges (curved plates or tubes). Under a few assumptions on the characteristic sizes of these 
bridges, we give an explicit asymptotic formula for the eigenvalues which tend to zero and we 
prove that the rest of the spectrum converges to the spectrum of an elliptic coupled 
system. 

1. - I n t r o d u c t i o n .  

The aim of this paper is to study the asymptotic behaviour with respect to a small 
parameter  e > 0 of the Neumann spectral problem 

(1.1) { -Av~=~.(e)v~  in ~2~, 

~v~ = 0 on ~ 2  ~. 
av 

for some particular connected domain ~2 ~ obtained by the perforation of a given bound- 
ed open set ~2 of R 8. Problem (1.1) can be associated to the Neumann problem 

(1.2) { - A u ~ + u ~ = f  in ~2~, 

~u~ = 0 on ~2~,  
~v 

(*) Entrata in Redazione il 13 gennaio 1997. 
Indirizzo dell'A.: Laboratoire d'Analyse Num~rique, t. 55-65 5~me ~tage, Universit~ Paris 6, 

75252 Paris cedex 05; D~partement de Math~matiques, Universit~ Paris 12, 94010 Cr~teil ce-dex, 
France. 
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where f is a given function of L 2 (t g). One of our motivotions is to know if some informa- 
tion about the limiting behaviour of (1.2) can be deduced from the convergence of the 
spectrum of (1.1). 

Problem (1.2) has been widely studied in the case where t9 ~ is a s trongly  connected 
domain in Hruslov's sense, i.e. there exists a bounded extension operator from H 1(~9~) 
into H1(~9). This extension property was introduced by Tartar [7] for the homogeniza- 
tion of perforated materials. Cioranescu and Saint Jean Paulin [4] first proved that do- 
mains with periodic isolated holes satisfy the extension property and that problem (1.2) 
then converges to the Neumann problem 

div (AVu) + Ou = Of in tg,  

A V u . u  = 0 on ~t~, 

where 0 := lim I ~9 ~ I/I ~1 and A is a constant positive definite matrix depending on the 
~'--* 0 

period of the structure. Acerbi, Chiadb Plat, Dal Maso, Percivale [1] on the one hand 
and Allaire, Murat [2] on the other hand then extended this result to the case of peri- 
odic domains with non isolated holes. 

Following [4], Vanninathan [8] proved that when the extension property holds, the 
spectrum from (1.1) converges to the spectrum of problem 

(1.4) 
-div(AVv) = 2Ov in tg,  

A V v . v  = 0 on ~ ,  

which is associated to problem (1.3). 
On the other hand, Hruslov first noted (see also [3] for a new approach) that the 

limit problem of (1.2) can be more complicated than (1.3) if the domain t9 ~ is not strong- 
ly connected, i.e. it does not satisfy the extension property. For particular domains t9 
which are called weak l y  connected by Hruslov, problem (1.2) can converge in some suit- 
able sense to a coupled system. This degeneracy compared to the expected limit (1.3) is 
due to the capacitary effect of very thin bridges which link several disjoint strongly 
connected regions of the domain ~ ~. 

We are interested here in the spectral convergence of (1.1) for particular weakly 
connected domains. More precisely, the domain t9 ~ has a periodic structure of period 
cell eYe. The rescaled period Y~ is a connected open subset of the unit cube Y := [0, 1[ 8, 
which is composed of n ~> 2 open subsets Y~ of Y with disjoint closure such that for each 
1 ~< k ~< n, the periodic set obtained by Yk-repetition is a connected regular open set of 
R 8, and for each 1 ~< k ~< n - 1, Yk and Yk + 1 are linked by a small bridge Qk, ~. The set 
Q~,~ is a thin tube (along a curve) of length lk(e) (which can tend to + ~)  and of cross 
section area a k(s) which tends to 0. The domain tg~ is thus weakly connected thanks to 
the bridges Qk, ~, 1 ~< k < n -  1, which link the consecutive disjoint connected parts Yk, 
1 ~< k ~< n, of the period Y~ (see Figures I and 3 in the Subsection 2.1). 

The result is based on the solutions ~ ~ R§ and ~ = (vl, ..., v~) ~ H 1 (tg)~ of the fol- 
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lowing eigenvalue problem 

(1.5) 

div (AIVVl) + 51(Vl - v2) ~-~] yl ]Vl 

- d i v ( A j V v j ) + S j _ l ( V j - V j _ l ) W 5 j ( v j - v j + l ) = ] t ] Y j  [vj 

- div (An Vv~) + 5n_i(V n -- V n _ l ) : ~  ] Yn ]Vn 

AjVvj.v=O 

in~9 ,  

in tg, 2 < ~ j < n - 1 ,  

in t~, 

on ~t9, 

where 5 j  ~ 0 for 1 ~<j ~< n - 1, and Aj for i ~<j ~< n, is the matrix which appears in prob- 
lem (1.3) for the strongly connected domain of period tYj. Since the matrices Aj are po- 
sitive definite, problem (1.5) is an elliptic coupled system of Neumann's type and its 
spectrum is thus a sequence of non-negative numbers: 0 = )~ o < it 1 ~ ~ 2 . . . .  Note that if 
(m - 1 ) numbers 5j are equal to zero, the multiplicity of the eigenvalue zero is equal to 
m since the solutions of (1.5) satisfy 

j=l t~ j=l ~9 j=l 

The main result of the paper is then the following: 

THEOREM 1.1. - Denote by 0 = ~ o (e) < 2 1 (~ )  ~ ~ 2 (E) ~ . . .  the spectrum of problem 
(1.1). Assume that for  a given 1 <<. m <<. n one has 

al(e) am_l(e) a~(e) 
~ < < . . . < <  <<1 and �9 5 a > 0  for m <  k < n -  1. 
~211(~ ) ~2lm_l( t  ) E2~(~) e-*0 

Then, for  any 1 <. k <~ m -  1, the eigenvalue ~ k ( s ) satisfy the estimate 

1 1 ) ak(e) 

Moreover, for any m >I k, the eigenvalue 2 k ( e ) converges, up to a subsequence, to the 
eigenvalue ~k of the spectrum of problem (1.5) in which 5 1 = . . . =  5m-1 := 0 and 
5j>O f o r j > I m .  

In particular, if m = 1, or equivalently if 

ak(s) 
> S k > 0  

~21k(e ) ~-~0 
for any 1 <~k<~n-1 ,  

no eigenvalue of the spectrum of problem (1.1) tends to 0. However, the limit spectral 
problem (1.5) is a coupled system which is not of the classical form (1.4). This shows 
that the non-degeneracy of the spectrum from (1.1) does not imply the classical limit 
(1.3) of (1.2). 
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2. - S t a t e m e n t  o f  t h e  re su l t .  

2.1. The geometry of  the problem. - Let e = l / N ,  N ~ N*. 
Let t? be an open subset of R 8 which satisfies 

(H1) t? is a rectangle parallelotop of integer coordinates 
or a finite union of such parallelotops. 

Let n I> 2 be an integer and let Y:= [0, 1[ 3 be the unit cube of R 3. 
We consider n open subsets Yk of Y, 1 ~< k ~< n, and the open subsets Ek of R 3 ob- 

tained by Y-repetition of Yk, i.e. 

(2.1) E~ := ~Uzs(Y+ K), 

which satisfy 

(H2) I Yk and Ek are connected sets with Lipschitz continuous boundary, 

[ YjN ~ = 0, for j ~ k. 
o 

We also consider (n - 1 ) subsets Qk, ~ of Y, 1 ~< k ~< n - 1, which are designed to pro- 
vide thin bridges connecting Y~ and Yk +1 and which satisfy 

Qk, ec Y, IQk, el-->o , 

(H3) Q~,~ u Yk u Yk § 1 is a connected set, 

~i~,~N k~,~=~,  f o r j ~ k  and YjN k~ ,~=~,  f o r j ~ t { k , k + l } .  

The geometry of the bridges will be specified more precisely below. 
We define the period of the weakly connected domain by 

n [n61 e) 

We consider the n open subsets D k, ~ of D, 1 <. k <~ n, obtained by eY-repetition of 
the sets eYk in ~,  i.e. ~?k,e := D A eEk. In the same way, we consider the (n - 1) sub- 
sets co k, ~ of D, 1 ~< k ~< n - 1, obtained by eY-repetition of the sets eQ~, e in D. The weak- 
ly connected domain is then defined by 

n n - 1  

(2.3) D e : =  U1Dk eUwe where ~oe:= IJ ~ok, e. 
k =  ' k = l  

Note that t?~ is also obtained by sY-repetition of the period eYe, i.e. 

~ ~ = t? A eE~ where E~ := U (eY~ + eK). 
~ e  Z 8 

The domain t?~ is an open subset of t? which is connected by the set of small measure 
w ~ since I w~ I--* 0 by assumption (H3). 
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Fig. 1. - A period Y, for n = 2. 

Y1 

Y2 

ILLUSTRATIONS. - Figure  1 shows a period Y, for n = 2, F igure  2 a cross section of 
this period and Figure  3 the weakly connected domain t2 ~ obtained by  eY repeti t ion of 
8 periods eYe. F igure  4 shows a cross section of a period Y~ for n = 3. 

Le t  us now describe each bridge Qk,, for 1 < k ~< n - 1. Le t  F~, ~: [0, 1] --*]0, 1[ 8 be  
a simple curve (without multiple points) of class C a, which is plane if d = 2 and skew if 

i i i ! ! ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' : ' :  
�9 . .  , 

iiiil ,9  1 
i:i:i 

:::::2 

ii}iiii}iliiiiiiiiiiiiiiii!i?iiiiiiiiiiiiiiiiiiii 

[ ]  Y1 

D Y2 

1 Qle 

Fig. 2. - A cross section of a period Y~ for n = 2. 
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Fig. 3. - A weakly connected domain 9~  composed of 8 cells. 

[ ]  Y1 

[~ Q2e 

Fig. 4. - A cross section of a period YE for n = 3. 
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d = 3. Assume that the curve is strongly regular in the sense where for any t e [0, 1], 
the d vectors (F;,~(t), F~',~(t), F(kd,~(t)) span the space R d. We can then define the 
Frenet  curvilinear basis (Tk, ~(t), Nk, ~(t), Bk, ~(t)) associated to Fk, ~. Note that  Bk, ~(t) 
is a constant vector for a plane curve, i.e. d = 2. Let  X~, ~ be a regular connected bound- 
ed open set  of R 2 such that ak(e)  := IXk,~ I--->0. The bridge Q~,~ is defined by 

(2.4) Qk,~ := {y=r  v, fl) :=Fk,~(t)+~'Nk,~(t)+flBk,~(t); t ~ [0 ,  1],(v, f l ) eXk ,~} ,  

i. e. Qk, ~ is a tube of cross section Xk, ~ along the curve F~, ~. The set Qk, ~ satisfies the 
assumption 

(H4) 

o 

~bk,~:]0, l[xX~,~--~Qk,~ is a diffeomorphism for any sufficiently small e ,  
o 

~bk,~(]0, 1[ •162 Y \ Y k U  Yk+l, 

Ok,~ ({0} •  and O k , ~ ( { 1 } •  

max (I v I , (d  - 2)I f l l )  <~ cak( e)2-d/2. 

The third condition of (H4) implies that the neighbourhood of Fk, ~(0) in ~Yk and 
Fk, ~ (1) in 3Yk + 1 are portions of planes which are perpendicular to the tangent  vectors 
F~, ~(0) and Fk', ~(1) respectively, as shown in Figure 2. 

EXAMPLE 2.1. - 1) I f  Xk,~ is a rectangle of length 1 and of width ak(e) / l ,  Qk, ~ is a 
curved plate of thickness a k(e)/1. 

2) If  Xk, ~ is a disk of radius aV~k(e ) / z  , Qk, ~ is a tube of cross section area 
ak(E). 

The following result  yields sufficient conditions carrying on the curve Fk, ~ in order 
to obtain hypothesis (H4). 

LEMMA 2.2. - Assume that the curve Fk, ~ satisfies the condition 

V(s, t) e [0, 1], IFk ,~(s ) -Fk ,~( t ) l  >c(e) l s - t  I 

where c(e) is such that 

,, a k ( s )  2 -  ~2 
ak(e)2-d/2 IIF~,~II| + (llQk, ~F;,~II~ + Ilvk, ~F;,~II~) ) 0 

c ( e )  ~ c ( ~ )  ~--,o ' 

where Q ~, ~ is the curvature and v k, ~ the torsion of  Fk, ~. 
Then, the funct ion q)~, ~ is a diffeomorphism for  any sufficiently small e. 

Lemma 2.2 is proved in Subsection 4.3. 
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2.2. The problem. - Our aim is to study the asymptotic behaviour of the spectrum 
(2 k(e))k~N where 

0 =2o(S) <2~(e ) -<22(e ) -< . . .  

of the domain ~9~ related to the spectral Neumann problem in ~2~ 

(2.7) 

f - / lv~ = 2(e) v~ 
ave = 0 

v 2 = 1,  

in t0 e, 

on 8Y2~, 

where v denotes the outer unit normal to 8t~ and ~ the mean value 1/[  Y[ f .  
Y Y 

2.3. The result.  - We will state a convergence result for the spectrum of problem (2.7) 
which depends on the limiting behaviour of the characteristic sizes of the bridges Q~, 
(2.4), defined by 

a~(e) 
(2.8) dk(e) := e~lk(e ) 1 < k <~ n - 1 

where a k(e) denotes the area of the cross section of the bridge Qk. ~ and lk(e) its length,/~e. 

1 

lk(e) = I IF;' ~(t) Idt . 
o 

We will also need the following notations 

NOTATION 2.3. - Le t  Ak, 1 ~< k <~ n, be n positive definite 3 • 3 matrices, let m be an 
integer 1 <<.m<~n, and let 5k, 1 < ~ k < ~ n - 1 ,  be ( n - l )  reals such that  5 1 = . . .  = 
= ~ m- 1 = 0 and 5 k > 0 for any m ~< k ~< n - 1. We denote by A the 3n • 3n  matrix 

(2.9) A := 

A1 

0 

0 

As 
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and by J the n • n matrix 

(2.10) J:= 

51 
IYil 

51 

IY, l 
~ 1 7 6  ~ o 

5k-1 5k-l +5k 5k 

IYkl IY~I IY~I 
" . .  " . o  

5n-1 5n--1 
IY~l IYnl 

The system 

(2.11) f - 

- d i v ( A 1 V v l ) + S l ( V l i V 2 )  = IF11f~ in ~ ,  

div (AkVVk)+Sk_ l (Vk- -Vk_ l )+Sk(Vk- -Vk+l )=lYk l f k  in ~ ,  

-div(AnVvn)+Sn_l(Vn-Vn_l)--IYnlfn in ~ ,  

A~ Vvk" v = 0 on ~ ,  

can be written 

{ - d i v ( A V - v ) + J - v = f  in t~ 
(2.12) 

(AV3) v = O  on ~tg, 

where ~ := (vl, ..., v~), f := (fl, ...,f~), A is defined by (2.9) and J by (2.10). 

REMARK 2.4. - Since 51 = ... = 5 m _ 1 = 0 ,  system (2.12) is elliptic in the Hilbert 
space 

o o 

provided with the scalar product and the norm in L2(tg) ~ 

(2.14) ( ~ , ; ) r ; :  = ~, jO iu~v i  and I lul l . :=(u,~).b ,~, e i . -  IY, I 

h<~n 

We can now state the main result of the paper. 

THEOREM 2.5. - Assume that the geometrical conditions (H1)-(H4) are satisfied. 
Also assume that the cross section area a k(e) and the length la(e) of each bridge Qk, ~, 
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1 ~ k <. n - 1, satisfy the limit 

ak(e) 
(2.15) 

E 
- -  + elk(e) + ak(e)2-d~(Qk(e) + vk(e))----> 0 e-->O 

where Q k(e) and r k(e) respectively denote the maximum of curvature and torsion of 
the curve Fk, ~ which defines Qk, ~ in (2.4). Finally assume that the characteristic 
lengths (2.8) of the bridges Qk(e) satisfy 

(2.16) 51(e)<<...<<Sm_l(e)<<1 and l i m S k ( e ) = S k > O  for m < ~ k < ~ n - 1 ,  e-->O 

where m is a given integer of {1, ..., n} ( a( e ) << fl( e ) means ( a( e ) /fl( e ) ) --> O ). 

i) Then, for any 1 <~ k <<. m -  1, the eigenvalue 2k(e) of problem (2.7) converges 
to 0 and more precisely satisfies the following asymptotic behaviour 

NSk(e)( 1 1 ) 
(2.17) 2k(e) ~-~0 irk---i- + - - j Z k  i for 1 <<.k<~m-1, 

where ] Yk ] denotes the Lebesgue measure of the rescaled period Yk of the domain t~ k, e" 

Moreover, for any 1 <~ k <<. m - 1, any eigenvector Vk, ~ solution of (2.8) with 2k(e) 
satisfies the convergence 

(2.18) Vk, ~ -- Ck, k l~k.~ - j~> kCk, k + 11~, 

where ck, k and Ck, k + 1 are constants solutions of 

H l ( ~ e )  ) 0 , e e---~ 0 

O~ck k + ( ~>kOj) ck, k+~=O, 
' j 

IYJl 
( 2 . 1 9 )  OkC2'k "~- (j~>kOJ) C~,k+l----* 1, O j := ~ ] Y i l  

i = l  

ii) For any k >! m, the eigenvalue ~k(e) converges, up to a subsequence, to the 
eigenvalue 2 k of problem (1.5) which can be written 

___> -_~ 
- d i v ( A V v ) + J ~ k = ~ k V k  in tg ,  

(2.20) -~ _~ 
(AV Vk) v = 0 on ~ Q ,  

where ~k ~ f l  from (2.13), the matrix J is defined by (2.10), and the matrix A is defined 
by formula (2.9) in which each matrix Aj, 1 <<. j <<. n, is the homogenized matrix for the 
perforated domain ~ j, ~, obtained by the classical formula 

(2.21) 
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the function Wj ~ being the solution of the Neumann problem 

(2.22) 

z w j  = o in Yj, 

-~-u =0 in ~ Y j \ ~ Y ,  

Wj ~ (y) - ,~. y Y-periodic. 

REMARK 2.6. - 1) The convergence ~tk(e)---))~ k also holds for 0 ~< k ~< m - 1; indeed, 
the eigenspace of problem (2.20) related to the eigenvalue 0 is of dimension m because 
of the equalities 51 = ... = 5m-1 = 0. The first m eigenvalues ;tk(e), 0 ~< k ~< m - 1, are 
also simple since assumption (2.16) and result  (2.17) imply 0 = )~o(~)<<)~l(e)<< ... << 
<<~m_l(~) <<1. 

2) Theorem 2.5 has a non-trivial consequence concerning the estimate of the 
Poincar~-Wirtinger constant of the domain tg~. Indeed, if m = 1 or equivalently 

1 (e) - - )51 > 0, no convergent subsequence of ;t l(e) tends to 0, and hence the Poincar~- 
Wirt inger constant C(~9~) of ~9 ~, which is equal to ~ 1 (e)-2, is less than a fixed constant. 
We have just  proved that  there  exists a constant C > 0, independent  of ~, such 
that  

(2.23) 

Qe 

Although the weakly connected domain tg~ contains very  thin bridges, the constant 
C(t~ ~) does not blow up with respect  to e which was not a priori evident. 

3) I f~ j (~)  ---> + or for some m ~<j ~< n - 1, we have to replace in system (2.20) sat- 
isfied by vk = (vk, 1, ---, vk, n) equations 

- - d i v ( A j V V k , j ) + ( ~ j _ l ( V k , j - - V k , j _ l ) + ( ~ j ( V k , j - - V k , j + l ) ~ - ~ k l Y j l V k , j  if2, 

- - d i v ( A j + i V V k , j + i ) ~ - ( ~ j ( V k , j + i - - V k , j ) + ( ~ j + i ( V k , j + l - - V k , j + 2 ) : , ~ k l Y j + l l V k , j + i  if2, 

A j  VVk,j'~2 : A j  + I VVk,j + I ' V : O  ~ , 

by the new ones 

- div ((Aj -~- Aj+ 1) VVk, j )  -~ - (~ j_ l (Vk , j - -Vk , j_ l ) -~ - (~ j+ l (Vk , j - -Vk , j+2)=~k  [YjlVk, j  ~'~ , 

Vk, j -- Vk,j+ l ~O ~'~ 

(Aj +Aj+I)  VVk,j'v----O c%(2 . 

That  exactly corresponds to consider the first system as  ~ j  tends to + :r F o r  the sake 
of simplicity, we will assume in the following that  (~j < -~ ~ for any 1 ~<j ~< n - 1. 

Theorem 2.5 is partially based on a homogenization result. 
/ ! 
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2.4. A homogenization result. - The proof is divided in several steps. The first of them 
is to obtain the limiting behaviour of the Neumann problem 

{ -Au~=fi  in $9~, 

(2.24) /gu~ _ 0 on ~$9 

where u~ is a bounded sequence from H 1 ($9 ~) and fi is a bounded sequence from L 2 ($9). 
The result of this homogenization problem was first obtained by E. Ya. Hruslov [5] 
when fi = f is a given function of L 2 ($9) and completely proved in [3] using in particular 
the maximum principle. Here, we prove the following result for a general weakly con- 
vergent sequence fi from L2($9), but with more restrictive geometrical conditions on 
the bridges since we cannot use the maximum principle. 

THEOREM 2.7. - A s s u m e  that hypotheses (H1)-(H4) are satisfied as well as condi- 
tions (2.15) on the size parameters of the bridges Qk, ~, 1 ~ k <<. n - 1. Also assume as in 
Theorem 2.5 that there exists an integer m e  {1, ..., n} such that the characteristic 
sizes (2.8) of the bridges satisfy the condition 

(2.25) 
lim 5k(e) = 5 k = 0  for l<.k<<.m-1 
~ 0  

limS~(e) 5 ~ > 0  f o r m < ~ k < ~ n - 1 .  
~---*0 

Let $9'~ be the subset defined by 

( 2 . 2 6 )  $9" : =  Y2 k,~ U w k, ~ �9 
k k 

Let u~ be a bounded sequence of H1($9 ~) and let f~ be a bounded sequence of L 2($9 ~) of 
zero $9 e-mean which are solutions of problem (2.24) and such that 

(2.27) lak,~f~--~lYklfk weakly in L2($9) for 1 <.k<.n. 

Then, the following convergences hold true 

f , ~ u~ ---~lYkluk weakly in L2($9) for 1 <~k<<.m- 1, io(u o! ) 
for m<.k<~n, 

\ ' ~ , ~  ] 

where ~ = ( U l ,  . . . ,  Un) belongs to the space fI  from (2.13) and is solution of system 
(2.12), i.e. 

(2.29) 
{ -d iv (AVu)  + J ~ = f  in ~2 

(AV~) v = ~  on $9. 
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REMARK 2.8. - 1) The result of Theorem 2.7 also holds true if we only assume that u~ 
is bounded in L2(~9 '~) and Vu~ is bounded in L 2(~9 ~)3. 

2) Remark 2.6 3) can be also applied to the case of Theorem 2.7. 

3. - P r o o f  o f  the  spectral result.  

The proof of Theorem 2.5 is divided in several steps which are detailed in the follow- 
ing subsections. In the first subsection, we make precise the convergence of eigenvec- 
tors vk,~ associated to the ( m -  1) first non-zero eigenvalues 2k(e), 1 ~< k ~< m -  1. In 
the second one, we give an estimate of the first non-zero eigenvalue 21(e), then in the 
third one, we yield an estimate of;tk(~) for 1 ~< k ~< m - 1. In the fourth and last subsec- 
tion, we study the convergence of the rest of the spectrum ()~k(e))k~>~. 

3.1. Convergence of  the (m  - 1 ) f i r s t  eigenvectors. - We consider a family (vk (e))k ~ N of 
eigenvectors associated to the spectrum (;tk(e))k~N, i.e. Vo(S)= 1 and 

~vk, ~ =0 on 3t9 
z% e 

for k~> l ,  

which is orthonormal with respect to the scalar product of L2(~9~) 

(U, V)~ := ~UV , 
tge 

Following the same argument as Vanninathan [8], it is easy to check that each se- 
quence (~(e))~>0 for k I> 1, is bounded with respect to E by using the Courant-Fisher 
formula 

IVvl 
~JE 

)~k(e) = min max ()~o(e) = 0) 
VcHI(~) veV~{0} I v2 
dimV=k+ 1 

at 

and by taking for V the space spanned by the (k + 1) first eigenvectors of the Neumann 
problem in the domain tg. 

Assume now that )~k(E)--*0 up to a subsequence of e and for some k I> 1. Then by 
the homogenization result of Theorem 2.7, we have for any 1 ~<j ~< k 

l~,Evj,~---~lYilvj, ~ weakly in L2(~9) for l<~ i<~n ,  
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where v j  = (vj, 1, " " ,  Vj, n)  is solution of the system 

{ - d i v ( A V - ~ j ) + J - v j = - O  in t2, 

(AV v-*j) v = 0 on 8Q. 

By putting ~j as test function in the latter equation and summing over m ~< i ~< n, we 
obtain the equality 

A i V v j ,  i ' V v j  i (~i(vj,  i - vj, i + , )  2 -- O,  
i= l  ' = 

t~ D 

which implies, since Ai  is positive definite, that vj, i are constant cj, i satisfying 

(3.1) l~i, vj,~----~lYiicj, i weakly in L2(~9) for 1 <~i<~n, 

and 

(3.2) cj, i = cj, m for m < i <~ n , 

since 5 i > 0  for m < ~ i < ~ n - 1 .  
Let us compute the constants c~, i. We have 

~Vj ,  e= 'O , 
Y2e 

then after passing to the limit thanks to (3.1) and by noting that 1~,~ vj, ~----0 weakly in 
L2(tg) since Iwi ,~ l - - )0 ,  we obtain 

n iY l 
(3.3) Y~ Oicj ,  i = O  0 i := 

/ o '  ' Z IYhl 
h<~n 

We also have 

= 1  

which would imply similarly to (3.3) 

(3.4) ~ O/c~,i= 1 .  
i=1 

However, the passing to the limit (3.4) is more delicate since we need strong conver- 
gence. On the first hand, by an extension result for periodic domains due to Acerbi, 
Chiado P/at, Dal Maso, Percivale [1] and thanks to assumptions (H1)-(H2), there exists 
for each 1 ~< i ~< n, a bounded extension operator Pi~ from H l ( ~ i ,  ~) into Hl(tg).  The 
fact that ~9 is composed of entire cells eY + eK, Ke Z ~, (assumption (H1)) combined with 
the connectedness and the regularity of the period cell Yi (assumption (H2)) allows us 
to extend functions from t9/, ~ to the whole domain tg. On the contrary, in [1] quite less 
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restrictive assumptions on the periodic domain Ei of (2.1) only provide a local extension 
in ~9. Since Pi, ~vj, ~ is bounded in H1(~9) it strongly converges in L2(tg) up to a subse- 
quence, which implies 

(3.5) la~.~(v~,~-cj,~)---)O strongly in L2($'2) for 1 <<.i<~n. 

On the other hand, we have to estimate the contribution of the quadratic terms 
lo~, v ~ .  It is given by the following result which is proved in the last section. 

LEMMA 3.1. - Assume that conditions (H3) and (H4) are satisfied Let 1 <. k <~ n - 1 ,  
then there exists a constant c > 0 such that for  any funct ion V~  H I(Yk U Qk, ~) 

(3.6) II~IL~(Q~,~) ~ cl~(~)(~ ~(~)ll~lLl(yk) -~- IIV~IL~(Y~ Q~,~)). 

By rescaling estimate (3.6) in each cell eK+ eY with function V(y) := v~,~(ey + sic) 
and by summing over ice Z 8, we obtain the following L2(wi,  ~)-estimate 

Ilvj, ~llb<~, ~) ~ ca  ~( ~ ) g~( ~ ) Ilvj, ~112~(~, ~) + c~l~( ~ ) Ilvj, ~IIL~(~)IlVv/, ~FI/~(~) 

<~ c ' (a i ( e )  li(e) + eli(s)) ) 0 by (2.15), 
•---*0 

i.e. l~,vj,~-----)O strongly in L2(tg). The latter and (3.5) imply the desired limit (3.4). 
We have thus obtained three equalities (3.2), (3.3), (3.4) satisfied by the constants 

cj, i for 1 ~< j ~< k and 1 ~< i ~< n. The next step consists in proving by induction on 1 ~< 
~< k ~< m - 1 that these constant satisfy 

(3.7) ck, j ~ -  0 for 1 ~< j ~< k - 1, 

(3.8) Ck,j'~Ck, k+l forj~>k+l, 

and that the eigenvalue )~k(s) satisfies equivalence (2.17). 
The following subsection is devoted to the proof of (3.7), (3.8) and (2.17) for 

k = l .  

3.2. Estimate of  the f irst  non-zero eigenvalue. 

3.2.1. A capacitary result carrying on the bridges. - Let us give a capacitary estimate of 
each bridge Qk, ,, 1 ~< k ~< n - 1, which is an adaptation of a similar one in [3] and a key 
ingredient for obtaining the limiting behaviour of the spectrum. 
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LEMMA 3.2. - Let 1 <~ k <~ n - 1 and let FJk, ~ be the function defined by 

(3.9) 

( jOy j ) ( k o l )  V~ ~(y) = 1 i f  y ~ (J Qj,~ ' 1 j 1 

a~, At) 
- 

lk(e) 
i f  y =  O~,~(t, v, fl) eQk,~, 

where Y~ is the period of  the weakly connected domain defined by (2.2), the function 
k, ~ is the diffeomorphism from (2.4) and a k, ~ denotes the curvilinear coordinate 

along the curve Fk, ~, i.e. 

t 
ak, ~(t) := f IF~, ~(s)Ids.  

0 

Assume that conditions (H3)-(H4) and (2.15) hold true. 
Then, the bridge Q~, ~ satisfies the equivalence 

(3.10) IQ~,~ I ~-'ffo a k(e) l,(e). 

Moreover the function ~Jk,~ verifies the estimates 

(3.11) IVV~,~I- 1Qk'e+O~(1) and 
lk(e) 

ak(e) 

where o~(a(e)) means <<a(e), and for any yeHl(ye) 

I (3.12) 
1 

5k(e) the characteristic size (2.8) of the bridge Qk, ~. where 5 ~(e) ~-~o 

This lemma is proved in the next section after the proof of Theorem 2.7. 
By rescaling estimate (3.12) with the function 

which is equal to zero outside co ~, ~, we obtain for any function v ~ H 1 (D ~) 

(3.14) Vv'V~k,~-Sk(e)  ~ v <~O~(Sk(e)I/2)IIVVllL~(~). 
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3.2.2. First  estimate of 2 l(e). - The Courant-Fisher formulas yield 

IVvl ~ 

1 (e) = min De 
v~Hl(De)\{0}v• f v2 

D~ 

We then put the function v~ := vl,~ - ~ Vl, e i n  the previous infimum. Since ~ ~,~--~ 01 
De D~ 

by (3.3) and (3.9), we have )~ v] --* 01 (1 - 01) > 0 which implies that  
De 

C ~ 

De D~ 

I t  follows thanks to (3.11) the first estimate 

(3.15) 21(e) ~< c5 l(e) .  

3.2.3. Proof of Cl, j ~- el, 2 f o r j  I> 2. - Let  2 ~<j ~< n - 1. We put v := v~, ~ the eigenvector 
associated to )11(~) and k = j  in estimate (3.14), which yields 

~ l (~ ) ] v~ '~ '~ -~ (~ ) I  IYJ l  IY~§ v~'~l~<~ 
De De 

since Ilvv~,~ll~(D~)= (1~1~1(~)) "~= o~(~j(~))~ by (2.16). However, estimate (3.15) 
implies that  A I ( E ) = O s ( ( ~ j ( ~ )  ). Then by dividing the previous estimate by 

5j(s), the following limit holds 5~(e) ~-~0 

De IYJl [Yj+I[ Vl' ~ e'-~ 0 

and consequently cl,j  = cl,j + 1 since 1D~, evl, ~--~[ Yi[Cl,j by (3.1). We thus obtain c~,j = 
= c~, ~ for j I> 2, i.e. (3.8) for k = 1. 

3.2.4. Proof of the equivalence )~ l(e) - cl 5 l(e). - We now put v := Vl, E and k = 1 in esti- 
mate (3.14) divided by 51(E) to obtain 

~.I(E) f ~l(e) f (  1D1,~ 1D~,~) 

which implies the convergence 

~ D e  vl,~Vl ~--w l~l(ci, l-cl,2). 
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We have also 

f vl '  e~l'  e '''->e--*0 I~r~l IYl lCl '  1 
Q~ 

in which Cl, 1 ;~ 0 since (3.3), (3.4) and (3.8) for k = 1 give 

OlC11+( 1o,) , :o 
J 

01C21"-I- (~>lOJ) C122-~ j ' 

i.e. (2.19) for k = 1. Both previous limits thus imply that  

~" 1 (8) Cl, 1 -- Cl, 2 1 1 > -- _ _  + 
(~1(~) e'-*O c , , l l Y l l  IY, I j~>~lYjl 

which is the desired equivalence (2.17). 

3.3. Est imate  of  the k-th non-zero eigenvalue. - We proceed as in Subsection 3.2 by giv- 
ing a first estimate of )~ k(s), then by proving equalities (3.8). From this point, the proof 
is quite different of the case )~l(e) since it is not evident that  

(3.16) ck, k ;~ Ck, k + 1. 

Assuming (3.16), we yield a second estimate of ;tk(e) which allows us to prove (3.7) and 
then to obtain equivalence (2.17). We conclude this section with the proof of inequality 
(3.16) by using in an essential way the induction hypothesis, i.e. equalities (3.7) and (3.8) 
for the ( k -  1) first non-zero eigenvalues. 

3.3.1. Firs t  estimate of ilk(e). - Let  us prove that 

(3.17) )~k(e) ~< cSk(s) .  

Let  us define the fonction 

k-1 
Ve : :  Vk, s - -  V k - l , s - -  Z (Vk, e- -  Vk- l , s ,  Vj, e)y2eVj, s, 

j=O 

where vk, ~ is defined by (3.9) and (3.13). The function v~ is perpendicular to the projec- 
tion in the vector space spanned by the k first eigenvectors vj, ~ of the function ~k, ~ - 
- v ~ - 1 ,  ~ which is a smooth approximation of l~k, ~ by definition (3.9). Then by the 
Courant-Fisher formulas, we have 

Ilvv ll   
;tk(~) -< - -  

IIv ll   
if v~ ;~ 0. We have by estimate (3.11) satisfied by  ~'k, 

C C' IIv k, ll  - < 7zllvrik, ll  -< 
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which implies 

k-1 ) 
Ilvv~ll~, -< cl IIv~, ~IIL + IIv~_ 1, ~11~, + Y. I1% ~11~ -< 

j=O 

<~ cz(Ok(e) + ak_,(e) 
k-1 ) k-1 

+ ~o~.-(e) ~< c~ Y~ 5~(e) < c4dk(e) 
j= j=0 

since by induction hypothesis 2j(e) ~< c(~j(e) for any 0 ~<j ~< k - 1. 
It  remains to prove that IIv, l[o, t> c > 0 to obtain estimate (3.17). The orthonormality 

of the family of eigenvectors (v#, ~)j ~>1 yields 

k-1 
= - ( v k  ~ - v k -  1,  ~, vj, ~)~, IIv~ll~ II~,~ ~,~-l , , l lL-~.= , 

which tends to 

k-1 
~ : = O k  E z z - Okcj, k 

j=O 

by convergences (3.5) and since ~a, ~ -vk-1 ,  ~ -  lak.~ --)0 strongly in L~(~).  Moreover, 
we have by (3.3), (3.4) and by the induction hypotheses (3.7), (3.8) for 1 <~j<<-n-1, 

co2 k = 1 and c~, k = c}, j + , - 

The limit fl of Irv, ll~, thus satisfies 

2 k - l /  1 1 ) _ 

fl = O k -- 02k -- O kj~-- l [ i > j E O i i ~ O i 

Oj 1 1 

i>j i>~j i>j i>~j 

= o ~ - o ~ - o ~  E-o~ 1 =o~ i ~ > o  
i>~k i~k 

which implies (3.17). 

since k < n ,  

3.3.2. Proof of Ck, j = Ck, k + 1 for j  I> k + 1. - We repeat the same argument as for 2 1 (~) by 
putting v := vk, ~ and ~j, ~ for k + 1 ~<j ~< m in estimate (3.14), which yields 

;Lk(t) f V I"T-7V,, ! k,~ j,~ OjI,,S) ~: 

(~k(~) / 1~ 
~<0~ ~] =0~(i), 

since by (3.17) and (2.16))~k(s) ~< cSk(s) = Oe(6j(~)) fo r j  > k. By passing to the limit in 
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the latter, we thus obtain thanks to convergence (3.1) 

I~'1 
1~+~,~ Ivk ~'--~ IQl(c~,j-c~,j+l) =0 i.e. (3.8). 
IYJ+xl ] ' ~_~o 

3.3.3. Proof of the equivalence 2 k (e) - c a  5 k ( e ) . -  We also proceed as for 21 (e) by using 
(3.14) with functions v := v~, ~ and vk, ~, which implies thanks to (3.17) 

= o ~ ( 1 ) .  

We also have 

( l~k'~ l~k+l'" ) ~ I~l(v~,k-c~,k+l). 
IY.I IYk+ll v"'~ ~-~~ 

f2e 

Let us assume for the moment inequality (3.16). Both last estimates combined with 
(3.17) then imply that 

k 

0 ~ lim I vk,~v~,~ = I~I Z 1% I c~, 
e - - * 0  j = 

Q~ 

and therefore the equivalence 

(3.18) 
2k(e) Ck, k--Ck, k+l 

j~k  

which is not exactly (2.17) but it is useful to prove (3.7). Once (3.7) will be proved, we 
will deduce (2.17) from (3.7) and (3.18). 

3.3.4. Proof of ck,j = 0 for 1 ~<j ~< k - 1. - Estimate (3.14) with v := vk, ~ and ~j, ~ for 1 
~<j ~< k -  1, divided by ~k(e) and combined with equivalence (3.18) and (2.16), yields 

which implies the limit 

J 
I v k ~ j ~  ~.0= ~ l Y i l c k i  for 1 < j ~ < k - 1  

' ' E-"*O i = l  ' 
Q e  

and therefore (3.7). 
Now equivalence (2.17) can be easily deduced from (3.2), (3.7), (3.8) and (3.18). It 

thus remains to prove inequality (3.16) we assumed before to conclude the induction 
proof. 
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3.3.5. Proof of ck, k ~ c~, k + 1. - Let us prove it by contradiction. The equalities ck, j ~-  

= ck, k+l = ck, ~ hold true since the proof of (3.8) only uses first estimate (3.17) and not 
equivalence (3.18). Then by the orthogonality of the family (vj, ~)j ~ N in L 2 (~j ~ ), we have 
for any 1 < ~ j < ~ k - 1  

(vi, ~, vk, ~)Q~ )0---- OiCj, iCk, i---- Z OiCj, iCk, i "~- OiCj, i Ck, k, 
e-*O i=1 i=1 i 

which combined with equality (3.2) shows that the vector 

(3.19) Ck := �9 R k • 1 

C ,  

and the matrix 

(3.20) Tk := 

01 02 "*" Ok-1 Z Oi 
i>~k 

01Cl ,  1 02Cl ,  2 "'" Ok-lCl ,  k -  1 Z OiCl,i 
i~k 

01C2, 1 02C2, 2 "'" Ok-lC2, k-1 Z Oic2, i 
i>>.k 

: : ". : : 

OlCk-l ,1  OlCk- l ,2  "'" O k - l C k - l , k - 1  Z OiCk-1, 
i>~k 

� 9215  

satisfy the linear system Tk Ck = 0. However, by the induction hypothesis the coeffi- 
cients cj. ~ satisfy (3.7) for 1 ~<j ~< k - 1, which imply the equality 

T~= 

01 02 "'" 0~_1 Y~Oi 

0 1 e l ,  1 02Cl ,  2 "'" Ok-lCl ,  k -  1 Z OiCl,i 
i>~k 

02C2, 2 "'" Ok-lC2, k-1  Z OiC2, i 
i>~k 

�9 . : : 

0 O k - l C k - l , k - 1  Z OiCk- l , i  
i>~k 

Then by replacing the k-th column Tk(k) of T~ by Tk(k) + ~, Tk( j )  in the determinant 
j<k 
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of T~, we obtain thanks to equalities (3.3) satisfied by the coefficients cj, 

det Tk = 

O~ 02 

01C1,1 02Cl,2 

02c2,2 

�9 "" O k _  1 1 '  

�9 "" O k _ l C l ,  k _  1 0 

"'* O k _ l C 2 ,  k _  1 0 

" . .  : : 

O k _ l C k _ l ~ k _  1 0 

k-1  
= ( - 1 )  k-1 I-I Ojcj, j~O 

j = l  

since the coefficients cj, j satisfy (2.19) by  the induction hypothesis. The matr ix Tk de- 
fined by (3.20) is thus invertible and consequently the vector C~ defined by (3.19) and 
solution of TkCk = 0 is equal to 0. Finally by (3.8), ce,j = 0 for any 1 ~<j ~< n which con- 
tradicts (3.4). 

3.4. Convergence of  the rest of  the spectrum. - We proceed in two steps. In the first  
step, we prove that  )[ k(e) converges to a non-zero eigenvalue of operator  (2.20) for any 
k t> m. In the second one, following the same argument  as Vanninathan [8] for a 
strongly connected domain, we prove that  any eigenvalue/~ of elliptic problem (2.20) is 
the limit of a subsequence (;t k (e))~ > o for a suitable k/> m. As Vanninathan noted in [8], 
the previous result  implies the convergence of the spectrum (~t ~(e))k~>m to the non-zero 
par t  of the spectrum from (2.20). Also note tha t  this convergence still holds t rue  for the 
zero eigenvalue from (2.20) whose multiplicity is equal to m since ~k(e) - - )0  for 
O<~k<~m-1.  

3.4.1. Fi rs t  step. - By using a diagonal extraction, we can assume that  ;t~(e)--);tk for 
any k I> m up to a sequence of e. Theorem 2.7 applied to the functions u~ := vk, ~ and 
fi  := )~k(e) vk, ~ implies that  2k for k I> m is an eigenvalue from (2.20). I t  thus remains to 
prove that  )~ k > 0 for any k I> m or equivalently )~ m > 0 since ;tm is the smallest. We pro- 
ceed by contradiction assuming that  ) ~  = 0. Then by the convergence results of Sub- 
section 3.1, the normalized eigenvector v~,~ associated to the eigenvalue )~g/(e) 
satisfies 

1Q~,v,~,~----~lYilc,~,i weakly in L2(~2) for 1 <~i<~n, 

where c~, i are constant such that  

n n 
~ O~cm, i=O and ~ Oic~,~= l .  

i = l  i = l  

Moreover by proceeding as in Subsection 3.3, estimate (3.14) combined with 
;ti(e) - 5~(e) = o~(dm(e)) (since 5re(e) ---> d m > 0) imply cm, i = 0 for any 1 ~< i ~< m - 1, 
and estimate (3.14) combined with ~m(e)---)0, and thus ; t in(S)= O~(di(e)), imply the 
equality c~, i = c~, ~ for any m ~< i ~< n. Consequently, the vector C~ e R m • 1 from (3.19) 
in Subsection 3.3.5, is solution of the linear system T~ C~ = 0 in which the matr ix T~ �9 
�9 R ~ • "~ from (3.20) is invertible. I t  thus follows that  c~, ~ = 0 for any i ~< i ~< m, which im- 
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plies the contradiction 

1 =  Oic~ i = Oi c~,~=0. 
i = 1  ' i 

3.4.2. Second step. - W e  denote by v'k := (vk, 1, " " ,  Vk, n) the limit of each eigenvector 
vk, ~, k E N, according to the homogenization Theorem 2,7, i.e. 

1Q~,vk, E--'lYilvk, i weakly in L2(tg) for 1 <<.i<~n. 

Note that the family (~k)k ~N is an orthonormal basis of L 2(~9)~ provided with the norm 
I1" IIQ defined by (2.14), since the extension result of Subsection 3.1 applied to each do- 
main ~9 i, ~ implies the strong convergence 

l~,~(Vk, e--Vk, i)-->O strongly in L~(~9) for l <~i<~n. 

Let us now prove the correspondence between the limit of the spectrum ()~ ~ (s))k ~> m and 
the non-zero part of the spectrum of problem (2.20). We proceed by contradiction as 
in [8] by assuming that there exists an eigenvalue /t > 0 and an eigenvector u = 

= (Ul, ..., u n ) e H  from (2.13) such that 

(3.21) 

- d iv (AV~)  + J ~ = / ~ u  in ~ ,  

(AV ~) v = 0 on ~ ,  

Ir ll = 1 
(u, ~k)a = 0 for any k e N ,  

lim ~ k (e) #/~ for any k/> m .  
e ----) 0 

Let k e N such that 2/~ < 2k+ 1 and let u~ be the solution of the Neumann prob- 
lem 

(8.22) f -zlu~ =f~ 

c~ue 
- o  

~uc =O 

in Q~, 

on 9~9~, 

where the domain • '~ is defined by (2.26), the zero Q ~-mean function f~ by 

m 

f i : = # i ~ l -  1~,~ u i -  ui + # i = ~  ~ l~i~ui-~c~l~ 
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and the constant c~ by the mean value 

n 

E 
d" 

c, := ~ 1~ ,ui. 
i = m  

Contrary to the case of [8] where ~ is a strongly connected domain,/~e. Q~ is reduced 
to one of the domains ~ ~, ~, the sequence u, from (3.22) is not necessarily bounded in 
H~(Q~). However, the part i) of Theorem 2.5 applied with m = 1 shows that the first 
non-zero eigenvalue of each domain ~ ~, ~, 1 <~ i ~< n, as well as the domain ~ '~, related 
to the Neumann problem are greater than a positive constant and therefore the 
Poincar4-Wirtinger constant (see (2.23)) of these domains is bounded with respect to s. 
Then by putting u, in (3.22), we have 

which implies the boundness of Vu, in L 2 (Q,)a as well as the boundness of u, in L 2 ( ~ , )  
by the uniform Poincar4-Wirtinger inequality in Q '~ since u, has a zero Q '-mean. We 
thus deduce from Theorem 2.7 

1~ u~-', [Yilu~' for m<~i<~n, 

where ~ '  := (u; ,  ..., u ' )  is an eigenvector from (3.21). Furthermore, since 

n fu,'=o for l ~ < i ~ < m - 1  and /IY, l ,'=nm 
i = m e " ~ O  

the function ~ '  belongs to the space H (2.13) in which problem (2.12) has a unique sol- 
ution, whence it follows the equali V ~ '  -- ~. Then, by putting u~ in (3.22) we obtain the 
limit 

(3.23) [Vu~[2= f ,u~= X /z ui ui u~ u~ + 

n n 

The next step now consists in substracting to the function u~ its projection in the 
space spanned by the (k + 1) first eigenvectors vj, ~, 0 <.j <<. k. However, since u~ is not 
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necessarily bounded in L 2 (Q ~), we have to modify it. Let  us then consider the functions 
up and vp defined for any p e N by 

m - 1  
uP : :  Z (Vi, e --  V i -1 ,  e) TP(ui, e) + (1 - v~ - l ,  ~) TP(u~) (v0,~ := 0) ,  

i = 1  
k 

vp : = u p -  E(uP, v~,e)~ v~,e, 
j=O 

where ~i, ~ is defined by (3.13), ~i, ~ is a bounded extension o f / u e -  ~ u~/according to 
\ a,,~ / 

the extension result  of Subsection 3.1, and TP(t) := min (p, m a x ( - p ,  t)') denotes the 
truncature at the size p. By definition of the functions vi, ~, we have 

~i, _ ~ i _ 1 ,  _ 1 ~ ,  __> 0 

~t 

1 - - ~ ) m _ l ,  e --  ~ la~ -->0 
i = m  

strongly in L 2 (f2) 

strongly in L 2 (tg). 

for l <.i<.n, 

Thanks to the Rellich Theorem, the extension result  in each domain ~9 i, ~ implies the 
strong compactness in L2(ff2i, E) which combined with the Lipschitz proper ty  of the 
truncature gives 

TP(~t~,~)----)TP(u~) strongly in L2(tg) for 1 ~ < i ~ < m - 1 ,  

la~.~(TP(u~) - TP(ui)) --->0 strongly in L2($9) for m ~< i ~< n .  

Moreover, the norm of TP(~i, ~) as well as TP(u~) over each bridge w~, ~ for 1 ~< i ~< n - 
- 1, tends to 0 since T p is bounded by p and I w ~, ~ I --* 0. Combinning the previous limits 
then yields 

[[u~lI~ ---> OjTp(u~)2=llulla+op(1)=l+op(1), 
e ---~ 0 i = 

where  op (1) ---> 0 when p---) + oo, and similarly for any 0 ~< j ~< k 

(8.24) ~_ IOJTP(uj) vj, i = (u, -vj)a + op(1 )  = op(1) (uL vj,~)o, ~ i- 

which imply 

) 1 + op(1). (3.25) Jtvplb, 
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On the other band, we have by estimate (3.11) 

n - 1  

I i - v , ~ - l , ~ l ~  < E 1 ~ u o ~ , + 1 ~ , ~  
i = m  ' ' ' 

for l < . i < . n ,  

for l <<.i<~m-1.  

Then since ]VTP(u)] ~ < I Vul, we deduce from the previous estimates 

lira ltVupll~ ~< 2 lim IlVu~ll~ = 2it by (3.23) 
~---~0 e--~0 

(the factor 2 is due to the fact that the integral over the sets w ~, ~ is counted twice by 
summing over the sets ~ i, ~ U w i, ~ U w i - 1, ~ for 1 ~< i ~< m - 1 ), which combined with 
(3.24) implies that 

(3.26) IT llvv ll  + %(1) .  
e ""~ 0 

Finally, since the function v~ is orthogonal to the functions vj, ~, 1 <~ j <~ k, the Courant- 
Fisher formulas imply that 

~tk+l = lim ;tk+l(e) ~< lim IlVv~ll~" Ilv ll   + op(1) 

and hence A k+ 1 ~< 2t t which yields the contradiction. 

by (3.25) and (3.26) 

4. - P r o o f  o f  the  auxi l iary  results .  

The first subsection is devoted to the proof of the homogenization result Theorem 
2.7. The second subsection consists in proving the results concerning the bridge Qk, ~: 
the capacitary result of Lemma 3.2 and the LI(Qk, ~)-estimate of Lemma 3.1. In the 
third subsection, we prove technical results related to the geometry of the bridges as 
Lemma 2.2. 

4.1. Proof of the homogenization Theorem. - The proof is quite similar to that of [3] for 
n = 2 weakly connected materials except that the maximum principle cannot be used in 
our context since the right hand side fi of the Neumann problem (2.24) is only a bound- 
ed sequence of L2(tg~). We then replace the maximum principle by estimate (3.6) over 
each bridge Qj,~, 1 <~ j <~ n - 1. 

For the reader convenience, we recall the main points of the proof which is divided 
in two steps. The first step consists in getting the limit of each sequence l~k, Vu~, 1 ~< 
~< k ~< n, and the second one in obtaining the coupling terms J u  from (2.29). 

4.1.1. Limits of la~. Vu~, 1 ~< k ~< n. By using the extension operator Pk, ~, 1 <~ k ~< n, 
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from H~(~2~,~) into Hi(if2), introduced in Subsection 3.1, we obtain up to a subse- 
quence 

(4.1) 

{uk,~ :=Pk,~ u~ u~ --'uk weakly in HI(.Q) for 1 <.k<<.m - 1, (oj) 

where Q '~ is defined by (2.26) and u e H defined by (2.13). As in [3], let us define the 
test-function w~, ~ for any 1 ~< k ~< n and ~ e R 8 by 

where W~ is defined by (2.22) and ~ k is a smooth Y-periodic function such that ~p k = 1 
in Y~ and ~f ~ = 0 in Yj for j ;~ k. One can prove that w~, ~ satisfies (see [3] for more 
details) 

(4.2) 
f w~, Ax) -~;~.x w2, ~(x) = ; . .x 

A(l~k ' w~,~) = 0,  

weakly in WI 'P(~) ,  

in ~j,~ f o r j ~ k ,  

weakly in L2(~)  8, 

where p > 2 and A~ is the matrix defined by (2.21). 
Since div (1~ Vu~) = la~ fi is a compact sequence of H - 1 ( ~ ) ,  the Murat-Tartar div- 

curl Lemma [6] yields 1~ Vw~, ~--~.2 in d) (~)  where la  Vu~--~ in L2(Q). We have 

= ~ ~k where l~k, Vwk ~, ~---~k in L2(~)  since the weak limit in L2(Q) 8 of l~k, Vu ~ 
k = l  

which strongly converges to 0 in LI (Q)  a, is equal to 0. On the other hand, we have for 
any A e R 8 

(4.3) ~ = l~k. Vw~, V~k + ~ loj Vu~'2 +rk,~, I ~ J k , ~ W k ,  s ' V U e  s" , t  j ~ k  ' 

where 

n - 1  

rk,~ := ~ I~j.,VWk~,~').-->0 
j = l  

strongly in L 1 (~ ) ,  

since Vw~, ~ is bounded in LP(Q) 3 for some p > 2. Furthermore by the div-curl Lemma 
combined with the zero-divergence from (4.2) and convergence (4.1), we get 

l~k, Vw~,~.V~k,~--~Ak2.Vuk weakly in (D'(•) for 1 <~k<<.n. 
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Then, passing to the limit in (4.3) yields 

~j = Ak Vuk + E ~j 
~ - j = l  j~k  

for any 1 <~k<~n, 

which implies that  ~k = A~ Vug and therefore 

(4.4) lm~,Vue...-,AkVuk weakly in L~(Q)  for 1 <~k<~n. 

4.1.2. Determination of the coupling terms. - Let  us define for any function r k ~ C 1 (D), 
1 ~< k ~< n, the function 

n - 1  

~ := ~ ~ ( V k , ~ - - V k - I , ~ ) + r  
k=l 

where vk, ~ is defined by (3.13) and Vo, ~ := 0. Putt ing the function ~ in equation (2.24) 
yields 

(4.5) f Vu~.Vq~ ~= f ficp~. 
m~ me 

Since (vk,~ - vk, e - link, ~) --) 0 for i ~< k ~< n - 1, and ( 1 - ~. _ 1, ~ - lmn,  ~) --~ 0 strongly in 
LZ(tg), we have 

(4.6) 
n 

m e m 

Similarly, we have thanks to convergences (4.4) 

(4.7) 
n - 1  n 

f k=lE VUe'VCfk(~) k, e - V k - l ' e )  -~- VUs'Vq)k(i--~)n-l'e)'--'-~E.--*O fk~=l AkVuk 'V( fk"  
me m 

Assume for the moment that  for any ~ e C 1 (D) 

(4.8) f V u ~ ' V ~ k , e r  f S ~ ( u k - u ~ + l ) r  for l < . k < . n - 1 .  
me m 

The latter implies that  ( 5 o ( e ) : =  0) 

n - 1  

(4.9) f Z V U e ' ( V V k  e - V ~ ) k - 1  e)~k--VUE'V~)n-1  ~Q~n )- 
k = l  ' ' ' e--)0 

me 

n - I  

) fk~=l[(~k-l(Uk -- Uk-1) + (~k(Uk -- U k + l ) ]  ~)k + (~n-l(Un -- Un-1) ~)n-l" ~."'-~0 = 
m 

Finally by  passing to the limit in (4.5) thanks to the limits (4.6), (4.8) and (4.9), we ob- 
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rain the equality (C~o = c~_~ : = 0 )  

k = l  k = l  

which is exactly the variational form of (2.29) by Notation 2.3. 
I t  remains to prove (4,8). It  is clear for 1 ~< k ~< m -  1 since by (3.11) we have 

IIV~k, ~IIL2(a~)~< CSk(e)l~--)0 and 5k = 0. 
Le t  m ~< k < n - 1. Est imate (3.14) applied to the function v := (qgu~)(ey) gives 

f2 QE 

which combined with convergences (4.1) also yields 

~V~k ~.V(~u~) ---> fSk(u~ - uk+~) r �9 
, e . ._)O 

Now (4.8) is reduced to 

(4.10) f V ~  k ~.VCu~ > 0 .  
, e.._) 0 

In [3], the lat ter  is an immediate consequence of the maximum principle. Here,  it is a 
consequence of Lemma 3.1 about L ~(Qk, ~)-estimate. Rescaling estimate (3.6)with func- 
tion V(y) := u~(ey) yields 

2 ]u~ L2<~k ~) ~< Clk(e)(ak(e) + e) 

since u~ is bounded in H '  (t~ '~). Then by the Cauchy-Schwarz inequality and by  estimate 
(3.11), we get  (! )2,o  

Ilu llb<  , > e 2 / k ( e )  2 

e Ik(e) 

a.(o: ) 
by (3.10) ~< ca ~ + 1 -----> 0 .  

E e--+O 

by condition (2.15), which yields (4.10) and hence (4.8). �9 

4.2. Proof of  the bridge capacitary result. - For  proving Lemma 3.2 we need a few re- 
sults of differential geometry  on each bridge Qk, ~, 1 < k ~< n - 1. 
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LEMMA 4.1. - Assume that geometrical conditions (H3)-(H4) as well as limit (2.15) 
hold true. Then, for any 1 <~ k <~ n - 1, the curvilinear coordinate a k, ~ and the tangent 
vector Tk,~ := dF~, ~/dak,~ related to the curve Fk, ~ which defines the bridge Q~, ~ by 
(2.4), satisfy 

(4.11) IlVak, ~ - Tk, ~]]L ~(Qk. ~ ) ~  0, 

(4.12) div Tk,~ = 0. 

Moreover, the gradient of the function O k, ~ in (2.4) with respect to the coordinates 
(o, v, fl) e]0, lk(e)[ XXk, ~, verifies 

) 0  (4.13) [[[VOk, ~ [ - 1 [[L~(]O, /k(s)[• ~) s---~O " 

PROOF OF LEMMA 3.2. 

Proof of (3.10): By the change of variable Ok,~ of assumption (H3), we have 

lk(e) 

Iq~,  = f f [det(VOk'~)ldodvdf l~olk(e) lY"~'~l-- lk(~)ak(e)  by (4.13). 
O Xk,~ 

Proof of (3.11): It is an immediate consequence of (4.11) and (3.10). 

Proof of(3.12): The proof is an adaptation of Lemma 3.1 in [3] by taking into account 
the geometry of the bridge Qk, ~ thanks to Lemma 4.1. By definition (3.9) and property 
(4.11), we have for any VEHI(Y~) 

1 1 1 
~-z f vv.v~,k - - -  f VV.T~ ~ §  f VV.R~,~, 

Qk,~ ' s  e21~(e) Qk, e ' e21k(s) qk,~ 

where [IRk, ~]]L | e) -->0" By the Cauchy-Schwarz inequality, the last term is bounded 
by 

I Qk,~ I 1/~ 

s ~ l~(s) 
IlRk, ~IIL ~(Q~,~)IIvVIIL~r ~) = o~ IIvVIIL~(Q~, ~) by (3.10). 

We thus obtain the first estimate 

(4.14) 
1 

Qk, e 

! ( ~k(~)l~ ) 
1 VV" Tk,~ + o~ IIWIIL~r 

~2 lk(e) Qk, t 
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Denoting by Vk the mean value of V over Y~, we have 

(4.15) 1 ! VV.Tk,_.~k(e)(~zk_wdk+l)= 

_ 1 f V(V-  Vk, ~wdk - (1 - ~'rk,~)~rk+l)'Tk, E, 

where by (4.11) together with (3.10) 

1 ! WW~k ~.T~ lQk,~l 6k(E). 
~k(e)'-- S2/k(e ) Qk. ' 'e e--*0 e2/k(e) 2 s--*0 

On the other hand, since Tk, ~ has a zero divergence by (4.12) an integration by parts in 
the right hand side of (4.15) yields 

1 f V ( V -  Vk,~Vk- (1 - ~'k, ~) Va+l)'Tk,~ = 
821k(8) Qk, e 

_ 1 f ( V -  Vk) Tk, ~-v + 
e2/k(e) rk,~ 

1 f (v-v/k§ Tk,,.v, 
~2/k(e) r~+,,~ 

where F~, ~ denotes the boundary ~Yk N 3Q~, ~. By the Sobolev imbedding Theorem in 
two-dimension, the trace of the function ( V -  Vk) belongs to L4(Fk) where Fk, ~c Fk a 
f~xed open subset of ~Y~. Then by the Poincar6-Wirtinger inequality in Yk, there exists 
a constant c > 0 such that I[V- Vk [[L'(rk) ~< c][VV[[L2(yk), which implies owing to the HSld- 
er inequality in L 4(Fk, ~) combined with the estimate IFk, ~ ] <~ cak(s) 

e21k(e) Qk,, 

ak(E)3/____~ 4 ( (~ k(E) 1/2 ) 
<- E2lk(~ ) [[VVIIL2<y~)= o~ - ~ IIvvII:<y~>. 

The latter combined with (4.14) and (4.15) yields desired estimate (3.12), which con- 
eludes the proof of Lemma 3.2. �9 

PROOF OF LEMMA 3.1. - Let V~ Cl(yk ~J Q~, ~). By the change of variables Oh, ~ relat- 
ed to definition (2.4) of the bridge Qk,~, we have with W(a, v, f l ) := [V[(y), y = 
= Ok, ~(a, v, fl), 

lk(~) 

IIVllL~<Q~,,) = f f W(a, v, fl) ldet(VOk,~)]dadvd fl 
0 ~'k,e 
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and thanks to estimate (4.13) there exists a constant c > 0 such that 

(4.16) 

be(e) 

IIVIILI(Qk,~) ~ C f dvd 8 ~ W(~, ~, 8) d{~. 
~,k,e 0 

Moreover by assumption (H4), we can extend in Yk the bridge Qk, ~ by a small cylinder 
of fixed length lk in such a way that 

(4.17) Rk,~ := {y= Fk,~(O) + aTk,~(O) + vNk,~(O) + SBk,~(O); oe ]0 ,  lk[,(u, 8) eXk,~} 

is a subset of Yk. We can then extend in a natural way the diffeomorphism q) k, ~ of (2.4) 
from ]0, lk(e)[• to ] - I k ,  lk(e)[• which becomes a diffeomorphism from 
] -  lk, lk(e)[ xX~, ~ into the interior of Qk, ~ U Rk, ~. We have for any ae ]0 ,  lk(e)[ 

W(a, v, 8) = W -"Ik(e) a, v, 8 +-(~k/Zk(~))o ~S - - ( s ,  v,8) ds 

and by integrating with respect to ae ]0 ,  lk(s)[ 

l~(e) 
~ W(a, v, fl) da<~ 

o ~ I lk(e) f W(a, v, fl) da + lk(e) ~s  (a, v, fl) da. 
lk -lk 

Then, by integrating the latter with respect to (v, f l )eXk,  ~ and by using the inverse 
change of variable ~ , ~  the gradient of which is uniformly bounded by (4.13), we de- 
duce from estimate (4.16) that there exists a constant c > 0 such that 

(4.18) [[VI[L,(Q, ,) <- c k(e)( VI[L,(R, ,) + []VViiL,(R, ,u Q, ,>). 

On the other hand, by the Poincar~ Wirtinger inequality in Yk and since the set Rk. 
from (4.17) satisfies IRk, ~ I ~< cak(s), we have 

IIV[IL '(Rk'~) ~ IIV--Yk ~ VIIL I(Rk' ,) + [Rk, ~ l [ r! V I <~ C[[VVIIL I(Yk) F Ca k(e)HV]IL I(yk) 

which combined with estimate (4.18) yields (3.6). �9 

4.3. Proof of the differential geometry lemmas. 

PROOF OF LEMMA 4.1. 

Proof of(4.11): We prove the result for the tube d = 3, the case of the curved plate 
d = 2 is quite similar. For the sake of simplicity, we omit the indices k and ~. We have 
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for any component j e {1, 2, 3}, y j=Fi(a)+ vNj(a)+fiBs(a) which yields for any 
i , j e  {1, 2, 3} 

(~ i , j  - -  
aa ( aF~(a) aNt(a)  aBj(a) ) Ni afi - -  + v  +fi  + av (a )+  Bj(a)= 
O'y~ Oa Oa Oa OYi OYi 

aa Tj(a) = (1 - vq) ay--~. ( )  av aa N~(a) + afi v,: Bj(a) + + fir a j ,  

since the Frenet  formulas give 

OF(a) OT( o) aN(a) aB( a) 
(4.19) - -  =T(a) ,  - -  -QN(a),  - qT(a)-vB(a) ,  - -  =vN(a), 

Oa aa Oa 0(7 

where Q and v respectively denote the curvature and the torsion of the curve F. We 
then deduce from the latter together with the orthonormality of the Frenet  basis 
(T, N, B) 

a Oa 
Ti = j=IZ 5i,jTj = (1 - vq) ay~ 

or equivalently 

1 
(4.20) Vo = T 

1 - v 0  

which implies (4.11) thanks to (2.15). 

Proof of (4.12): By (4.20) we have 

aT~ 
d i v T =  X 

i = l  O~i 

_ ~ Oa O T i _  q 

i=10y i Oa 1--V~O 
- - T . N = O  

which proves (4.12). 

Proof of (4.13): The gradient of the function 

q)(a, v,/3) := F(a)  + vN(a) + fiB(a) 

is given by the 3 • 3 matrix 

V,#=(Oq~ a,/, oc/,)  
aa ' av ' afi 

and thanks to formulas (4.19) and to the orthonormality of (T, N, B) 

V~b = (1 - vo)(T , N,  B) - vv(B, N,  B) +fir(N, N,  B). 
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The orthonormality of the family (T, N,  B) then implies that  

IVr = l+O(IvOI § I~1 § I~1) 

which yields (4.13) owing to condition (2.15). �9 

PROOF OF LEMMA 2.2. - The only difficulty is to prove that �9 k, ~ is one to one. We 
prove it for d = 3, the case d = 2 is quite similar. We also omit the indice k in the follow- 
ing. We proceed by contradiction. Assume that there exist a sequence of positive num- 
bers e which converge to 0 and vectors (sE, u~, fl~) ;~ (t~, #~, y~) e [0, 1] x X~ such 
that q)~(s~, rE, fl~) = q~(t~,/~E, ~'~), which implies s~ ~ t~ since the vectors 
N~(sE),B~(s~) are free. Condition (2.5) and estimate fuji  + ifl~i + attaR + lYEI ~< 

ca(e) ltz imply 

c(e) 2 Is~ - t~ ]2 ~ ]F~(s~) - F~(t~)12 <. ca(e) 

and therefore 

a(e) 1/2 
(4.21) ]s~ - t~ t ~< c 

c(e) 

The equality O~(sE, v~, fl~) = O~( t~ , /~ ,  y~) also implies that  

F~(t~) - FE(s~) N~(t~) - N~(s~) B~(t~) - B~(s~) 
(4.22) .F j  (s~) = ~ ~ .F j  (s~) + ~'~ .F[  (s~), 

t~ - sE t~ - s~ t~ - s~  

since the family (F'(sE), N(sE), B(s~)) is orthogonal. On the other hand, the Taylor-La- 
grange formula yields 

(4.23) ] F~(t~)-F~(sE) _F , ( sE)  I <. 1 ]tE_s~IHHF,,il ~ 

Moreover, since N" = - (0 ~ N~ + v~ BE) i F"  ] where Q~ denotes the curvature and v~ the 
torsion related to the curve F~, we have 

(4.24) iN~(t~) - NE(s~) ] -< itE - sE i(lIQ~F;ii~ + i i ~ F ; l l ~ ) ,  

and similarly, since B" = v~ N~ ]F[ ], 

(4.25) [B~(t~) - B~(s~) I <~ ]t~ - s~ IIIv~F']]~. 

Now putting estimates (4.23), (4.24) and (4.25) in equality (4.22) yields 

1 s F" ]F'(sE) B <<.-~It~- ~6]] ~] ]~+] /~] ] ]Q~F ' i i~+( [ t tE i+ iY~l ) i tv~F ' l loo  
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which implies by (2.5) and (4.21), the existence of a constant c > 0 such that  

a(E) 1/2 
c(e) <~ IF/ (s~) l ~ c IIE;'ll~ + ca(~)l/2(llQ ~F'll| + IIv~F;ll| 

c(~) 

and thus contradicts condition (2.6) satisfied by c(e). �9 
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