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The Convergence of the Spectrum
of a Weakly Connected Domain (*).

MARC BRIANE

Abstract. — The paper deals with the convergence, as ¢ tends to zero, of the spectrum of the Neu-
mann problem —Av, = A(e)w, in a «weakly connected» periodic domain Q, of R3. The do-
main 2, 18 composed of a finite number of disjoint connected domains linked by thin
bridges (curved plates or tubes). Under a few assumptions on the characteristic sizes of these
bridges, we give an explicit asymptotic formula for the eigenvalues which tend to zero and we
prove that the rest of the spectrum converges to the spectrum of an elliptic coupled
system.

1. — Introduction.

The aim of this paper is to study the asymptotic behaviour with respect to a small
parameter ¢ >0 of the Neumann spectral problem

-Adv,=Ae)v, in Q,,
1.1) v,
v

= on 2082..

for some particular connected domain 2, obtained by the perforation of a given bound-
ed open set 2 of R3. Problem (1.1) can be associated to the Neumann problem

—Au, +u,=f in Q,,
12) ou,

=0 on 2092,
v

(*) Entrata in Redazione il 13 gennaio 1997.

Indirizzo dell’A.: Laboratoire d’Analyse Numérique, t. 55-65 5¢me étage, Université Paris 6,
75252 Paris cedex 05; Département de Mathématiques, Université Paris 12, 94010 Créteil cedex,
France.



2 MARC BRIANE: The convergence of the spectrum, etc.

where fis a given function of L2(). One of our motivotions is to know if some informa-
tion about the limiting behaviour of (1.2) can be deduced from the convergence of the
spectrum of (1.1).

Problem (1.2) has been widely studied in the case where Q. is a strongly connected
domain in Hruslov’s sense, i.e. there exists a bounded extension operator from H(Q,)
into H1(). This extension property was introduced by Tartar [7] for the homogeniza-
tion of perforated materials. Cioranescu and Saint Jean Paulin [4] first proved that do-
mains with periodie isolated holes satisfy the extension property and that problem (1.2)
then converges to the Neumann problem

div(AVu) + u=6f in 2,
AVyu-v=0 on 09,

where 0 := lirr}) |2.]/]92]| and A is a constant positive definite matrix depending on the

period of the structure. Acerbi, Chiado Piat, Dal Maso, Percivale [1] on the one hand
and Allaire, Murat [2] on the other hand then extended this result to the case of peri-
odic domains with non isolated holes.

Following [4], Vanninathan [8] proved that when the extension property holds, the
spectrum from (1.1) converges to the spectrum of problem

—div(AVv) =46v in Q,
(1.4)

AVov=0 on 09,

which is associated to problem (1.3).

On the other hand, Hruslov first noted (see also [3] for a new approach) that the
limit problem of (1.2) can be more complicated than (1.3) if the domain £, is not strong-
ly connected, i.e. it does not satisfy the extension property. For particular domains £,
which are called weakly connected by Hruslov, problem (1.2) can converge in some suit-
able sense to a coupled system. This degeneracy compared to the expected limit (1.3) is
due to the capacitary effect of very thin bridges which link several disjoint strongly
connected regions of the domain £,.

We are interested here in the spectral convergence of (1.1) for particular weakly
connected domains. More precisely, the domain €, has a periodic structure of period
cell €Y,. The rescaled period Y, is a connected open subset of the unit cube Y := [0, 13,
which is composed of n = 2 open subsets Y, of Y with disjoint closure such that for each
1 < k < n, the periodic set obtained by Y)-repetition is a connected regular open set of
R?, and for each 1 <k <n—1, Y, and Y, ,, are linked by a small bridge @ .. The set
Qx, . is a thin tube (along a curve) of length [, (¢) (which can tend to + o) and of cross
section area a;(¢) which tends to 0. The domain £, is thus weakly connected thanks to
the bridges Q;, ., 1 <k <n — 1, which link the consecutive disjoint connected parts Y,
1 <k <mn, of the period Y, (see Figures1 and 3 in the Subsection 2.1).

The result is based on the solutions Ae R, and v = (vy, ..., v,) € H'(2)" of the fol-
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lowing eigenvalue problem

div(4; Vo) + 0, (v —v)=A4|Y |y, in 2,
—div(4; Vo) +0,;_1(v;— ;1) +0,;(v;—v;,)=A|Y;|v; in Q,2sjsn-1,
—div(4,Vv,) +0,_1 (v, —V,_1)=24|Y,|v, in 2,
A;Vv;-v=0 on 09,

(1.5)

where 0; =0 for 1 <j<n — 1, and 4; for 1 <j < n, is the matrix which appears in prob-
lem (1.3) for the strongly connected domain of period Y. Since the matrices A; are po-
sitive definite, problem (1.5) is an elliptic coupled system of Neumann’s type and its
spectrum is thus a sequence of non-negative numbers: 0 =1,< A, <1,.... Note that if
(m — 1) numbers J, are equal to zero, the multiplicity of the eigenvalue zero is equal to
m since the solutions of (1.5) satisfy

7 n—1 7
Iz A]VU]V’l)J'f' f 2 (Sj('l)j_vj.,_l)z:ﬂ.j_z 7)j2.
QJ=1 o j=1 .Q]=1

The main result of the paper is then the following:

THEOREM 1.1. — Denote by 0 = A4(e) <A,(c) <Ay(e) <... the spectrum of problem
(1.1). Assume that for a given 1 <m <n one has

a,(e) -am—_l(_e_)_«l () —>0,>0 for m<sksn-1.

an
e2l(¢) €21, _,(e) g2l (e) 0

Then, for any 1 <k <m —1, the eigenvalue A,(e) satisfy the estimate

1 1 ay(e)
—_— + . ;
= IR AN PIRe

/119(8)

Moreover, for any m = k, the eigenvalue 1, (g) converges, up to a subsequence, to the
eigenvalue A, of the spectrum of problem (1.5) in which 6,=...=0,-,:=0 and
6;>0 for j=m.

In particular, if m = 1, or equivalently if

@ (€) —>0,>0 forany 1sk<sn-1,
82lk(8) e—=0

no eigenvalue of the spectrum of problem (1.1) tends to 0. However, the limit spectral
problem (1.5) is a coupled system which is not of the classical form (1.4). This shows
that the non-degeneracy of the spectrum from (1.1) does not imply the classical limit
(1.3) of (1.2).
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2. — Statement of the result.

2.1. The geometry of the problem. — Let e =1/N, N e N*.
Let Q be an open subset of R® which satisfies

2 is a rectangle parallelotop of integer coordinates
(H1) , ;
or a finite union of such parallelotops.

Let n =2 be an integer and let Y:= [0, 1{* be the unit cube of R3.
We consider n open subsets Y, of Y, 1 <k <n, and the open subsets E} of R® ob-
tained by Y-repetition of Y, i.e.

@.1) E,:= U @+x),

keZ?

which satisfy

Y, and E;, are connected sets with Lipschitz continuous boundary,

(H2) —
YnY, =0, for j=k.

We also consider (n — 1) subsets @, . of i)/', 1 <k <mn — 1, which are designed to pro-
vide thin bridges connecting Y, and Y, ,, and which satisfy

[*]
Qk,eCYv |Qk,e|_)0,
(H3) Q. UY,UY,,, is a connected set,

Q;,.NQ,, . =0, forj=k and Y,NQ, =0, for je{k, k+1}.

The geometry of the bridges will be specified more precisely below.
We define the period of the weakly connected domain by

n n-1
Ys = (kL=JlYk) U (kL=Jle’e).

We consider the n open subsets 2, . of 2, 1 <k <n, obtained by ¢Y-repetition of
the sets €Y, in 2, i.e. Q4 . := 2 NeEy. In the same way, we consider the (z — 1) sub-
sets wy, , of 2,1 <k <n — 1, obtained by eY-repetition of the sets Q) . in 2. The weak-
ly connected domain is then defined by

n-1

2.3) Q,:= kL_Jle,eUQ’e where o, := kl;lek,S.
Note that £2, is also obtained by eY-repetition of the period ¢Y,, i.e.

Q,=QNeE, where E, = U3(8Y£+£K).
keZ

The domain £, is an open subset of 2 which is connected by the set of small measure
w, since |w.| —0 by assumption (H3).
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Fig. 1. - A period Y, for n=2.

ILLUSTRATIONS. — Figure 1 shows a period Y, for n = 2, Figure 2 a cross section of
this period and Figure 3 the weakly connected domain 2, obtained by ¢Y repetition of
8 periods ¢Y,. Figure 4 shows a cross section of a period Y, for n =3.

Let us now describe each bridge Q. for 1 <k <n —1. Let F}, ,:[0, 1110, 1% be
a simple curve (without multiple points) of class C¢, which is plane if d = 2 and skew if

n
Lir
|| Oy

Fig. 2. — A cross section of a period Y, for n =2.
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Fig. 3. - A weakly connected domain £, composed of 8 cells.
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Fig. 4. — A cross section of a period Y, for n=3.
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d = 3. Assume that the curve is strongly regular in the sense where for any £ [0, 1],
the d vectors (Fy .(t), Fy (t), F{%(t)) span the space R%. We can then define the
Frenet curvilinear basis (T,c (D), Nk ¢(t), By, .(t)) associated to F}, .. Note that B, .(t)
is a constant vector for a plane curve, i.e. d =2. Let X, .bea regular connected bound-
ed open set of R? such that a;(e) = |Z} .| —0. The bridge @y, . is defined by

24 Q. ={y=2: . v, B) :=F4 () +vN, )+ BBy, .(1); tel0, 1], (v, BleZ; .},

i.e. Qy, . is a tube of cross section X , along the curve F, ,. The set @, . satisfies the
assumption

D, 110, 1[xZ k,€—>£)k,e is a diffeomorphism for any sufficiently small ¢,
[¢] P
@) 1 P, (0, 1[xZ, JcY\Y,UY,,y,
Dy, ({0} xZy )Y, and @ ({1} XXy )CIYjyy,
| max(|v|,(d—2)|B|) < ca(e) .

The third condition of (H4) implies that the neighbourhood of F} .(0) in 8Y; and
Fy (1) in 3Y),,, are portions of planes which are perpendicular to the tangent vectors
Fy .(0) and Fy (1) respectively, as shown in Figure 2.

ExamrLE 2.1. - 1) If ¥, , is a rectangle of length [ and of width a(¢e)/l, Q. is a
curved plate of thickness a () /l.

2) If 2, is a disk of radius Va,(e) /7, Q. is a tube of cross section area

o).

The following result yields sufficient conditions carrying on the curve F), . in order
to obtain hypothesis (H4).

LEMMA 2.2. - Assume that the curve Fy, . satisfies the condition
Vs, $)el0,1],  |Fy (8)—F, ()] >cle) [s 1]
where c(e) is such that

IO IO

B R e+ S o il + P ) 30,

where o, . is the curvature and 1y, . the torsion of Fy, ..
Then, the function @ . is a diffeomorphism for any sufficiently small e.

Lemma 2.2 is proved in Subsection 4.3.
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2.2. The problem. — Our aim is to study the asymptotic behaviour of the spectrum
(4 4(€))een Where

0 =lo(€) <j.1(8) Slz(s) <...

of the domain Q. related to the spectral Neumann problem in Q,

[ —Av,=A(e)v, in Q,,
ov
=0 39,
@7 1 5 on o<
](1)62:1,
n‘QS

where v denotes the outer unit normal to 82 and ][ the mean value 1/|Y]| J’ .
Y ¥

2.3. The result. - We will state a convergence result for the spectrum of problem (2.7)
which depends on the limiting behaviour of the characteristic sizes of the bridges @y, .
(2.4), defined by

a,(e)

2.8 6 = ,
(2.8) 1 (€) )

1<ksn-1,

where a ;(¢) denotes the area of the cross section of the bridge @y, . and [, (¢) its length, i.e.
1
L(e) = [ |FL () |dt
0

We will also need the following notations

NoTATION 2.3. — Let A;, 1 <k < n, be n positive definite 3 x 3 matrices, let m be an
integer 1<m<mn, and let d,, 1<k<n-—1, be (n—1) reals such that 6,=...=
=0,_1=0and 6,>0 for any m<k<n—1. We denote by A the 3n X 8% matrix

A,
| ¥1]

2.9) A:=
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and by J the » X » matrix

[ 0, o 04 0 R
| ¥ |1
(2.10) Ji= I P T T
Y] || | Y|
0 _én—l 0y-1
|Yul | Yal
The system

—div(4; Vo) +0,(v; —v)=|Y1|fi in 2,
—div(A, Vo) + 05 (U — V1) + 0,V — V)= | Y| fr in 2,
—div(A,Vv,) + 0, _1(v, —v,_)=|Y,|f, in Q,

A Vo, v=0 on 89,

(2.11)

can be written

2.12)

—div(AVY) +J v f in £,
(AVv)v— on 9%,

where v := W1y ey W), f = (f1y --os fu)y A is defined by (2.9) and J by (2.10).

REMARK 24. — Since 0,=...=68,_,=0, system (2.12) is elliptic in the Hilbert
space
2.13) Hi=loeH'Q" [n=".= [v,1= 2 %] [0.=0
@ Q k=m= g

provided with the scalar product and the norm in L2(Q)"

O
AR

h<n

(3
@2.14) (u, v)g := 21 ][Giuivi and  |ulg := (w, Wi, 0,:= =1
i=
[}

We can now state the main result of the paper.

THEOREM 2.5. — Assume that the geometrical conditions (H1)-(H4) are satisfied.
Also assume that the cross section area a,(e) and the length () of each bridge Qy, .,
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1 <sk<sn-—1, satisfy the limit

2.15) % x(€)

+ el (&) + a (€)Y (0 () + T, (€)) :;0 ’

where o, (¢) and t,(e) respectively denote the maximum of curvature and torsion of
the curve Fy, . which defines @, . in (2.4). Finally assume that the characteristic
lengths (2.8) of the bridges Q; (&) satisfy

(2.16) 0,(6)K...K6, 1(6)K1 and lirr(l)ék(e)=6k>0form$kSn—1,

where m is a given integer of {1, ..., n} (a(e) Kp(e) means (a(e)/B(e))—0).
i) Then, for any 1 <k <m - 1, the eigenvalue A () of problem (2.7) converges
to 0 and more precisely saotisfies the following asymptotic behaviour
1 N 1
Y, Y,
[ARA

217 Ar(e) ’"‘Bdk(g) forisksm-1,

where |Y,| denotes the Lebesque measure of the rescaled period Yy of the domain 2 ..
Moreover, for any 1 <k <m — 1, any eigenvector vy, . solution of (2.8) with A,(¢e)
satisfies the convergence

(2.18) Vk, e~ Crklo, . — zck,k+11!2je —0,
P>k “lelQ,) 0
where ¢y, and ¢, ., are constants solutions of
O+ (Z 9j) Cr,k+1=0,
ji>k
(2.19) , . |Y; ]
Gka,k+(‘>k9]')0k,k+1=1, 0;:=— .
: 2|7

i) For any k =m, the eigenvalue A,(c) converges, up to a subsequence, to the
eigenvalue 4, of problem (1.5) which can be written

(2.20)

~div(AVY)+Jv,=4,0, in Q,
(AVD,)v=0  on o2,

where v, e H Sfrom (2.13), the matrix J is defined by (2.10), and the matrix A is defined
by formula (2.9) in which each matrix A;, 1 <j < n, is the homogenized matrix for the
perforated domain Q; ., obtained by the classical formula

@21) A= VW, deR,
Y.

J
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the function Wf being the solution of the Newmann problem

AWr=0 in Y,
oW} :

=0 in 9Y;\9Y,
o

WHy)— Ay Y-periodic .

(2.22)

REMARK 2.6. — 1) The convergence A ,(e) — 1 also holds for 0 < k < m — 1; indeed,
the eigenspace of problem (2.20) related to the eigenvalue 0 is of dimension m because
of the equalities 6, =... =6 ,,_, =0. The first m eigenvalues 1,(¢), 0 <k <m — 1, are
also simple since assumption (2.16) and result (2.17) imply 0 =1,(e) K1,(e)K... K
KAy 1(6) K1,

2) Theorem 2.5 has a non-trivial consequence concerning the estimate of the
Poincaré-Wirtinger constant of the domain .. Indeed, if m =1 or equivalently
d,(e)— 06, >0, no convergent subsequence of 4 ;(¢) tends to 0, and hence the Poincaré-
Wirtinger constant C(£2,) of 2, which is equal to 4,(g) 7%, is less than a fixed constant.
We have just proved that there exists a constant C >0, independent of &, such
that .

u— ](u
Q

€

(2.23) Yue HY(Q,), < OVl 2qa,)-

L2(Q.)
Although the weakly connected domain £, contains very thin bridges, the constant
C(£2,) does not blow up with respect to ¢ which was not a priori evident.
3) If 6;(e) = + o for some m <j < n — 1, we have to replace in system (2.20) sat-
isfied by vy = (vg,1, ..., ¥, ») equations
=div(A; Vo, )+ 0,1 (Ve =V 1) + 0, (Vg ;= Vi ) =Ak | Y| 0,5 2,
=div(A; 1 VU 1+ 1) + 00k jo1— V) + 001Uk 51— Vi i) =Ak | Yea |V i1 2,
AjV'vk,j"V=Aj+1V’Uk’j+1'V=O 8!2,

by the new ones

"'diV((A] +A]+1) Vvk,j) + 6j_1(vk’j _vk’j_l) + 6j+l(,vk,j ""vk,j_*_z):lk Ile'”k,j Q y
Vg, — Vg, j+1=0 Q,
(Aj+Aj+1)V?)k,j'V=0 o8 .
That exactly corresponds to consider the first system as 6, tends to + . For the sake

of simplicity, we will assume in the following that 6;< + « for any 1 <j<n-—1.

Theorem 2.5 is partially based on a homogenization result.
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2.4. A homogenization result. — The proof is divided in several steps. The first of them
is to obtain the limiting behaviour of the Neumann problem

—du,=f, in Q,,
2.24
@24) e =0 on 39Q,,
ov

where u, is a bounded sequence from H'(£,) and £, is a bounded sequence from L2(R).
The result of this homogenization problem was first obtained by E. Ya. Hruslov [5]
when f, = fis a given function of L2(£2) and completely proved in [8] using in particular
the maximum principle. Here, we prove the following result for a general weakly con-
vergent sequence f, from L2(£), but with more restrictive geometrical conditions on
the bridges since we cannot use the maximum principle.

THEOREM 2.7. — Assume that hypotheses (H1)-(H4) are satisfied as well as condi-
tions (2.15) on the size parameters of the bridges @, ., 1 <k <n — 1. Also assume as in
Theorem 2.5 that there exists an integer me {1, ..., n} such that the characteristic
sizes (2.8) of the bridges salisfy the condition

lim8,(e)=0,=0 forl<ksm-1,
(2.25) =0

lin%dk(e)=6k>0 for msk<sn-1.

Let Q1 be the subset defined by

n n-1
(2.26) QL= (kymgk:E) U (kymw,c,e).

Let u, be a bounded sequence of H' (R .) and let f, be a bounded sequence of L*(R,) of
zero 2 .-mean which are solutions of problem (2.24) and such that

227 1o, fi—|Yi|fi weakly in L*(Q) for 1<k<n.

Then, the following convergences hold true

ke

lgk‘s(ug— ]( us)A|Yk|u;c weakly in L:(Q) for 1sksm-1,
o

(2.28)
19,0,5(?/,8 - ](ug) —|Yi|u, weakly in L%(R2) for m<sk<n,
Q;
where % = (uy, ..., u,) belongs to the space H Sfrom (2.13) and is solution of system
(2.12), i.e

~dvAVD) +Ju=f in Q,
(2.29) L
Avu)v=0 on Q.
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REMARK 2.8. = 1) The result of Theorem 2.7 also holds true if we only assume that u,
is bounded in L2(£2’) and Vu, is bounded in L%*(R,).

2) Remark 2.6 3) can be also applied to the case of Theorem 2.7.

3. — Proof of the spectral result.

The proof of Theorem 2.5 is divided in several steps which are detailed in the follow-
ing subsections. In the first subsection, we make precise the convergence of eigenvee-
tors vy, . associated to the (m — 1) first non-zero eigenvalues A,(¢), 1<k <sm—1. In
the second one, we give an estimate of the first non-zero eigenvalue A,(¢), then in the
third one, we yield an estimate of 4 (&) for 1 <k < m — 1. In the fourth and last subsec-
tion, we study the convergence of the rest of the spectrum (1 ,(€)); .-

3.1. Convergence of the (m — 1) first eigenvectors. — We consider a family (v,(g)),cn of
eigenvectors associated to the spectrum (4 ,(e));cn, %.e. V() =1 and

—Av, =4, (&), ., in Q,
b ¢ & for k=1,
a?)k,g

v

=0 on 982,

which is orthonormal with respect to the scalar product of L2(Q,)

(u, v)g, = ]['wv v e, = (u, ).
Q.

Following the same argument as Vanninathan [8], it is easy to check that each se-
quence (4,(€)). ¢ for k = 1, is bounded with respect to & by using the Courant-Fisher
formula

[ 1902
Ag(e)= min  max % " (Ao(e) =0)
VeHY(RQ,) veWN{0} J”Z
dimV=k+1
2,

and by taking for V the space spanned by the (k + 1) first eigenvectors of the Neumann
problem in the domain Q.

Assume now that 1 ,(¢) —0 up to a subsequence of ¢ and for some k = 1. Then by
the homogenization result of Theorem 2.7, we have for any 1 <j<k

1o, v, —|Y;|v;,; weakly in L%(Q) for 1<i<n,
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where v] (¥j,1, --+» Vj, ) is solution of the system
~div(AV3)+J7;=0 in @,
(AV7)v=0 on 39.

By putting 7))]- as test function in the latter equation and summing over m <i<n, we
obtain the equality

> JAiV’Uj,i'ij,ﬁ P Jdi(”j,i‘”j,wl)z:()’
=19 i=m g

which implies, since A; is positive definite, that v; ; are constant c; ; satisfying

3.1 1o, v, .—|Y;|¢;,; weakly in L*(Q) for 1<is<n,
and
3.2) ¢,i=C,m formsisn,

since 6,>0 for m<i<sn-1.
Let us compute the constants c¢; ;. We have

]('vj,e=0’
Q,

then after passing to the limit thanks to (3.1) and by noting that 1,,, v;

Y, e—0 weakly in
L*(8) since |w;, .| —0, we obtain

| Y]
Sl

hsn

n
(3'3) Z 0 CJ ’L ’ 02 = e—_—

We also have

which would imply similarly to (3.3)
(3-4) 2 0i0j2’i =1
i=1

However, the passing to the limit (8.4) is more delicate since we need strong conver-
gence. On the first hand, by an extension result for periodic domains due to Acerbi,
Chiado Piat, Dal Maso, Percivale [1] and thanks to assumptions (H1)-(H2), there exists
for each 1 <i <, a bounded extension operator P; , from H'(R2; ,) into H'(£). The
fact that Q is composed of entire cells £Y + ¢k, ke 75, (assumption (H1)) combined with
the connectedness and the regularity of the period cell Y; (assumption (H2)) allows us
to extend functions from 2 , to the whole domain . On the contrary, in [1] quite less
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restrictive assumptions on the periodic domain £, of (2.1) only provide a local extension
in Q. Since P;, ,v;, . is bounded in H'(Q) it strongly converges in L2(£2) up to a subse-
quence, which implies

(3.5) 1o, (v, —¢; ;)—>0 strongly in L?(Q) for 1<i<n.

On the other hand, we have to estimate the contribution of the quadratic terms
lwi,evjzys. It is given by the following result which is proved in the last section.

LEMMA 3.1. — Assume that conditions (H3) and (H4) are satisfied. Let 1sk<sn—1,
then there exists a constant ¢ >0 such that for any function Ve HY(Y, U @y, )

(3.6) Vil < (&) ai (@ Vil 1wy + IV v a, ) -

By rescaling estimate (3.6) in each cell ek + €Y with function W(y) := v? . (ey + ek)
and by summing over ke Z? we obtain the following L?(w; ,)-estimate

v, s”iz(wi,s) < ca (&) Li(e)|ly;, e”%,z(gi,s) + cely (&) |[v;, 2o Vo), elleze,) <

<c'(a;(e) l;(e) + el;(g)) = 0 by (2.15),

ie 1, v ,—0 strongly in L%(Q). The latter and (3.5) imply the desired limit (3.4).

We have thus obtained three equalities (3.2), (3.3), (8.4) satisfied by the constants
¢;,; for 1 <j<k and 1 <7 <n. The next step consists in proving by induction on 1 <
<k <m —1 that these constant satisfy

(37) Ck,j=0 fOI‘lngk—l,
(3.8) Ck,j=Ckk+1 Torj=zk+1,

and that the eigenvalue A,(¢) satisfies equivalence (2.17).
The following subsection is devoted to the proof of (3.7), (3.8) and (2.17) for
k=1

3.2. Estimate of the first non-zero eigenvalue.

3.2.1. A capacitary result carrying on the bridges. — Let us give a capacitary estimate of
each bridge @, ., 1 <k <n — 1, which is an adaptation of a similar one in [3] and a key
ingredient for obtaining the limiting behaviour of the spectrum.
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LEMMA 3.2. - Let 1<k <mn—1 and let V, , be the function defined by

( k k-1
Vi, () =1 fye (jl__JlY,-)U (jlej,e),
n n—1
(3.9) 1V . =0 ifye (jJCJHYj) v (j=l,;J+IQj, )
-~ Gk,g(t) .
Vk,s(y)': @f‘y—__(pk,e(t’va ﬂ)EQk,n
{ L(e)

where Y, is the period of the weakly connected domain defined by (2.2), the function
D, . is the diffeomorphism from (2.4) and oy, . denotes the curvilinear coordinate
along the curve Fy ., te.

t
O o) = j |Fy .(s)]ds .
0

Assume that conditions (H3)-(H4) and (2.15) hold true.
Then, the bridge Q. satisfies the equivalence

(3.10) | Qr, e | vt a(e) L(e).

Moreover the function Vk, ¢ Verifies the estimates

ak(e)

lk(8)

le‘e +0,(1)
(&)
where o,(a(e)) means <a(e), and for any Ve HI(Y,)

1 = = d,(e)"?
= j VV-VVk,e—dk(e)( ](V“ ]( V)l sos( - IVVie,),
Qlc,s Yy,

(3.11) 1YV, e| = and VWi, leeq0 =

?

3.12)

£
Yi+1

where 8 () - 0 (&) the characteristic size (2.8) of the bridge Qy, ..

This lemma is proved in the next section after the proof of Theorem 2.7.
By rescaling estimate (3.12) with the function

(3‘13) ?’}k,e(w) = Vk,e(£)7
&€

which is equal to zero outside w, ., we obtain for any function ve H(R,)

- 1 1
[ V092, ~ 840 [| 22 - == |y
o A\T%l W]

(3.14) < 0, (6 ()2 )”V'UHLZ(QE)'
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3.2.2. First estimate of 1,(¢). — The Courant-Fisher formulas yield

[ 1902
Ai(e)= min %
ve HI(2,)\{0} [1;2
vll
'Qs

We then put the function v, := ¥, ,— ][171, ¢ in the previous infimum. Since ][ 7% >0,

Q, Q,
by (3.3) and (3.9), we have ][vf—ael(l — 6;) >0 which implies that
Q,

- ¢’ 5
M@ sc[ |V, [Ps 5 [ |V,
&
Q, Q,

It follows thanks to (8.11) the first estimate
(3.15) A(e) €cd(e).

3.23. Proof of ¢; j=¢;,5 for j = 2. - Let 2 <j <n — 1. We put v:=v, , the eigenvector
associated to 4,(s) and k=7 in estimate (3.14), which yields

1 19j+1,e
l“€>f’*"““ ‘””J(m llmll)”“'s"‘(a"(s”’

since ||Voy, |2,y = (|R.]61(e))"2 = 0,(6,(e))" by (2.16). However, estimate (3.15)

implies that A 1(8) = 0,(8,(¢)). Then by dividing the previous estimate by
o} (s) — 6 ;(8), the followmg limit holds

J ]'Qj,e _ IQ]+1 € ’U O
A\ THT T Ty ) e
and consequently ¢, ; =c¢; ;. since 1o, v ,—|¥;|c; ; by (3.1). We thus obtain ¢, ;=
=¢;, 5 for j 22, ie (8.8) for k=1.

3.2.4. Proof of the equivalence A ,(¢) ~¢,6,(¢). - We now put v:=v; . and k=1 in esti-
mate (3.14) divided by 6,(¢) to obtain

A(e) i 5,8 ([ la,. la,
Ivl,svl,s_ I - V1,

< 0,(1)
81(e)g) 01(e), \ 1| Yzl

which implies the convergence

A () ~
51(;) J?Jl eV, e |9|(C1 1 01,2)-
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We have also

J"U1 evle |Q||Y1|011

QE‘

in which ¢, ; # 0 since (3.3), (3.4) and (3.8) for k=1 give
1611+(29)CL2=0 and 1011+(29)012’2=1

i.e. (2.19) for k =1. Both previous limits thus imply that

A (e) C1,1—C12 1 1
= + ,
XA AR

which is the desired equivalence (2.17).

3.3. Estimate of the k-th non-zero eigenvalue. — We proceed as in Subsection 3.2 by giv-
ing a first estimate of 4 ,(¢), then by proving equalities (3.8). From this point, the proof
is quite different of the case 4,(¢) since it is not evident that

(8.16) Cr, k= Chk+1-

Assuming (3.16), we yield a second estimate of 4 (&) which allows us to prove (3.7) and
then to obtain equivalence (2.17). We conclude this section with the proof of inequality
(3.16) by using in an essential way the induction hypothesis, i.e. equalities (3.7) and (3.8)
for the (k — 1) first non-zero eigenvalues.

3.3.1. First estimate of A,(¢). — Let us prove that
3.17) Ai(e) Scdi(e).

Let us define the fonction
k-1
Ve :=’Uk _vk 1,e Z(Wk e_vk 1, ¢ ’U] e)Q
<o

where 7, . is defined by (3.9) and (3.13). The function v, is perpendicular to the projec-
tion in the vector space spanned by the k first eigenvectors v;, . of the function v, . —
—,_1,, which is a smooth approximation of 1,, , by definition (3.9). Then by the
Courant-Fisher formulas, we have

Vo, %,
[lve i,
if v, # 0. We have by estimate (3.11) satisfied by /V,“

Ax(e) <

”V;l\)k, £ %)

< Z|VV..
&

ngclak(s)’
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which implies

k-1
191, <1950, + 195l + 19, 0. <

k-1 k=1
s Cz(ak(f) +0g-1(e) +]_20/11(8)) Sc 205]'(8) <40 4(8)
< i<

since by induction hypothesis 4,(e) <cd;(e) for any 0 <j<k—1.
It remains to prove that ||v, ”g c> 0 to obtain estimate (3.17). The orthonormality
of the family of eigenvectors (v, e)]al yields

|Ivs”!2 _”vk s_vk 1,¢ Z (vk £ f’k—l,e: /Uj,e)?zey
which tends to
k-1
ﬂ!: Hk—jgoeicf,k

by convergences (3.5) and since ¥y, . — V-1, — 1o, ,—0 strongly in L2(R). Moreover,
we have by (3.3), (3.4) and by the induction hypotheses B.7), BB) for 1sjsn—1,

0. 1 1
ctp=1 and cfy=c? 1= d .
0, k 5, k §,5+1 26120 20 291
1>) 12] i>j 12]
The limit B of ||v.|%, thus satisfies ,
< 1
g=0 2 =
j=1 20 ‘Z.ai
i>j 2]
2 2 1 0 .
=0,—6065—-63 -1}1=6,{1- >0 since k<n,
kei 20,
iz izk

which implies (3.17).

3.3.2. Proof of ¢, ; = ¢, 4 +1 for j = k + 1. - We repeat the same argument as for 1,(¢) by
putting v:=v, , and v; , for k+1 <j<m in estimate (3.14), which yields

A(€) R 3,(e) lo,, 1o, A(e) 1/2_
Ivk,evj,s_ '[ - Uy , € <O£ 6]'(8) "Os(l)y

5,8) 5,0\ TG 1Yl
since by (3.17) and (2.16) 4, (¢) < cd (&) = 0.(d;(¢)) for j > k. By passing to the limit in
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the latter, we thus obtain thanks to convergence (3.1)

j Yoy _ la v |2|(eh ;= Crj+1) =0 e (88
- , € k3 Yk, j = €. B) .
A ;o

3.3.3. Proof of the equivalence A (&) ~ ¢, 0, (¢). — We also proceed as for A,(g) by using
(3.14) with functions v:= v , and ¥, ., which implies thanks to (3.17)

= 1 1 12
Ag(e) I”k,ef?k,e_ d,(e) J’ Qre  Quire v .| <o, A () —o.(1).
6k(5)98 04(¢) a, | Y] [Yes1] 0 (€)

We also have

1Qk 19k+1

= - U, |9|(ck k= Ck, k+1) -
J( 1Yl |Yiia] ’

Let us assume for the moment inequality (3.16). Both last estimates combined with
(3.17) then imply that

k
0= lim |7, = |5-?|j§1 Y| ¢, i
£

and therefore the equivalence

A(€) Cio, ke~ Ck, k+1
dx(e) =0 2 |Yj|cy,
i<k

3.18)

which is not exactly (2.17) but it is useful to prove (3.7). Once (8.7) will be proved, we
will deduce (2.17) from (8.7) and (3.18).

3.3.4. Proof of ¢, ;=0 for 1 <j <k — 1. - Estimate (3.14) with v:=wv, . and %; , for 1 <
<j< k-1, divided by 4,(¢) and combined with equivalence (3.18) and (2.16), yields

n 1/2 1/2
Ivk e’Dj e 6j(8) I lgj" 19“1 : Uk, s O 6j(£) =0, 6j(8) = 05(1)’
g M@ I\ Yl Ai(e) 01(e)

jvkj;-, —>0=2 |¥|e,; for 1<j<k-1,
i=1

which implies the limit

and therefore (3.7).

Now equivalence (2.17) can be easily deduced from (3.2), (8.7), (8.8) and (3.18). It
thus remains to prove inequality (3.16) we assumed before to conclude the induction
proof.
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3.3.5. Proof of ¢, ,# ¢, x+1. — Let us prove it by contradiction. The equalities c; ; =
=y, k+1 = Ct, x hold true since the proof of (3.8) only uses first estimate (3.17) and not
equivalence (3.18). Then by the orthogonality of the family (v; .);cx in L2(£2.), we have
forany 1sj<sk-1

i=

n k-1 n
(v}, &» ’Uk,s)ge—>e_)o 0= Eloicj,ick,i= igloicj,ick,i+ (,2koicj,i) Ci, ks

which combined with equality (3.2) shows that the vector

C1,k
3.19) C,:=| ¢ |eRt*?
Ci, k
and the matrix
( 0, 0, 041 ,Zoi )
izk
0.0, 03¢, Ok-1C1, k-1 igkeicl,i
3.20) Ty, := 01c,1 03¢ 2 Or-1Co k-1 igkeicz,i e Rk**
016-1,1 01C-1,2 " Or_1Ck_1, k-1 igkeick—l,ij

satisfy the linear system T, C, = 0. However, by the induction hypothesis the coeffi-
cients ¢, ; satisfy 3.7) for 1 <j <k — 1, which imply the equality

r 3
0, 0, Or-1 E 0,
2k
01¢,1 020,72 - Ok-1C1, 51 z 0;c,;
izk
T. = 03¢, 010251 2 0ic,
k izk
{ 0 Ok-1Ck—1,k-1 2 0iCk_1,;
izk J

Then by replacing the k-th column T (k) of T}, by T (k) + .Ek T, (j) in the determinant
i<
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of T}, we obtain thanks to equalities (3.3) satisfied by the coefficients c; ;

0, 0, Or-1
01¢,1 636, - Ok 101,51 0 o1
det Ty, = 05650 =+ Op_1C4-1 0 =(—1)k_1]_l;[19jcj,j¢0
0 Or-1Ck-1,k-1 0_

since the coefficients ¢; ; satisfy (2.19) by the induction hypothesis. The matrix T} de-
fined by (3.20) is thus invertible and consequently the vector C, defined by (3.19) and
solution of T} Cy = 0 is equal to 0. Finally by (3.8), ¢, ; = 0 for any 1 <j < n which con-
tradicts (3.4).

3.4. Convergence of the rest of the spectrum. — We proceed in two steps. In the first
step, we prove that 1,(e) converges to a non-zero eigenvalue of operator (2.20) for any
k=m. In the second one, following the same argument as Vanninathan [8] for a
strongly connected domain, we prove that any eigenvalue u of elliptic problem (2.20) is
the limit of a subsequence (1,(¢)), -, for a suitable & = m. As Vanninathan noted in [8],
the previous result implies the convergence of the spectrum (1 ,(&)); s, to the non-zero
part of the spectrum from (2.20). Also note that this convergence still holds true for the
zero eigenvalue from (2.20) whose multiplicity is equal to m since A,(e)—0 for
O<sksm-1.

3.4.1. First step. — By using a diagonal extraction, we can assume that 1,(e) =2, for
any k=m up to a sequence of . Theorem 2.7 applied to the functions u, := v, , and
fe 1= A,(€) vy, . implies that A, for k = m is an eigenvalue from (2.20). It thus remains to
prove that A ; > 0 for any k = m or equivalently 4 ,, > 0 since 4, is the smallest. We pro-
ceed by contradiction assuming that 4,, = 0. Then by the convergence results of Sub-
section 3.1, the normalized eigenvector v, . associated to the eigenvalue A, (¢)
satisfies

1o, U .—|Yi|c,,; weakly in L*(Q) for 1<i<n,
where c,, ; are constant such that

n
Zeicm,i=0 and Zeicr’%&,i=1-
i=1

Moreover by proceeding as in Subsection 3.3, estimate (3.14) combined with
Ai(€) ~0;(e) = 0,(d m(¢)) (since 6 ,,(¢) =6, >0) imply ¢, ;=0 forany 1 <i<m -1,
and estimate (3.14) combined with 4,,(¢) —0, and thus 4,,(¢) = 0.(6;(¢)), imply the
equality ¢,, ; = Cp,  for any m < i < n. Consequently, the vector C,, e R™*" from (3.19)
in Subsection 3.3.5, is solution of the linear system 7,,C,, = 0 in which the matrix T,
e R™*™ from (3.20) is invertible. It thus follows that ¢, ; = 0 for any 1 < ¢ < m, which im-
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plies the contradiction

n

n
1= 2 01'03,”1'= (E 01) cm,m=0.
t=m

i=1

3.4.2. Second step. — We denote by V1= (Vg, 15 -+ Vi, ») the limit of each eigenvector
U, ¢» k€N, according to the homogenization Theorem 2.7, i.e.

1o, 0, .—|Y;|v,; weakly in L%(Q) for 1<is<n.

Note that the family (_5;6 Yeen iS an orthonormal basis of L2(2)" provided with the norm
|-llo defined by (2.14), since the extension result of Subsection 3.1 applied to each do-
main £; ., implies the strong convergence

Lo, (U, .~ ) —0  strongly in L*(Q) for 1<i<n.

Let us now prove the correspondence between the limit of the spectrum (4 ,(¢)), -, and
the non-zero part of the spectrum of problem (2.20). We proceed by contradiction as
in [8] by assuming that there exists an eigenvalue x4 >0 and an eigenvector u =

= (uq, ..., U,) € H from (2.13) such that

( —div(AVu)+Ju=pu in 2,
(AV@)v=0  on 8@,
(3.21) { 17e=1

(%, Vy)o=0 for any ke N,

lin%)/l,c(e)#u for any k=zm.

Let keN such that 24 <A,,, and let u, be the solution of the Neumann prob-
lem

[ —Au,=f, in Q,,
Se =0 o0
3.22) ] 5 TV M.
][ue=0
[ 2:

where the domain 2 is defined by (2.26), the zero @ ,mean function f; by

i=1

m-1 n
for=n 2 lm,s(ui— ][ ui)ﬂt_Z Lo, u;i— pcelg,
1=m
2

i€
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and the constant ¢, by the mean value
n
= zgm flgi,zui.
2

Contrary to the case of [8] where Q, is a strongly connected domain, i.e. 22, is reduced
to one of the domains 2, ., the sequence u, from (3.22) is not necessarily bounded in
H(2,). However, the part i) of Theorem 2.5 applied with m = 1 shows that the first
non-zero eigenvalue of each domain Q; ., 1 <¢<mn, as well as the domain 2, related
to the Neumann problem are greater than a positive constant and therefore the
Poincaré-Wirtinger constant (see (2.23)) of these domains is bounded with respect to &.
Then by putting », in (3.22), we have

m—1
2 — _ _
”V%”Lz(gg)—ﬂigl QI (“z f ’ui) (ue ][ ue) +
2;

i & i€ ie

n
+u I(zgm IQi,eui - cs) (ue - ](us) = c”V?‘(‘€”L2(Qe)
Q. ’

3

which implies the boundness of Vu, in L2(R2 ) as well as the boundness of u, in L2(£2)
by the uniform Poincaré-Wirtinger inequality in € since u, has a zero 2 -mean. We
thus deduce from Theorem 2.7

i€

lgi_s(ue— fue)—in]ui’ for1<ism-1,
Q

1o, u.— |Y;|ui for msisn,
nad . . .
where ' :=(u/, ..., 4,) is an eigenvector from (3.21). Furthermore, since
n
Iui'=0 for 1si<sm—-1 and > I|Yi|ui’=ﬁm Iue=0,
i i=m e—0 a

the function %’ belongs to the space £ H (2.13) in whiceh problem (2.12) has a unique sol-
ution, whence it follows the equality %’ = . Then, by putting u, in (3.22) we obtain the
limit

(3:23) ](|Vu|2 ][fH 19—| ](ui—gfui)(ue—g][ue)+

i, € 3, €

o w0, Joat -l -

The next step now consists in substracting to the function u, its projection in the
space spanned by the (k + 1) first eigenvectors v; ., 0 <j < k. However, since u, is not
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necessarily bounded in L2(£2,), we have to modify it. Let us then consider the functions
u? and v? defined for any pe N by

m—1
ul = 2 @~ V;_1,.) TPy, ) + (1= Dp_y, ) TP () @, :=0),
i=1

k
,vsp = usp - .Eo(ufy vj,e){)svj,ey
]=

where ¥; . is defined by (3.13), %, . is a bounded extension of |u, — ][ u, | according to
Q i, €

the extension result of Subsection 3.1, and T'?(¢) := min (p, max(—p, t)) denotes the

truncature at the size p. By definition of the functions v; ., we have

~

Vi, .— V-1, — lg,,—>0 strongly in L?(R2) for 1<i<n,

M=

1=%p_1,.— 2 1g,,—0 strongly in L%(Q).

2

m

Thanks to the Rellich Theorem, the extension result in each domain Q; , implies the
strong compactness in L2(2; ,) which combined with the Lipschitz property of the
truncature gives

T?(u;, ) > TP(w;) strongly in L%2(Q) for 1sism-—1,
1o, (T?(w,) — T*(u;)) =0 strongly in L%2(Q) for m<is<mn.

Moreover, the norm of T7(¥;, .) as well as T?(u,) over each bridge w; .for1 <i<n—
— 1, tends to 0 since T'? is bounded by p and | ;, .| — 0. Combinning the previous limits
then yields

2 —
Ilug’ﬂ‘f’;z:—_)—; fgloj T7(u;)? =||ul+ 0,(1) =1 +0,(1),
Q
where 0,(1) —0 when p— + «, and similarly for any 0 <j<k
B —- —
B2 Wl v,00,— ][El 0,T(u;) v;, ;= (U, B;)a +0,(1) = 0,(1),
Q

which imply

(3.25) ?lle, —>1+0,(1).
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On the other hand, we have by estimate (3.11)

[V e =Pi1,el Slo, ,Uwi Voiy. for 1<si<sn,

7n—1
|1 —/Um—l,EI sig:mlgi,suwi,e + lgn,e

IV3; .l5,<cd(e) >0 for 1<ism-—1.

Then since |VT?(u)| < |Vu|, we deduce from the previous estimates

T [V, <
(the factor 2 is due to the fact that the integral over the sets w; . is counted twice by
summing over the sets 2; ,Uw,; .Uw;_,, . for 1 <¢<m — 1), which combined with
(3.24) implies that
(3.26) E)lleg’llgs <2u+0,(1).

Finally, since the function v? is orthogonal to the functions v; ,, 1 <j <k, the Courant-
Fisher formulas imply that

_— i [
k1= lmlkﬂ(e)\hm ) ol

and hence A, ; <2u which yields the contradiction.

<2u+0,(1) by (3.25) and (3.26)

4. — Proof of the auxiliary results.

The first subsection is devoted to the proof of the homogenization result Theorem
2.7. The second subsection consists in proving the results concerning the bridge Qy, .:
the capacitary result of Lemma 3.2 and the L'(Q; .)-estimate of Lemma 3.1. In the
third subsection, we prove technical results related to the geometry of the bridges as
Lemma 2.2.

4.1. Proof of the homogenization Theorem. — The proof is quite similar to that of {3] for
n = 2 weakly connected materials except that the maximum principle cannot be used in
our context since the right hand side f, of the Neumann problem (2.24) is only a bound-
ed sequence of L2(£2,). We then replace the maximum principle by estimate (8.6) over
each bridge Q; ., 1sjsn— 1L

For the reader convenience, we recall the main points of the proof which is divided
in two steps. The first step consists in getting the limit of each sequence 1o, Vu,, 1 <
<k <mn, and the second one in obtaining the coupling terms Ju from (2. 29).

4.1.1. Limits of 15, Vu,, 1 <k <n. By using the extension operator P ,, 1 Sk <n,
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from H'(2,, ) into H'(£2), introduced in Subsection 3.1, we obtain up to a subse-
quence

ke

a‘ke:=Pk,e(ue'— ][ug)éuk weakly in HY(Q) for 1sksm-1,
Q

4.1)

’
£

Uy, ¢ :=Pk,s(us_ )(ue)—\uk weakly in H1(2) for m<ks<n,
o

where 2 is defined by (2.26) and u e I?I defined by (2.13). As in [3], let us define the
test-function w{ , for any 1 <k < and 1eR® by

(Wi(y) — zy)(%)]

where W} is defined by (2.22) and v, is a smooth Y-periodic function such that ¢, =1
in ¥, and ¢, =0 in Y; for j#k. One can prove that wi . satisfies (see [3] for more
details)

wk x) =24 x—ewk( )Pke

wi (&) —A-x weakly in WhP(Q),
wi (@) =iz inQ;, forj=k,
A(lgk'gw]f,e) =0
1o, ,Vwi . —A;A  weakly in L2(Q),

4.2)

k, e

where p >2 and A, is the matrix defined by (2.21).
Since div (15, Vu,) =1, f,E is a compact sequence of H ~1(2), the Murat-Tartar div-
curl Lemma [6] ylelds 1g, Vw,c —&-A in @' () where 1y, Vu,—& in L%(2). We have

E= Z &y where 1g, Vw,c . —&, in L%(R) since the weak limit in L2(Q)? of 1,, Vu,
Whlch strongly converges to 0 in L1(R)3, is equal to 0. On the other hand, we have for

any 1eR3

(4.3) 1o, . Vwi .- Vu,=1,

k, e k, e

lej's'v;l/k g"’" 2 1w4 V’M,E'l+’rk e
E) » j#k Js € H
where
n—=1
e = 2 1o, Vi, oA—0  strongly in L'(Q),
=1 "

since Vw{ . is bounded in L?(£2)? for some p > 2. Furthermore by the div-curl Lemma
combined with the zero-divergence from (4.2) and convergence (4.1), we get

1o, V! Vi, . —AeAd-Vuy, weakly in @'(Q) for 1<k<mn.

k, e
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Then, passing to the limit in (4.3) yields
k3
E= 2 E;=A,Vuy + Ekgj for any 1<k<mn,
j=1 j#=

which implies that &, = A, Vu, and therefore

4.4) 1o, ,Vu,—A,Vu, weakly in L*(Q) for 1<k<n.

k

4.1.2. Determination of the coupling terms. — Let us define for any function ¢ , € C1(Q),
1 <k < n, the function

n=1
Q= kglwk(ak’e_ak——l’e) + (pn(l _;[)n—l,s)’

where %, . is defined by (8.13) and %, . := 0. Putting the function ¢, in equation (2.24)
yields

45) [Vuvo.= [fo..
Q, Q.

Since (¥, ¢ — U, e — 1o, ) >0for1<k<n—1,and (1 -9, _;, .~ 1g,,) —0 strongly in
L%(R), we have

48 gjfeq)e;; g[kgllYklfm-

Similarly, we have thanks to convergences (4.4)
n—1 n

%)) j 2 Vi V94, = By, )+ Vet V(1 =By, ) 2 jkzlAkVuk-ank.

e, Q"
Assume for the moment that for any ¢ e C1(Q)
4.8 J'Vue-V'T)k,£¢——> Idk(uk—ukﬂ)(p for 1sk<sn-1.

Q, =0 Q

The latter implies that (04(¢) :=0)

n—1
(49) I k§=:1 Vue'(vak, e Vak—l, e) Pr— Vue'v:l}'n—l, s‘pn:;
(o

e—0

n—1
= [ Z 0801 = U ) + 84t = )] @i+ 6 1~ U 1) @
o .

Finally by passing to the limit in (4.5) thanks to the limits (4.6), (4.8) and (4.9), we ob-
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tain the equality (69=0,_; :=0)
k§=:1 JAkvuk'V(pk"' [0k—1(up— 1)+ 0 (Up— U1 1)] @ = k§1 lek e @ ks
Q Q

which is exactly the variational form of (2.29) by Notation 2.3

It remains to prove (4.8). It is clear for 1<k <m —1 since by (3.11) we have
IIVf)k’ £||L2(g€) <cd k(E)llz—)O and 6]‘; =90.

Let m <k <n— 1. Estimate (3.14) applied to the function v:= (pu,)(ey) gives

< 0,(1),

S 1 1 +1,¢
[ Vo, Vou) - Bu(e) = [| = - =22 | ou,
R RA AR

which combined with convergences (4.1) also yields

J'V;l}k,s'v((pue) :?0 fak(uk - uk+1) Q.
Q, Q

Now (4.8) is reduced to

(4.10) j V3, Vou,—>0.
Q

€

In [3], the latter is an immediate consequence of the maximum principle. Here, it is a
consequence of Lemma 3.1 about L*(Qy, ,)-estimate. Rescaling estimate (3.6) with func-

tion V(y) :=u2(ey) yields

Ilus||%2<w,,, aSch(e)ak(e) +¢)

sinee u, is bounded in H1(£2). Then by the Cauchy-Schwarz inequality and by estimate
(3.11), we get

- 2 |@k, |
J Vvk, e'V(pus S0 _2__25 ”ue“iz((uk,;)
g, g%l (¢)

|Qk,el

2l (¢)

¢ ((1. k(e) + 8)

by (3.10) < ¢; 25 (f‘_kﬂ N 1) —0.

by condition (2.15), which yields (4.10) and hence 4.8). =

4.2. Proof of the bridge capacitary result. — For proving Lemma 3.2 we need a few re-
sults of differential geometry on each bridge @, ., 1 <k<sn-1.
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LEMMA 4.1. — Assume that geometrical conditions (H3)-(H4) as well as limit (2.15)
hold true. Then, for any 1 <k <n — 1, the curvilinear coordinate oy, . and the tangent
vector Ty, . 1= dF), . /doy, . related to the curve Fy , which defines the bridge Q. by
(2.4), satisfy

(4.11) llvok,e - Tk,e”Lm(Qk,g)::?O s

(4.12) divT, ,=0.

Moreover, the gradient of the function @ . in (2.4) with respect to the coordinates
(0, V, ﬁ) E]O’ gk(e){xzk,m ’Ue’r'l:fies )

(4.13) VP, e | = Llz=0, hionxzs —0.

Proor oF LEMMA 3.2.
Proof of (3.10): By the change of variable @, . of assumption (H3), we have

Ix(e)
Qe = [ [ |det(Vo, ) |dodvdB ~ () |, | =l(e) ar(e) by @413).

0 2% .

Proof of (3.11): It is an immediate consequence of (4.11) and (3.10).

Proof of (3.12): The proof is an adaptation of Lemma 3.1 in [3] by takihg into account
the geometry of the bridge @, . thanks to Lemma 4.1. By definition (3.9) and property
(4.11), we have for any Ve H'(Y,)

j VvV, .=
Qk, ¢

_— VVT €+— VR 4]
e2l,(e) ij el g2 L(e) g J &

where |[Ry .|l =q, ,—>0. By the Cauchy-Schwarz inequality, the last term is bounded
by

|Qx, | 6 (e)'

Szlk(s)

IRy, ol =g )“VV”LZ(Qk,s) by (8.10).

VV 2, ) = Os(

We thus obtain the first estimate

1 _
@) fvv-vv,m
&

F) (8)1/2
f VWW-Tj . + g( b ||VV“LZ<Q;¢,€)-
Qk,e ¢

eks)
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Denoting by V, the mean value of V over Y), we have

4.15) [ VT = 84XV~ Vi) =
"L E
1 -~ — —~ —
== f VV-Vi Vi— 1=V IVir1) Th s
e“l; () Q
£3
where by (4.11) together with (3.10)
o~ le el
0 = V. o Te . —_—
k(S) Zlk(€) .[ k, k, e——»O €2lk(8)2 s—>0 k(S)

On the other hand, since T} . has a zero divergence by (4.12) an integration by parts in
the right hand side of (4.15) yields

1 - — - -
| V-V V- A=V ) Vi) Th o =
&b (e) Qe

j(v Vo) T, ov + j(V Visd) Do v,

ezlk(e) e21,( 8)
where I';, . denotes the boundary 3Y;, N 3Q;, .. By the Sobolev imbedding Theorem in
two-dimension, the trace of the function (V — V) belongs to L*(I';,) where I geClpa
fixed open subset of 3Y;. Then by the Poincaré-Wirtinger inequality in Y}, there exists
a constant ¢ > 0 such that |V ~ V,||Ls(r,) < ¢l|VV]|.2(y,), which implies owing to the Héld-
er inequality in L*(I'y,.) combined with the estimate |I'; .| < ca(e)

1 ~ = = -
5 f VV -V, Vi— (1 =V ) Vi) Ty o | S
el (e) Q
k
a (8)3/4 P, (8)1/2
s ’:——”VV”Lz(Yz) = o[ IV,
e“l(e) €

The latter combined with (4.14) and (4.15) yields desired estimate (3.12), which con-
cludes the proof of Lemma 3.2, =

ProoF oF LEMMA 8.1. — Let Ve C*(Y,, U @y, ). By the change of variables @, , relat-
ed to definition (2.4) of the bridge @ ., we have with W(o, v, B) := |V|(y), Y=
= ¢k s(a v, ﬂ)

bi(e)
Vlkia,o= [ [ W, v, B)|det(Vo, ) |dodvdp

0 X .
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and thanks to estimate (4.13) there exists a constant ¢ > 0 such that

(e
(4.16) Vlliqo<c [ dvds | Wi, v, P do.
0

Zk.e

Moreover by assumption (H4), we can extend in Y, the bridge Q;, . by a small cylinder
of fixed length [, in such a way that

(4.17) Ry, . = {y = Fi, .(0) + 0T}, .(0) + Ny .(0) + BBy, .(0); 0€l0, L[,(v,B)eZ; .}
is a subset of Y. We can then extend in a natural way the diffeomorphism @, . of (2.4)

from 10, (e[ XXy . to 1—1U, l(e)[ X2y, ., which becomes a diffeomorphism from
1-&, 4(e)[ X Xy, . into the interior of @, .U Ry .. We have for any cel0, [ ()l

W((T,'V,ﬂ)=W(— lk » ¥ )+ J a_vvs_(s9v’/3)d8

L(e) — U)o

and by integrating with respect to €10, [, ()l

k()
J W(a, v, B) do <
0

& (&)
jW(a,v B) do + L, (¢) f |———(a,

_lk

lk( )

Then, by integrating the latter with respect to (v, ) e Xy, . and by using the inverse
change of variable @', the gradient of which is uniformly bounded by (4.13), we de-
duce from estimate (4.16) that there exists a constant ¢ > 0 such that

4.18) Vi@ o < @V, o+ I¥VilLie, ,uq, )

On the other hand, by the Poincaré Wirtinger inequality in Y, and since the set R .
from (4.17) satisfies |R; .| <ca,(e), we have

V—fV
Y

which combined with estimate (4.18) yields (3.6). =

+ le’£|

”VHLI(R,,,:) s
LY(Ry, )

| < VL + car@ V1w,

4.3. Proof of the differential geometry lemmas.

Proor or LEMMA 4.1.

Proof of (4.11): We prove the result for the tube d = 3, the case of the curved plate
d = 2 is quite similar. For the sake of simplicity, we omit the indices k¥ and £. We have
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for any component je {1, 2,3}, y;=F;(0) + vN;(0) + BB;(0) which yields for any
i,je{1, 2,3}

oF; ; oB;
a,.,:—ai i) 8Ny ' p ,(o)) By s a,s
7 ey do 8 d0 e

B()—

do v B do
=(1- —T; — |N; - B;
(1-vp) iTJ(O)+(3y1+ﬂtayz) (o) + (31' VT 1) (o)

since the Frenet formulas give

F(o) 37(o) ON (a) dB(o)

4.19) a——T( o), =oN(0), 0T(0)—1B(0), =1N(0),
(o4

where @ and 7 respectively denote the curvature and the torsion of the curve F. We
then deduce from the latter together with the orthonormality of the Frenet basis
(T, N, B)

-

3 do
= 20:;Tj=(1-vQ) —
i=1 b,

)

or equivalently

(4.20) Vo=

which implies (4.11) thanks to (2.15).

Proof of (4.12): By (4.20) we have

divT = 2 B
118:[/1 zlayi o 1-wp

which proves (4.12),
Proof of (4.13): The gradient of the function
D(o, v, B) :=F(0) + vN(o) + BB(0)

is given by the 3 x 3 matrix

Vo = o a_qs’aqs
Erar B

and thanks to formulas (4.19) and to the orthonormality of (T, N, B)
V& =(1-voXT,N,B)—vt(B,N,B)+pt(N,N, B).
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The orthonormality of the family (7', N, B) then implies that
|V®| =1+ 0(|vo| + |vz| + |B7])

which yields (4.13) owing to condition (2.15). =

ProoOF OF LEMMA 2.2. — The only difficulty is to prove that @, . is one to one. We
prove it for d = 3, the case d = 2 is quite similar. We also omit the indice % in the follow-
ing. We proceed by contradiction. Assume that there exist a sequence of positive num-
bers ¢ which converge to 0 and vectors (s,, v, 8.) # (¢, 4., Y:) €[0, 11 X X, such
that @ (s, v, B.) =D (., 4., y.), which implies s ,#t, since the vectors
N.(s,), B.(s;) are free. Condition (2.5) and estimate |v .|+ |B.| + |uc| + |y | <
< ca(e)'? imply

c(e)l |8, — t. |2 < |Fo(s,) — Fe(t,) |? < cale)
and therefore
a(e)l/Z

c(e)

(4.21) s, —t,| <c

The equality @ .(s,, v, 8.) = D.(t,, u., ¥:) also implies that

F.t,)-F N.t)-N B.(t,) — B.(s,
(422) _Let);(ss) -Fe’ (se) =u, M .Fe’ (38) +v, _%_(i)_ .Fe’ (se)’
e — S e S¢ e ™ S

since the family (F'’(s,), N(s,), B(s,)) is orthogonal. On the other hand, the Taylor-La-
grange formula yields

Fs(te)_Fs(se) 1 ”
(4.23) = _F/s)| s =t - s |IF! .
t,— s, 2
Moreover, since N, = — (¢, N. + 7.B,) |F. | where ¢, denotes the curvature and 7, the

torsion related to the curve F,, we have

(4.24) [N.(te) = No(s.) | < |t — s | (o Flleo + Iz Fé ),
and similarly, since B, =t ,N, |F/ |, |
(4.25) |B.(t.) — B.(s.)| < |t, — 8, |[Ir . F{ o

Now putting estimates (4.23), (4.24) and (4.25) in equality (4.22) yields

) .
|Fe(s.) | < 3 Ite = se [IF Nl + |pelllo e Felle + Claee| + |7 e Dl Fe s,
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which implies by (2.5) and (4.21), the existence of a constant ¢ >0 such that

a(e)?
c(e)

and thus contradicts condition (2.6) satisfied by c(¢). =

o(e) < |F/(s)| <c F o + cate) (o  F o + Il £l
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