Dirichlet Problem for a Divergence Form Elliptic Equation with Unbounded Coefficients in an Unbounded Domain (*).

Maurizio Chicco - Marina Venturino

Abstract

We prove existence and uniqueness of the solution of the Dirichlet problem for a class of elliptic equations in divergence form with discontinuous and unbounded coefficients in unbounded domains.

1. - Introduction.

In 1985 in two interesting papers [4], [5] P. L. Lions considered the Dirichlet problem

$$
\left\{\begin{array}{l}
a_{0}(u, v)=\langle T, v\rangle \quad \forall v \in H_{0}^{1}(\Omega) \tag{1}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

where T is given in $H^{-1}(\Omega)$. The bilinear form $a_{0}(\cdot, \cdot)$ is defined as follows:

$$
\begin{equation*}
a_{0}(u, v):=\int_{\Omega}\left\{\sum_{i, j=1}^{n} a_{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b_{i} u_{x_{i}} v+c u v\right\} d x \tag{2}
\end{equation*}
$$

where $a_{i j} \in L^{\infty}(\Omega), \sum_{i, j=1}^{n} a_{i j} t_{i} t_{j} \geqslant \nu|t|^{2}$ for all $t \in \mathrm{R}^{n}$ (with ν a positive costant), $b_{i} \in$ $\in L^{\infty}(\Omega)(i=1,2, \ldots, n), c \geqslant c_{0}$ (positive constant). The open set Ω, contained in \mathbb{R}^{n}, is not supposed to be bounded. The main result of the works by P. L. Lions is that, under the hypotheses above, there exists a unique solution of problem (1) and the a priori inequality

$$
\begin{equation*}
\|u\|_{H^{1}(\Omega)} \leqslant K_{1}\|T\|_{H^{-1}(\Omega)} \tag{3}
\end{equation*}
$$

holds, where K_{1} is a constant depending on n and the coefficients of the bilinear form $a_{0}(\cdot, \cdot)$.

[^0]The aim of the present note is to extend these results assuming the coefficients b_{i} to belong only to the space $X^{p}(\Omega)(i=1,2, \ldots, n)$ with $p>n$ (see Definition 1 below or [2]). The proof is similar to the one in [4], [5]; we add some new remarks (e.g. Lemma 3).

2. - Preliminaries.

Let Ω be an open subset of R^{n}; for simplicity we assume $n \geqslant 3$.
Definition 1. - Let

$$
\begin{gathered}
\omega(f, p, \delta):=\sup \left\{\|f\|_{L^{p}(E)}: E \text { measurable, } E \subset \Omega, \text { meas } E \leqslant \delta\right\} \\
X^{p}(\Omega):=\left\{f \in L_{\text {poc }}^{p}(\Omega): \omega(f, p, \delta)<+\infty \forall \delta>0\right\} \\
X_{0}^{p}(\Omega):=\left\{f \in X^{p}(\Omega): \lim _{\delta \rightarrow 0+} \omega(f, p, \delta)=0\right\}
\end{gathered}
$$

For further properties of these spaces, see [2].
Lemma 1 (Uniqueness). - If $a_{i j} \in L^{\infty}(\Omega)(i, j=1,2, \ldots n), \sum_{i, j=1}^{n} a_{i j} t_{i} t_{j} \geqslant v|t|^{2}$ for all $t \in \mathbb{R}^{n}, b_{i} \in X_{0}^{n}(\Omega)(i=1,2, \ldots, n), c \geqslant c_{0}$ in $\Omega\left(\nu, c_{0}\right.$ positive constants), $c \in X_{0}^{n / 2}(\Omega)$, then problem (1) (with the bilinear form $a_{0}(\cdot, \cdot)$ defined in (2)) has at most one solution.

Proof. - It is sufficient to show that if $u \in H_{0}^{1}(\Omega), a_{0}(u, v) \leqslant 0 \forall v \in H_{0}^{1}(\Omega), v \geqslant 0$ in Ω, then $u \leqslant 0$ a.e. in Ω. Arguing by contradiction, suppose that $m:=\operatorname{ess} \sup u>0$. Choose t with $0<t<m$ and let $u_{t}:=\max (u-t, 0)$. Since $u \in H_{0}^{1}(\Omega)$, in particular $u \in$ $\in L^{2}(\Omega)$, then $u_{t}>0$ only in a set of finite measure. Therefore, replacing v with u_{t} in (1) and observing that $u_{x_{i}}=\left(u_{t}\right)_{x_{i}}$ a.e. in $\Omega_{t}:=\{x \in \Omega: t<u(x)<m\}$, it follows from the assumptions above that

$$
\begin{equation*}
c_{0}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2}+\nu\left\|\left(u_{t}\right)_{x}\right\|_{L^{2}(\Omega)}^{2^{2}} \leqslant S \sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(\Omega_{t}\right)}\left\|\left(u_{t}\right)_{x}\right\|_{L^{2}\left(\Omega_{t}\right)}^{2}, \tag{4}
\end{equation*}
$$

where S denotes the constant in the Sobolev inequality

$$
\|\phi\|_{L^{2 n /(n-2)}\left(\mathbb{R}^{n}\right)} \leqslant S\left\|\phi_{x}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \quad \forall \phi \in C_{0}^{1}\left(\mathbb{R}^{n}\right)
$$

(It is well known that the constant S depends only on n : see e.g. [8].) We can choose t so close to m that meas Ω_{t} be as small as we like, and since $b_{i} \in X_{0}^{n}(\Omega)$, we obtain $\sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(\Omega_{i}\right)}<v / S$. Then from (4) we get

$$
u_{t}=0 \quad \text { a.e. in } \Omega,
$$

which is a contradiction, since $m:=\underset{\Omega}{\operatorname{ess} \sup u>^{\prime} t}$.
The following lemma is a more precise version of the classical Sobolev inequality.

Lemma 2. - Let Q be a cube in \mathbb{R}^{n} with side length r, and $u \in H^{1}(Q)$. Then there exists a constant K_{2}, depending only on n, such that

$$
\begin{equation*}
\|u\|_{L^{2 n(n-2)}(Q)} \leqslant K_{2}\left[(1 / r)\|u\|_{L^{2}(Q)}+\left\|u_{x}\right\|_{L^{2}(Q)}\right] \tag{5}
\end{equation*}
$$

Proof. - A proof of this result can be found e.g. in [3]; we give an outline only for convenience of the reader. First of all, it is sufficient to consider the case $r=1$, and the general case easily follows by a change of variables (dilation).

We can use inequalities (5.7), (5.8) of [3] replacing Ω with $Q, l=1, \quad p=2$, and obtain

$$
\begin{equation*}
\|u\|_{L^{2 n /(n-2)}(Q)} \leqslant 2^{(n-2) /(2 n-2)}\|u\|_{L^{(2 n-2) /(n-2)}(Q)}+4(n-1) /(n-2) \sum_{i=1}^{n}\left\|u_{x_{i}}\right\|_{L^{2}(Q)} \tag{6}
\end{equation*}
$$

Since $2<2(n-1) /(n-2)<2 n /(n-2)$, then from Lemma 3.1 of [3], with $p_{1}=2, p=$ $=2(n-1) /(n-2), p_{2}=2 n /(n-2), \varepsilon=2^{-(3 n-4) /(2 n-2)}$, we get:

$$
\begin{equation*}
\|u\|_{L^{(2 n-2) /(n-2)}(Q)} \leqslant 2^{-(3 n-4) /(2 n-2)}\|u\|_{L^{2 n /(n-2)}(Q)}+2^{n(3 n-4) /(2 n-2)(n-2)}\|u\|_{L^{2}(Q)} \tag{7}
\end{equation*}
$$

We combine (7) and (6) and finally get

$$
\|u\|_{L^{2 n(n-2)}(Q)} \leqslant 2^{(3 n-4) /(n-2)}\|u\|_{L^{2}(Q)}+8(n-1) /(n-2) \sum_{i=1}^{n}\left\|u_{x_{i}}\right\|_{L^{2}(Q)}
$$

whence the conclusion (5) easily follows.
Definition 2. - (Stampacchia [7]). The bilinear form

$$
\begin{equation*}
a(u, v):=\int_{\Omega}\left\{\sum_{i, j=1}^{n} a_{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b_{i} u_{x_{i}} v+\sum_{i=1}^{n} d_{i} u v_{x_{i}}+c u v\right\} d x \tag{8}
\end{equation*}
$$

is said to be coercitive on $H_{0}^{1}(\Omega)$ if there exists a positive constant c_{1} such that

$$
a(u, u) \geqslant c_{1}\|u\|_{H_{0}^{\gamma}(\Omega)}^{2} \quad \forall u \in H_{0}^{1}(\Omega) .
$$

The following result is an extension of theorem 3.2 of Stampacchia [7].
Lemma 3. - Suppose $a_{i j}(i, j=1,2, \ldots, n)$ as in Lemma $1, b_{i}, d_{i} \in X_{0}^{n}(\Omega)(i=$ $=1,2, \ldots, n), c \in X_{0}^{n / 2}(\Omega), a(\cdot, \cdot)$ defined as in (8).

Then there exists a constant λ_{0} (depending on the coefficients of $a(\cdot, \cdot)$) such that the bilinear form

$$
a(u, v)+\lambda \int_{\Omega} u v d x
$$

is coercitive on $H_{0}^{1}(\Omega)$ whenever $\lambda \geqslant \lambda_{0}$.
Proof. - Let $\left\{Q_{h}\right\}_{h \in \mathbb{N}}$ be a family of open cubes in \mathbb{R}^{n}, with constant side length r, such that $\bigcup_{h=1}^{+\infty} \overline{Q_{h}}=\mathbb{R}^{n}$ and $Q_{k} \cap Q_{h}=\emptyset$ if $h \neq k$. By the assumptions above and Definition

1, we can choose $r>0$ such that

$$
\begin{align*}
& \sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(Q_{h}\right)} \leqslant v / 8 K_{2}, \quad \sum_{i=1}^{n}\left\|d_{i}\right\|_{L^{n}\left(Q_{h}\right)} \leqslant v / 8 K_{2}, \quad\|c\|_{L^{n / 2}\left(Q_{h}\right)} \leqslant v / 8 K_{2}^{2} \tag{9}\\
&(h=1,2, \ldots) .
\end{align*}
$$

Then, taking Lemma 2 into account, if $u \in H_{0}^{1}\left(\mathbb{R}^{n}\right)$ it turns out:

$$
\begin{align*}
\sum_{i=1}^{n} \int_{Q_{h}}\left|b_{i} u_{x_{i}} u\right| d x \leqslant\left(v / 8 K_{2}\right) & \|u\|_{L^{2 n /(n-2)}\left(Q_{h}\right)}\left\|u_{x}\right\|_{L^{2}\left(Q_{h}\right)} \leqslant \tag{10}\\
& \leqslant(v / 8)\left\|u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\left[(1 / r)\|u\|_{L^{2}\left(Q_{h}\right)}+\left\|u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\right] \leqslant \\
& \leqslant(v / 4)\left\|u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(v / 32 r^{2}\right)\|u\|_{L^{2}\left(Q_{h}\right)}^{2} \quad(h=1,2, \ldots)
\end{align*}
$$

and, by the same procedure,

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{Q_{h}}\left|d_{i} u_{x_{i}} u\right| d x \leqslant(v / 4)\left\|u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(v / 32 r^{2}\right)\|u\|_{L^{2}\left(Q_{h}\right)}^{2} \quad(h=1,2, \ldots) \tag{11}
\end{equation*}
$$

$$
\begin{align*}
\int_{Q_{h}}\left|c u^{2}\right| d x \leqslant\|c\|_{L^{n / 2}\left(Q_{h}\right)}\|u\|_{L^{2 n(n-2)}\left(Q_{h}\right)}^{2} \leqslant & \tag{12}\\
& \leqslant(v / 4)\left\|u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(v / 4 r^{2}\right)\|u\|_{L^{2}\left(Q_{h}\right)}^{2} \quad(h=1,2, \ldots)
\end{align*}
$$

Now suppose $u \in H_{0}^{1}(\Omega)$; from (10) we easily deduce
(13)

$$
\begin{aligned}
& \quad\left|\int_{\Omega} \sum_{i=1}^{n} b_{i} u_{x_{i}} u d x\right| \leqslant \sum_{h=1}^{+\infty} \int_{\Omega \cap Q_{h}}\left|\sum_{i=1}^{n} b_{i} u_{x_{i}} u\right| d x \leqslant \\
& \leqslant(v / 4) \sum_{h=1}^{+\infty} \int_{\Omega \cap Q_{h}} u_{x}^{2} d x+\left(v / 32 r^{2}\right) \sum_{h=1}^{+\infty} \int_{\Omega \cap Q_{h}} u^{2} d x=(v / 4)\left\|u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(v / 32 r^{2}\right)\|u\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

and similarly

$$
\begin{align*}
&\left|\int_{\Omega} \sum_{i=1}^{n} d_{i} u_{x_{i}} u d x\right| \leqslant \ldots \leqslant(v / 4)\left\|u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(v / 32 r^{2}\right)\|u\|_{L^{2}(\Omega)}^{2}, \tag{14}\\
&\left|\int_{\Omega} c u^{2} d x\right| \leqslant \ldots \leqslant(v / 4)\left\|u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(v / 4 r^{2}\right)\|u\|_{L^{2}(\Omega)}^{2}
\end{align*}
$$

From (13), (14), (15) and uniform ellipticity the conclusion follows, with $\lambda_{0}=$ $=5 v / 16 r^{2}+v / 4$ and $c_{1}=v / 4$.

Following Stampacchia [7] we have, first of all, that the Dirichlet problem

$$
\left\{\begin{array}{l}
a(u, v)+\lambda \int_{\Omega} u v d x=\langle T, v\rangle \forall v \in H_{0}^{1}(\Omega) \tag{16}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

(with T given in $H^{-1}(\Omega)$) has a unique solution if $\lambda \geqslant \lambda_{0}$. Notice, furthermore, that the Dirichlet problem

$$
\left\{\begin{array}{l}
a(u, v)=\langle T, v\rangle \forall v \in H_{0}^{1}(\Omega) \tag{17}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

has a unique solution if the same holds in the particular case $\langle T, v\rangle=\int_{\Omega} w v d x$ with $w \in$ $\in H_{0}^{1}(\Omega)$. In fact we have the following result:

Lemma 4. - Suppose that the Dirichlet problem

$$
\left\{\begin{array}{l}
a(u, v)=\int_{\Omega} w v d x \forall v \in H_{0}^{1}(\Omega) \tag{18}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

has a unique solution whenever w is given in $H_{0}^{1}(\Omega)$, and the a priori inequality

$$
\|u\|_{L^{2}(\Omega)} \leqslant K_{3}\|w\|_{L^{2}(\Omega)}
$$

holds. Then problem (17) also has a unique solution, and it turns out

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leqslant K_{4}\|T\|_{H^{-1}(\Omega)} \tag{19}
\end{equation*}
$$

where K_{4} depends on the coefficients of $a(\cdot, \cdot)\left(K_{4}\right.$ can be explicitly evaluated).
Proof. - Let $\lambda \geqslant \lambda_{0}$ (defined in Lemma 3). According to what we observed before, the problem

$$
\left\{\begin{array}{l}
a\left(u_{1}, v\right)+\lambda \int_{\Omega} u_{1} v d x=\langle T, v\rangle \forall v \in H_{0}^{1}(\Omega) \tag{20}\\
u_{1} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

has a unique solution u_{1}, which satisfies the a priori inequality

$$
\begin{equation*}
\left\|u_{1}\right\|_{H^{1}(\Omega)} \leqslant\left(1 / c_{1}\right)\|T\|_{H^{-1}(\Omega)} \tag{21}
\end{equation*}
$$

where c_{1} is the constant in Definition 2. (Inequality (19) can be easily proved by using the fact that the bilinear form $a(u, v)+\lambda \int_{\Omega} u v d x$ is coercitive on $\left.H_{0}^{1}(\Omega)\right)$. Then we con-
sider the problem

$$
\left\{\begin{array}{l}
a\left(u_{2}, v\right)=\int_{\Omega} u_{1} v d x \forall v \in H_{0}^{1}(\Omega) \tag{22}\\
u_{2} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

which by hypothesis has a unique solution u_{2}, and the inequality

$$
\begin{equation*}
\left\|u_{2}\right\|_{L^{2}(\Omega)} \leqslant K_{3}\left\|u_{1}\right\|_{L^{2}(\Omega)} \tag{23}
\end{equation*}
$$

holds. From (20), (22) we get

$$
\left\{\begin{array}{l}
a\left(u_{1}+\lambda u_{2}, v\right)=\langle T, v\rangle \forall v \in H_{0}^{1}(\Omega) \tag{24}\\
u_{1}+\lambda u_{2} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

i.e. $u_{1}+\lambda u_{2}$ is a solution of problem (17), and it is unique by hypothesis. Furthermore from (21), (23) we deduce

$$
\begin{equation*}
\left\|u_{1}+\lambda u_{2}\right\|_{L^{2}(\Omega)} \leqslant\left(1 / c_{1}\right)\left(1+\lambda K_{3}\right)\|T\|_{H^{-1}(\Omega)} \tag{25}
\end{equation*}
$$

whence (19), with $K_{4}=\left(1 / c_{1}\right)\left(1+\lambda_{0} K_{3}\right)$, and λ_{0} as in Lemma 3.
The following Lemma is an extension of a result by Miranda ([6], Theorem 4.1).

Lemma 5. - Let $u \in H_{0}^{1}(\Omega)$ be a solution of the equation

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega) \tag{26}
\end{equation*}
$$

with $f \in L^{q}(\Omega) \forall q \geqslant q_{0}\left(q_{0}\right.$ constant, $\left.q_{0} \geqslant 2\right), b_{i} \in X_{0}^{n}(\Omega)(i=1,2, \ldots, n), d_{i} \in X^{p}(\Omega)$ with $p>n, \quad c=c^{\prime}+c^{\prime \prime}, \quad c^{\prime} \geqslant c_{0} \quad\left(c_{0} \quad\right.$ positive constant $), \quad c^{\prime} \in X^{n / 2}(\Omega), \quad c^{\prime \prime} \in$ $\in X^{n p /(n+p)}(\Omega)$.

Then there exist $\varepsilon>0, \bar{q} \geqslant q_{0}, K_{5}>0$ such that if $\omega\left(d_{i}, n, 1\right)<\varepsilon(i=1,2, \ldots, n)$, $\omega\left(c^{\prime \prime}, n / 2,1\right)<\varepsilon$, then

$$
\|u\|_{L^{\bar{q}}(\Omega)} \leqslant K_{5}\|f\|_{L^{\bar{q}}(\Omega)}
$$

Proof. - By Remark 3 of [2] applied to the coefficients $d_{i}, c^{\prime \prime}$, it turns out $d_{i} \in X_{0}^{n}(\Omega)$ ($i=1,2, \ldots, n$) , $c^{\prime \prime} \in X_{0}^{n / 2}(\Omega)$, so we can apply the Theorem of [2] obtaining $u \in L^{\infty}(\Omega)$. Therefore if $\gamma \in \mathbb{R}, \gamma \geqslant 0$, then $v:=|u|^{\gamma+1} \operatorname{sign}(u) \in H_{0}^{1}(\Omega)$. By choosing v as a test function we find (since $v_{x_{i}}=(\gamma+1)|u|^{\gamma} u_{x_{i}}$ a.e. in Ω):

$$
\begin{equation*}
\sum_{i, j=1}^{n} \int_{\Omega} a_{i j} u_{x_{i}} v_{x_{j}} d x \geqslant v(\gamma+1) \int_{\Omega}|u|^{\gamma} u_{x}^{2} d x \tag{27}
\end{equation*}
$$

Furthermore, let $\left\{Q_{h}\right\}_{h \in \mathbb{N}}$ be a family of cubes of side length $r>0$, as in Lemma 3. We
have, by Hölder's inequality and Lemma 2,
(28)

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} \int_{Q_{h}} b_{i} u_{x_{i}} v d x\right| \leqslant \sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(Q_{h}\right)}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\left\||u|^{\gamma^{*}}\right\|_{L^{2 n(n-2)}\left(Q_{h}\right)} \leqslant \\
& \leqslant \\
& \leqslant K_{2} \sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(Q_{h}\right)}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\left[\frac{1}{r}\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}+\gamma^{*}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\right] \leqslant \\
& \leqslant \\
& \leqslant K_{2} \sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(Q_{h}\right)}\left[\left(\gamma^{*}+\mu / 2\right)\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+1 /\left(2 r^{2} \mu\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}^{2}\right]
\end{aligned}
$$

Here $\gamma^{*}:=1+\gamma / 2, r>0$ is as in Lemma 2 and $\mu>0$ arbitrary. Now let us choose r such that $0<r \leqslant 1$ and

$$
\begin{equation*}
K_{2} \sum_{i=1}^{n}\left\|b_{i}\right\|_{L^{n}\left(Q_{h}\right)} \leqslant v / 4 \quad(h=1,2, \ldots) \tag{29}
\end{equation*}
$$

this is possible according to the assumptions on the coefficients $b_{i}(i=1,2, \ldots, n)$.
-Furthermore choose μ in (28) such that

$$
\begin{equation*}
\mu=v /\left(2 c_{0} r^{2}\right) \tag{30}
\end{equation*}
$$

Therefore from (28), (29), (30) we deduce

$$
\begin{align*}
& \left|\sum_{i=1}^{n} \int_{Q_{h}} b_{i} u_{x_{i}} v d x\right| \leqslant \tag{31}\\
& \quad \leqslant\left[v\left(\gamma^{*}+v /\left(4 c_{0} r^{2}\right)\right) / 4\right]\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(c_{0} / 4\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}^{2} \quad(h=1,2, \ldots)
\end{align*}
$$

If we choose

$$
\begin{equation*}
\gamma:=\max \left(1, v /\left(2 c_{0} r^{2}\right), q_{0}-2\right) \tag{32}
\end{equation*}
$$

we get

$$
\nu /\left(4 c_{0} r^{2}\right) \leqslant \gamma / 2
$$

With all these choices (31) becomes

$$
\begin{align*}
& \left|\sum_{i=1}^{n} \int_{Q_{h}} b_{i} u_{x_{i}} v d x\right| \leqslant \tag{33}\\
& \quad \leqslant[v(1+\gamma) / 4]\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(c_{0} / 4\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}^{2} \quad(h=1,2, \ldots)
\end{align*}
$$

whence, by summing on h, we finally get

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \int_{\Omega} b_{i} u_{x_{i}} v d x\right| \leqslant[v(1+\gamma) / 4]\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(c_{0} / 4\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2} \tag{34}
\end{equation*}
$$

By a similar procedure we can evaluate the other terms of the bilinear form $a(u, v)$. We
have (again, by Hölder's inequality and Lemma 2):
(35)

$$
\begin{aligned}
& (\gamma+1)^{-1} K_{2}^{-1}\left|\sum_{i=1}^{n} \int_{Q_{h}} d_{i} u v_{x_{i}} d x\right| \leqslant \\
& \leqslant K_{2}^{-1} \sum_{i=1}^{n}\left\|d_{i}\right\|_{L^{n}\left(Q_{h}\right)}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\left\||u|^{\gamma^{*}}\right\|_{L^{2 n /(n-2)}\left(Q_{h}\right)} \leqslant \\
& \leqslant \sum_{i=1}^{n}\left\|d_{i}\right\|_{L^{n}\left(Q_{h}\right)}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\left[\frac{1}{r}\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}+\gamma^{*}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}\right] \leqslant \\
& \leqslant \sum_{i=1}^{n}\left\|d_{i}\right\|_{L^{n}\left(Q_{h}\right)}\left[\left(1+\gamma^{*}\right)\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(1 / 4 r^{2}\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}^{2}\right] \quad(h=1,2, \ldots)
\end{aligned}
$$

whence, by summing over h
(36)

$$
\begin{aligned}
& (\gamma+1)^{-1} K_{2}^{-1}\left|\sum_{i=1}^{n} \int_{\Omega} d_{i} u v_{x_{i}} d x\right| \leqslant \\
& \quad \leqslant\left[\sup _{h} \sum_{i=1}^{n}\left\|d_{i}\right\|_{L^{n}\left(Q_{h}\right)}\right]\left[\left(1+\gamma^{*}\right)\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(1 / 4 r^{2}\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2}\right]
\end{aligned}
$$

Similarly again
(37)

$$
\begin{array}{r}
\left|\int_{Q_{h}} c^{\prime \prime} u v d x\right| \leqslant\left.\int_{Q_{h}}\left|c^{\prime \prime}\left\|\left.u\right|^{\gamma+2} d x \leqslant\right\| c^{\prime \prime}\left\|_{L^{n / 2}\left(Q_{h}\right)}\right\|\right| u\right|^{\gamma^{*}} \|_{L^{2 n /(x-2)}\left(Q_{h}\right)}^{2} \leqslant \\
\leqslant \\
\leqslant K_{2}^{2}\left\|c^{\prime \prime}\right\|_{L^{n / 2}\left(Q_{h}\right)}\left[\gamma^{*}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}+(1 / r)\left\||u|^{1+\gamma / 2}\right\|_{L^{2}\left(Q_{h}\right)}\right]^{2} \leqslant \\
\leqslant
\end{array} \begin{array}{r}
2 K_{2}^{2}\left\|c^{\prime \prime}\right\|_{L^{n / 2}\left(Q_{h}\right)}\left[\left(\gamma^{*}\right)^{2}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}\left(Q_{h}\right)}^{2}+\left(1 / r^{2}\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}\left(Q_{h}\right)}^{2}\right] \\
(h=1,2, \ldots)
\end{array}
$$

and by summing over h
(38) $\quad\left|\int_{\Omega} c^{\prime \prime} u v d x\right| \leqslant 2 K_{2}^{2}\left[\sup _{h}\left\|c^{\prime \prime}\right\|_{L^{n / 2}\left(Q_{h}\right)}\right]\left[\left(\gamma^{*}\right)^{2}\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(1 / r^{2}\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2}\right]$.

From (27), (34), (36), (38) we easily get the result. In fact if we choose ε such that (39) $\quad 0<\varepsilon \leqslant \min \left\{c_{0} r^{2} /\left[K_{2}(\gamma+1)\right], c_{0} r^{2} /\left(8 K_{2}^{2}\right), v /\left[2 K_{2}(\gamma+4)\right], v /\left[K_{2}^{2}(\gamma+2)^{2}\right]\right\}$
since $0<r \leqslant 1$, then from (36), (38)

$$
\begin{gather*}
\left|\sum_{i=1}^{n} \int_{\Omega} d_{i} u v_{x_{i}} d x\right| \leqslant[v(\gamma+1) / 4]\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2}+\left(c_{0} / 4\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2} \tag{40}\\
\left|\int_{\Omega} c^{\prime \prime} u v d x\right| \leqslant[v(\gamma+1) / 4]\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2^{2}}+\left(c_{0} / 4\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2} . \tag{41}
\end{gather*}
$$

From (27), (34), (40), (41), using (26) we deduce

$$
\begin{align*}
& \|f\|_{L^{\gamma+2}(\Omega)}\|u\|_{L^{\gamma+2}(\Omega)}^{\gamma+1} \geqslant \tag{42}\\
& \geqslant \int_{\Omega} f v d x=a(u, v) \geqslant v(\gamma+1)\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2}+c_{0}\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2}+ \\
& -(v / 4+v / 4+v / 4)(\gamma+1)\left\||u|^{\gamma / 2} u_{x}\right\|_{L^{2}(\Omega)}^{2}-\left(3 c_{0} / 4\right)\left\||u|^{\gamma^{*}}\right\|_{L^{2}(\Omega)}^{2} \geqslant\left(c_{0} / 4\right)\|u\|_{L^{\gamma+2}(\Omega)}^{\gamma+2}
\end{align*}
$$

whence finally

$$
\begin{equation*}
\|u\|_{L^{\gamma+2}(\Omega)} \leqslant\left(4 / c_{0}\right)\|f\|_{L^{\gamma+2}(\Omega)} \tag{43}
\end{equation*}
$$

The assertion is therefore proved with $\bar{q}:=\gamma+2, K_{5}:=4 / c_{0}, \gamma$ given by (32), and ε defined as in (39).

It is now convenient to define the «dual bilinear form» with respect to $a(u, v)$ as follows:

$$
\begin{equation*}
a^{\prime}(u, v):=a(v, u) \quad \forall u, v \in H_{0}^{1}(\Omega) \tag{44}
\end{equation*}
$$

It is clear that, going from $a(u, v)$ to $a^{\prime}(u, v)$, we interchange the coefficients b_{i} with the d_{i} 's. Using the fact that $L^{p}(\Omega)$ and $L^{q}(\Omega)$ are dual spaces if $1 / p+1 / q=1$, it is easy to prove that Lemma 5 is equivalent to the following:

Lemma 5'. - Let $w \in H_{0}^{1}(\Omega)$ be a solution of the equation

$$
\begin{equation*}
a(w, v)=\int_{\Omega} g v d x \forall v \in H_{0}^{1}(\Omega) \tag{45}
\end{equation*}
$$

with $g \in L^{p}(\Omega) \forall p \in\left(1, p_{0}\right)\left(p_{0}\right.$ constant, $\left.p_{0} \in(1,2]\right), d_{i} \in X_{0}^{n}(\Omega), b_{i} \in X^{q}(\Omega)$ with $q>n$ $(i=1,2, \ldots, n), \quad c=c^{\prime}+c^{\prime \prime}, \quad c^{\prime} \in X^{n / 2}(\Omega), \quad c^{\prime} \geqslant c_{0} \quad\left(c_{0}\right.$ positive constant), $c^{\prime \prime} \in$ $\in X^{n q /(n+q)}(\Omega)$. Then there exist $\varepsilon>0, \bar{p} \in\left(1, p_{0}\right], K_{6}>0$ such that if $\omega\left(b_{i}, n, 1\right)<\varepsilon(i=$ $=1,2, \ldots, n), \omega\left(c^{\prime \prime}, n / 2,1\right)<\varepsilon$, then

$$
\begin{equation*}
\|w\|_{L^{\bar{p}}(\Omega)} \leqslant K_{6}\|g\|_{L^{\bar{p}}(\Omega)} \tag{46}
\end{equation*}
$$

Proof. - As in [4], [5], we may assume without loss of generality that Ω is bounded, provided the costants in the a priori inequalities we prove are independent on Ω. Notice also that we have supposed the coefficients $b_{i}(i=1,2, \ldots, n)$ to be sufficiently small, instead of the d_{i} 's as in Lemma 5 . Therefore it is possible to apply Lemma 5 provided we
replace the bilinear form $a(u, v)$ with $a^{\prime}(u, v):=a(v, u)$ since, as we have already remarked, in this way the roles of the coefficients b_{i} and d_{i} are reversed.

Let w be as in the hypothesis; we want to show

$$
\begin{equation*}
\|w\|_{L^{\bar{p}}(\Omega)} \leqslant K_{6}\|g\|_{L^{\bar{p}}(\Omega)} \tag{47}
\end{equation*}
$$

with $K_{6}=K_{5}, 1 / \bar{p}+1 / \bar{q}=1, K_{5}, \bar{q}$ as in Lemma 5 . From well known results (see e.g [1]) we have

$$
\begin{equation*}
\|w\|_{L^{\bar{p}}(\Omega)}=\sup \left\{\int_{\Omega} w f d x: f \in L^{\bar{q}}(\Omega),\|f\|_{L^{\bar{q}}(\Omega)} \leqslant 1\right\} \tag{48}
\end{equation*}
$$

Let $f \in L^{q}(\Omega) \forall q \geqslant 2$. Consider the Dirichlet problem

$$
\left\{\begin{array}{l}
a^{\prime}(u, v)=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega) \tag{49}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

The solution u is unique by Lemma 5 . Since Ω is supposed to be bounded, the RieszFredholm theory is valid and uniqueness of u implies its existence. By applying again Lemma 5 to the solution u, we get the existence of a number $\bar{q} \geqslant 2$ such that

$$
\begin{equation*}
\|u\|_{L^{\bar{q}}(\Omega)} \leqslant K_{5}\|f\|_{L^{\bar{q}}(\Omega)} . \tag{50}
\end{equation*}
$$

From (45), (49) it clearly follows

$$
\begin{equation*}
a^{\prime}(u, w)=\int_{\Omega} f w d x=\int_{\Omega} g u d x \tag{51}
\end{equation*}
$$

From (48), (51), Lemma 5 and Hölder's inequality we finally get

$$
\begin{align*}
& \|w\|_{L^{\bar{p}}(\Omega)}=\sup \left\{\int_{\Omega} g u d x: f \in L^{\bar{q}}(\Omega),\|f\|_{L^{\bar{q}}(\Omega)} \leqslant 1\right\} \leqslant \tag{52}\\
& \quad \leqslant \sup \left\{\|g\|_{L^{\bar{p}}(\Omega)}\|u\|_{L^{\bar{q}}(\Omega)}: f \in L^{\bar{q}}(\Omega),\|f\|_{L^{\bar{q}}(\Omega)} \leqslant 1\right\} \leqslant K_{5}\|g\|_{L^{\bar{p}}(\Omega)}
\end{align*}
$$

which completes the proof.
The next result, in a similar form, was already used in [4].
Lemma 6. - Let $\alpha \in \operatorname{Lip}(\bar{\Omega}), \alpha \geqslant \bar{c}$ (\bar{c} positive constant) in Ω, and $u \in H^{1}(\Omega)$ be a solution of the equation

$$
a(u, v)=\int_{\Omega}\left\{f_{0} v+\sum_{i=i}^{n} f_{i} v_{x_{i}}\right\} d x \quad \forall v \in H_{0}^{1}(\Omega)
$$

(where the bilinear form $\alpha(\cdot, \cdot)$ is defined in (8)). Then the function αu is solution of
the equation

$$
a^{*}(\alpha u, v)=\int_{\Omega}\left\{\left(\alpha f_{0}+\sum_{i=1}^{n} f_{i} \alpha_{x_{i}}\right) v+\sum_{i=1}^{n} \alpha f_{i} v_{x_{i}}\right\} d x \quad \forall v \in H_{0}^{1}(\Omega),
$$

where we define

$$
\begin{align*}
a^{*}(u, v) & :=\int_{\Omega}\left\{\sum_{i, j=1}^{n} a_{i j}^{*} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n}\left(b_{i}^{*} u_{x_{i}} v+d_{i}^{*} u v_{x_{i}}\right)+c^{*} u v\right\} d x \tag{53}\\
a_{i j}^{*} & :=a_{i j}(i, j=1,2, \ldots, n) \\
b_{i}^{*} & :=b_{i}+\sum_{j=1}^{n} a_{i j} \alpha_{x_{j}} / \alpha \quad(i=1,2, \ldots, n) \\
d_{i}^{*} & :=d_{i}-\sum_{j=1}^{n} a_{j i} \alpha_{x_{j}} / \alpha \quad(i=1,2, \ldots, n) \\
c^{*} & :=c-\sum_{i=1}^{n}\left(b_{i}-d_{i}\right) \alpha_{x_{i}} / \alpha-\sum_{i, j=1}^{n} a_{i j} \alpha_{x_{i}} \alpha_{x_{j}} / \alpha^{2}
\end{align*}
$$

Proof. - The proof can be left to the reader.

3. - Main result.

Theorem 1. - Suppose that the bilinear form $a_{0}(\cdot, \cdot)$ (defined in (2)) satisfies the same hypotheses of Lemma 1 and that there exists $p>n$ such that $b_{i} \in X^{p}(\Omega)(i=$ $=1,2, \ldots n$). Then the Dirichlet problem (1) has a solution u, satisfying (2).

Proof. - We partially follow the same procedure of [4], [5]. First of all, according to Lemma 4, it is sufficient to show that the Dirichlet problem

$$
\left\{\begin{array}{l}
a_{0}(u, v)=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega), \tag{54}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

has a solution whenever f is given in $H_{0}^{1}(\Omega)$ or, more generally, in $L^{2}(\Omega)$; this in turn is equivalent to show the a priori inequality

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leqslant K_{7}\|f\|_{L^{2}(\Omega)} \tag{55}
\end{equation*}
$$

for the solution u of (54). If u is a solution of (54) and $f \in L^{\infty}(\Omega)$, we know that

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leqslant\left(1 / c_{0}\right)\|f\|_{L^{\infty}(\Omega)} \tag{56}
\end{equation*}
$$

therefore it would be sufficient to prove an inequality such as

$$
\begin{equation*}
\|u\|_{L^{1}(\Omega)} \leqslant K_{8}\|f\|_{L^{1}(\Omega)} \tag{57}
\end{equation*}
$$

in order to get (55) by interpolation. Using again a duality argument, we remark that (57) is equivalent to

$$
\begin{equation*}
\|w\|_{L^{\infty}(\Omega)} \leqslant K_{9}\|g\|_{L^{\infty}(\Omega)} \tag{58}
\end{equation*}
$$

where $w \in H_{0}^{1}(\Omega)$ is the solution of the dual problem

$$
\begin{align*}
& a_{0}^{\prime}(w, v):=a_{0}(v, w)= \tag{59}\\
& \quad=\int_{\Omega}\left\{\sum_{i, j=1}^{n} a_{i j} w_{x_{j}} v_{x_{i}}+\sum_{i=1}^{n} b_{i} w v_{x_{i}}+c u v\right\} d x=\int_{\Omega} g v d x \quad \forall v \in H_{0}^{1}(\Omega)
\end{align*}
$$

We also observe that, by the same duality arguments as above, the inequality

$$
\begin{equation*}
\|w\|_{L^{1}(\Omega)} \leqslant\left(1 / c_{0}\right)\|g\|_{L^{1}(\Omega)} \tag{60}
\end{equation*}
$$

holds, since it follows from (56). Finally, as in [4], [5] without loss of generality we can suppose Ω to be bounded, provided we prove that all the constants in the a priori inequalities are independent on Ω.

By using the above lemmata, we prove (58) as follows. Let $\left\{Q_{h}\right\}_{h \in \mathbb{N}}$ be a family of cubes of constant side length $r=1$ which cover \mathbb{R}^{n} as in Lemma 3;
let $\phi_{h}:=\chi_{Q_{h}}(h=1,2, \ldots)$, so that $\sum_{h=1}^{+\infty} \phi_{h}(x)=1$ a.e. in \mathbb{R}^{n}. Let g be a given function in $L^{\infty}(\Omega)$ and consider the solution w_{h} of the Dirichlet problem

$$
\left\{\begin{array}{l}
a_{0}^{\prime}\left(w_{h}, v\right)=\int_{\Omega} \phi_{h} g v d x \quad \forall v \in H_{0}^{1}(\Omega) \tag{61}\\
w_{h} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Since ϕ_{h} has compact support and $g \in L^{\infty}(\Omega)$, obviously $\phi_{h} g \in L^{q}(\Omega)$ for all $q \geqslant 1$, therefore from (60) it follows

$$
\begin{equation*}
\left\|w_{h}\right\|_{L^{1}(\Omega)} \leqslant\left(1 / c_{0}\right)\left\|\phi_{h} g\right\|_{L^{1}(\Omega)} \tag{62}
\end{equation*}
$$

From (62) and the results of [2] (see Remark 4 in particular) we easily deduce

$$
\begin{equation*}
\left\|w_{h}\right\|_{L^{\infty}(\Omega)} \leqslant K_{10}\left\|\phi_{h} g\right\|_{L^{\infty}(\Omega)} \tag{63}
\end{equation*}
$$

(note that $\left\|\phi_{h} g\right\|_{L^{1}(\Omega)} \leqslant\left\|\phi_{h} g\right\|_{L^{\infty}(\Omega)}$). Inequality (63) has the same form as (58), so by the interpolation argument above we have, for the time being, existence and uniqueness of the solution w_{h} of problem (61), and this is true for any $h \in \mathbb{N}$.

Notice also that it turns out $\sum_{h=1}^{+\infty} w_{h}=w$ because $\sum_{h=1}^{+\infty} \phi_{h} g=g$ in Ω and because of uniqueness which follows from (60). (As a matter of fact, since we have temporarily supposed Ω to be bounded, the sums with respect to h are finite, so $\sum_{h} w_{h}$ obviously belongs
to $H_{0}^{1}(\Omega)$). From (63) the a priori inequality for w in $L^{\infty}(\Omega)$ would follow, but the constant would be dependent on Ω (more precisely, on the maximum value of $h \in \mathbb{N}$ such that $Q_{h} \cap \Omega \neq \emptyset$). Therefore a different argument must be used, as in [4], [5].

Let x_{h} be the center of the cube Q_{h} (for $h=1,2, \ldots$) and μ a positive constant; define $\alpha_{h}(x):=e^{\mu\left|x-x_{h}\right|}$. According to Lemma 6, the function $\alpha_{h} w_{h}$ satisfies the equation

$$
\begin{equation*}
a^{*}\left(\alpha_{h} w_{h}, v\right)=\int_{\Omega} \alpha_{h} \phi_{h} g v d x \quad \forall v \in H_{0}^{1}(\Omega) \tag{64}
\end{equation*}
$$

where the bilinear form $a^{*}(.,$.$) has coefficients$

$$
\begin{aligned}
& a_{i j}^{*}:=a_{j i}(i, j=1,2,, \ldots, n) \\
& b_{i}^{*}:=\mu \sum_{j=1}^{n} a_{j i}\left(x_{j}-x_{h j}\right) /\left|x-x_{h}\right|,(i=1,2, \ldots, n) \\
& d_{i}^{*}:=b_{i}-\mu \sum_{j=1}^{n} a_{i j}\left(x_{j}-x_{h j}\right) /\left|x-x_{h}\right|,(i=1,2, \ldots, n) \\
& c^{*}:=c+\mu \sum_{i=1}^{n} b_{i}\left(x_{i}-x_{h i}\right) /\left|x-x_{h}\right|-\mu^{2} \sum_{i, j=1}^{n} a_{i j}\left(x_{i}-x_{h i}\right)\left(x_{j}-x_{h j}\right) /\left|x-x_{h}\right|^{2}
\end{aligned}
$$

From the expressions of these coefficients and Lemma 5^{\prime}, we can choose $\mu>0$ so small that Lemma 5^{\prime} can be applied: therefore we deduce the following a priori inequality for the function $\alpha_{h} w_{h}$:

$$
\begin{equation*}
\left\|\alpha_{h} w_{h}\right\|_{L^{\bar{p}}(\Omega)} \leqslant K_{6}\left\|\alpha_{h} \phi_{h} g\right\|_{L^{\bar{p}}(\Omega)} \quad(h=1,2, \ldots) \tag{65}
\end{equation*}
$$

for some $\bar{p} \geqslant 1$. Furthermore, obviously

$$
\begin{equation*}
\left\|\alpha_{h} \phi_{h} g\right\|_{L^{\bar{p}}(\Omega)} \leqslant K_{11}\|g\|_{L^{\infty}(\Omega)} \tag{66}
\end{equation*}
$$

where the constant K_{11} depends only on n and μ. So by applying the results of [2] we deduce

$$
\begin{equation*}
\left\|\alpha_{h} w_{h}\right\|_{L^{\infty}(\Omega)} \leqslant K_{12}\left[\left\|\alpha_{h} w_{h}\right\|_{L^{\bar{p}}(\Omega)}+\left\|\alpha_{h} \phi_{h} g\right\|_{L^{\bar{p}}(\Omega)}\right] \tag{67}
\end{equation*}
$$

From the above inequalities and the definition of α_{h} it follows

$$
\begin{equation*}
\left|w_{h}(x)\right| \leqslant K_{13} e^{-\mu\left|x-x_{h}\right|}\|g\|_{L^{\infty}(\Omega)} \quad \text { a.e. in } \Omega(h=1,2, \ldots) \tag{68}
\end{equation*}
$$

whence

$$
\begin{equation*}
|w(x)| \leqslant \sum_{h=1}^{\infty}\left|w_{h}(x)\right| \leqslant K_{13}\|g\|_{L^{\infty}(\Omega)} \sum_{h=1}^{+\infty} e^{-\mu\left|x-x_{h}\right|} \quad \text { a.e. in } \Omega . \tag{69}
\end{equation*}
$$

Since the series on the right hand side converges, (58) is proved and the assertion follows as explained before.

REFERENCES

[1] H. Brézis, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1992.
[2] M. Chicco - M. Venturino, A priori inequalities in $L^{\infty}(\Omega)$ for solutions of elliptic equations in unbounded domains, Rend. Sem. Mat. Univ. Padova, 102 (1999), pp. 141-149.
[3] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 7 (1958), pp. 102-137.
[4] P. L. Lions, Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence dans les domaines non bornés, Atti Acc. Naz. Lincei Rend. Sc. Fis. Mat. Natur. (8), 78 (1985), pp. 205-212.
[5] P. L. Lions, Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence dans les domaines non bornés, II, Atti Acc. Naz. Lincei Rend. Sc. Fis. Mat. Natur. (8), 79 (1985), pp. 178-183.
[6] C. Miranda, Alcune osservazioni sulla maggiorazione in L^{v} delle soluzioni delle equazioni ellittiche del secondo ordine, Ann. Mat. Pura Appl. (4), 61 (1963), pp. 151-170.
[7] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Grenoble, 15 (1965), pp. 189-258.
[8] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), pp. 353-372.

[^0]: (*) Entrata in Redazione il 22 aprile 1999.
 Indirizzo degli AA.: Dipartimento di Metodi e Modelli Matematici, Università di Genova, P.le Kennedy Pad. D, 16129 Genova, Italia. E-mail: chicco@dima.unige.it, venturin@dima.unige.it We are grateful to dr. Laura Servidei for correcting English style.

