Skip to main content
Log in

Mechanism of interaction of diallylmethylamine and its protonated and quaternary forms with their own radicals in solvent

  • Physical Chemistry
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The potential energy profiles of reactions of diallylmethylamine and its protonated and quaternary forms with their own radicals were calculated by the semiempirical MNDO-MP3 method taking into account electrostatic solvation effects in the framework of the selfconsistent reaction field model. The reactions studied simulate chain propagation and chain transfer to monomer in radical polymerization of the above monomers in dilute solutions with different dielectric permittivities of the solvents. The conformations of monomers in the gas phase and in solvent were studied. It was found that protonation and quaternization lead to successive increase in the activation energy of mobile allyl hydrogen atom abstraction and to increase in the difference between the activation barriers to competing reactions of chain transfer and propagation. The results obtained make it possible to predict the conditions of the synthesis of high-molecular-weight polymers based on diallylamine monomers. The mechanisms of reactions studied are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Litt and F. R. Eirich,J. Polym. Sci., 1960,45, 379.

    Article  CAS  Google Scholar 

  2. F. F. Shcherbina, I. I. Fedorova, and Yu. I. Gorlov,Vysokomol. Soedin., Ser. A, 1970,12, 2042 [Polym. Sci. USSR, Ser. A, 1970,12 (Engl. Transl.)].

    CAS  Google Scholar 

  3. V. P. Zubov, E. S. Garina, V. F. Kornil'eva, M. N. Masterova, V. A. Kabanov, and L. S. Polak,Vysokomol. Soedin., Ser. A, 1973,15, 100 [Polym. Sci. USSR, Ser. A, 1973,15 (Engl. Transl.)].

    CAS  Google Scholar 

  4. M. N. Masterova, L. I. Andreeva, V. P. Zubov, L. S. Polak, and V. A. Kabanov,Vysokomol. Soedin., Ser. A, 1976,18, 1957 [Polym. Sci. USSR, Ser. A, 1976,18 (Engl. Transl.)].

    CAS  Google Scholar 

  5. M. Ya. Kreindel', L. N. Andreeva, A. M. Kaplan, V. B. Golubev, M. N. Masterova, V. P. Zubov, L. S. Polak, and V. A. Kabanov,Vysokomol. Soedin., Ser. A, 1976,18, 2233 [Polym. Sci. USSR, Ser. A, 1976,18 (Engl. Transl.)].

    Google Scholar 

  6. M. V. Kumar, M. N. Masterova, V. B. Golubev, V. P. Zubov, and V. A. Kabanov,Vestn. Mosk. Univ., Ser. 2, Khim. [Moscow Univ. Bull., Ser. 2, Chem.], 1979,20, 490. (in Russian).

    CAS  Google Scholar 

  7. V. P. Zubov, M. V. Kumar, M. N. Masterova, and V. A. Kabanov,J. Macromol. Sci.—Chem., 1979,A13, 111.

    Google Scholar 

  8. M. B. Jakson,J. Macromol. Sci.—Chem., 1979,A10, 959.

    Google Scholar 

  9. D. A. Topchiev, G. T. Nazhmetdinova, A. M. Krapivin, V. A. Shreider, and V. A. Kabanov,Vysokomol. Soedin., Ser. A, 1982,24, 473 [Polym. Sci. USSR, Ser. A, 1982,24 (Engl. Transl.)].

    CAS  Google Scholar 

  10. V. A. Kabanov and D. A. Topchiev,Vysokomol. Soedin., Ser. A, 1988,30, 675 [Polym. Sci. USSR, Ser. A, 1988,30 (Engl. Transl.)].

    CAS  Google Scholar 

  11. G. B. Butler,Cyclopolymerization and Cyclocopolymerization, Marcel Dekker, New York, 1992.

    Google Scholar 

  12. G. B. Butler, A. Crawshaw, and W. L. Miller,J. Am. Chem. Soc., 1958,80, 3615.

    Article  CAS  Google Scholar 

  13. A. L. J. Beckwith, A. K. Ong, and D. H. Solomon,J. Macromol. Sci.—Chem., 1975,A9, 115.

    Google Scholar 

  14. A. L. J. Beckwith, A. K. Ong, and D. H. Solomon,J. Macromol. Sci.—Chem., 1975,A9, 125.

    Google Scholar 

  15. D. G. Hawthorne, S. R. Johns, D. H. Solomon, and R. I. Willing,Aust. J. Chem., 1976,29, 1955.

    Article  CAS  Google Scholar 

  16. M. Fujimoto and D. I. E. Ingram,Trans. Faraday Soc., 1958,54, 1304.

    Article  CAS  Google Scholar 

  17. J. J. P. Stewart,J. Comput. Chem., 1989,10, 221.

    Article  CAS  Google Scholar 

  18. M. J. S. Dewar, E. G. Zoebish, E. F. Healy, and J. J. P. Stewart,J. Am. Chem. Soc., 1985,107, 3902.

    Article  CAS  Google Scholar 

  19. J. P. A. Heuts, Sudarko, and R. G. Gilbert,Macromol. Symposia, 1996,111, 147.

    CAS  Google Scholar 

  20. H. Azuma, Y. Katagiri, and S. Yamabe,J. Polym. Sci. A—Polym. Chem., 1996,34, 1407.

    Article  CAS  Google Scholar 

  21. G. E. Chudinov, D. V. Napolov, and M. V. Basilevsky,Chem. Phys., 1992,160, 41.

    Article  CAS  Google Scholar 

  22. S. Miertus, E. Scrocco, and J. Tomasi,Chem. Phys., 1981,55, 117.

    Article  CAS  Google Scholar 

  23. R. V. Taft,Progr. Phys. Org. Chem., 1983,14, 247.

    CAS  Google Scholar 

  24. E. N. Viktorova, Ph.D. (Chem.) Thesis, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 1996, 150 pp. (in Russian).

  25. M. V. Basilevsky,Adv. Chem. Phys., 1975,33, 345.

    Google Scholar 

  26. J. P. A. Heuts, R. G. Gilbert, and L. Radom,Macromolecules, 1995,28, 8771.

    Article  CAS  Google Scholar 

  27. D. A. Topchiev, A. I. Martynenko, E. Yu. Kabanova, L. M. Tinofeeva, V. D. Oppengeim, A. S. Shashkov, and A. M. Drabkina,Vysokomol. Soedin., Ser. A, 1994,36, 1242 [Polym. Sci. USSR, Ser. A, 1994,36 (Engl. Transl.)].

    CAS  Google Scholar 

  28. S. Glasstone, K. J. Laidler, and H. Eyring, inThe Theory of Rate Processes, Frick Chem. Lab., Princeton University, New York-London, 1941.

    Google Scholar 

  29. G. Moad and D. H. Solomon, inThe Chemistry of Free Radical Polymerization, Pergamon, Oxford, 1995, 21.

    Google Scholar 

  30. Z. Dega-Szhafran, M. Grundwald-Wysplanska, and M. Szhafran,Spectrochim. Acta, 1991,47A, 543.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 865–872, May, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeeva, L.M., Vasilieva, Y.A., Kleshcheva, N.A. et al. Mechanism of interaction of diallylmethylamine and its protonated and quaternary forms with their own radicals in solvent. Russ Chem Bull 48, 856–863 (1999). https://doi.org/10.1007/BF02494626

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02494626

Key words

Navigation